Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Growth Conditions
2.2. Mice
2.3. Respiratory Inoculation Model
2.4. ABSL3 Select Agent Laboratory
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- WHO (World Health Organization). United Nations High-Level Meeting on Antimicrobial Resistance. 2016. Available online: http://www.who.int/antimicrobial-resistance/events/UNGA-meeting-amr-sept2016/en/ (accessed on 20 December 2018).
- World Health Organization. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Izadpanah, M.; Khalili, H. Antibiotic regimens for treatment of infections due to multidrug-resistant Gram-negative pathogens: An evidence-based literature review. J. Res. Pharm. Pract. 2015, 4, 105–114. [Google Scholar] [CrossRef]
- Granata, G.; Petrosillo, N. Resistance to Colistin in Klebsiella Pneumoniae: A 4.0 Strain? Infect. Dis. Rep. 2017, 9, 7104. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.Y.K.; Wallin, M.; Lin, Y.; Leung, S.S.Y.; Wang, H.; Morales, S.; Chan, H.K. Phage therapy for respiratory infections. Adv. Drug Deliv. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Calap, P.; Delgado-Martinez, J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics (Basel, Switzerland) 2018, 7, 66. [Google Scholar] [CrossRef]
- Morozova, V.V.; Vlassov, V.V.; Tikunova, N.V. Applications of Bacteriophages in the Treatment of Localized Infections in Humans. Front. Microbiol. 2018, 9, 1696. [Google Scholar] [CrossRef] [PubMed]
- Negus, D.; Moore, C.; Baker, M.; Raghunathan, D.; Tyson, J.; Sockett, R.E. Predator Versus Pathogen: How Does Predatory Bdellovibrio bacteriovorus Interface with the Challenges of Killing Gram-Negative Pathogens in a Host Setting? Annu. Rev. Microbiol. 2017, 71, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Sockett, R.E.; Lambert, C. Bdellovibrio as therapeutic agents: A predatory renaissance? Nat. Rev. Microbiol. 2004, 2, 669–675. [Google Scholar] [CrossRef]
- Shatzkes, K.; Chae, R.; Tang, C.; Ramirez, G.C.; Mukherjee, S.; Tsenova, L.; Connell, N.D.; Kadouri, D.E. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Sci. Rep. 2015, 5, 12899. [Google Scholar] [CrossRef] [Green Version]
- Shatzkes, K.; Connell, N.D.; Kadouri, D.E. Predatory bacteria: A new therapeutic approach for a post-antibiotic era. Future Microbiol. 2017, 12, 469–472. [Google Scholar] [CrossRef]
- Shatzkes, K.; Singleton, E.; Tang, C.; Zuena, M.; Shukla, S.; Gupta, S.; Dharani, S.; Rinaggio, J.; Kadouri, D.E.; Connell, N.D. Examining the efficacy of intravenous administration of predatory bacteria in rats. Sci. Rep. 2017, 7, 1864. [Google Scholar] [CrossRef]
- Shatzkes, K.; Tang, C.; Singleton, E.; Shukla, S.; Zuena, M.; Gupta, S.; Dharani, S.; Rinaggio, J.; Connell, N.D.; Kadouri, D.E. Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci. Rep. 2017, 7, 43483. [Google Scholar] [CrossRef] [PubMed]
- Shatzkes, K.; Singleton, E.; Tang, C.; Zuena, M.; Shukla, S.; Gupta, S.; Dharani, S.; Onyile, O.; Rinaggio, J.; Connell, N.D.; et al. Predatory Bacteria Attenuate Klebsiella pneumoniae Burden in Rat Lungs. MBio 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.R.; Moore, C.; Mazon-Moya, M.; Krokowski, S.; Lambert, C.; Till, R.; Mostowy, S.; Sockett, R.E. Injections of Predatory Bacteria Work Alongside Host Immune Cells to Treat Shigella Infection in Zebrafish Larvae. Curr. Biol.: CB 2016, 26, 3343–3351. [Google Scholar] [CrossRef] [PubMed]
- Atterbury, R.J.; Hobley, L.; Till, R.; Lambert, C.; Capeness, M.J.; Lerner, T.R.; Fenton, A.K.; Barrow, P.; Sockett, R.E. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl. Environ. Microbiol. 2011, 77, 5794–5803. [Google Scholar] [CrossRef] [PubMed]
- Milner, D.S.; Till, R.; Cadby, I.; Lovering, A.L.; Basford, S.M.; Saxon, E.B.; Liddell, S.; Williams, L.E.; Sockett, R.E. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio. PLoS Genet. 2014, 10, e1004253. [Google Scholar] [CrossRef] [PubMed]
- Dashiff, A.; Junka, R.A.; Libera, M.; Kadouri, D.E. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol. 2011, 110, 431–444. [Google Scholar] [CrossRef]
- Russo, R.; Chae, R.; Mukherjee, S.; Singleton, E.J.; Occi, J.L.; Kadouri, D.E.; Connell, N.D. Susceptibility of Select Agents to Predation by Predatory Bacteria. Microorganisms 2015, 3, 903–912. [Google Scholar] [CrossRef]
- Du, Z.; Wang, X. Pathology and Pathogenesis of Yersinia pestis. Adv. Exp. Med. Biol. 2016, 918, 193–222. [Google Scholar] [CrossRef]
- Gracio, A.; Gracio, M.A.A. Plague: A Millenary Infectious Disease Reemerging in the XXI Century. BioMed Res. Int. 2017, 2017, 5696542. [Google Scholar] [CrossRef]
- Yang, R. Plague: Recognition, Treatment, and Prevention. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef]
- Pechous, R.D.; Sivaraman, V.; Stasulli, N.M.; Goldman, W.E. Pneumonic Plague: The Darker Side of Yersinia pestis. Trends Microbiol. 2016, 24, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Cui, Y.; Bi, Y. Perspectives on Yersinia pestis: A Model for Studying Zoonotic Pathogens. Adv. Exp. Med. Biol. 2016, 918, 377–391. [Google Scholar] [PubMed]
- Morens, D.M.; Fauci, A.S. Emerging infectious diseases: Threats to human health and global stability. PLoS Pathog. 2013, 9, e1003467. [Google Scholar] [CrossRef] [PubMed]
- Huber, C.; Finelli, L.; Stevens, W. The Economic and Social Burden of the 2014 Ebola Outbreak in West Africa. J. Infect. Dis. 2018. [Google Scholar] [CrossRef]
- Butler, M.S.; Blaskovich, M.A.; Owen, J.G.; Cooper, M.A. Old dogs and new tricks in antimicrobial discovery. Curr. Opin. Microbiol. 2016, 33, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Luepke, K.H.; Mohr, J.F., 3rd. The antibiotic pipeline: Reviving research and development and speeding drugs to market. Expert Rev. Anti-Infect. Ther. 2017, 15, 425–433. [Google Scholar] [CrossRef]
- Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. (Tokyo) 2017, 70, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Pechous, R.D.; Sivaraman, V.; Price, P.A.; Stasulli, N.M.; Goldman, W.E. Early host cell targets of Yersinia pestis during primary pneumonic plague. PLoS Pathog. 2013, 9, e1003679. [Google Scholar] [CrossRef]
- Carus, W.S. Biological Warfare in the 17th Century. Emerg. Infect. Dis. 2016, 22, 1663–1664. [Google Scholar] [CrossRef] [Green Version]
- Zilinskas, R.A. A brief history of biological weapons programmes and the use of animal pathogens as biological warfare agents. Revue Scientifique Technique (Int. Off. Epizootics) 2017, 36, 415–422. [Google Scholar] [CrossRef]
- Andrianaivoarimanana, V.; Kreppel, K.; Elissa, N.; Duplantier, J.M.; Carniel, E.; Rajerison, M.; Jambou, R. Understanding the persistence of plague foci in Madagascar. PLoS Negl. Trop. Dis. 2013, 7, e2382. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Plague Outbreak Madagascar; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Cabanel, N.; Bouchier, C.; Rajerison, M.; Carniel, E. Plasmid-mediated doxycycline resistance in a Yersinia pestis strain isolated from a rat. Int. J. Antimicrob. Agents 2018, 51, 249–254. [Google Scholar] [CrossRef] [PubMed]
Treatment 1 | # of Mice | % Viable (24 h) |
---|---|---|
naïve | 4 | 100 |
PBS → PBS | 8 | 100 |
PBS → B. bacteriovorus 109J | 8 | 100 |
Y. pestis CO92 → PBS | 16 | 100 |
Y. pestis CO92 → B. bacteriovorus 109J | 16 | 94 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, R.; Kolesnikova, I.; Kim, T.; Gupta, S.; Pericleous, A.; Kadouri, D.E.; Connell, N.D. Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice. Microorganisms 2019, 7, 2. https://doi.org/10.3390/microorganisms7010002
Russo R, Kolesnikova I, Kim T, Gupta S, Pericleous A, Kadouri DE, Connell ND. Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice. Microorganisms. 2019; 7(1):2. https://doi.org/10.3390/microorganisms7010002
Chicago/Turabian StyleRusso, Riccardo, Irina Kolesnikova, Thomas Kim, Shilpi Gupta, Androulla Pericleous, Daniel E. Kadouri, and Nancy D. Connell. 2019. "Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice" Microorganisms 7, no. 1: 2. https://doi.org/10.3390/microorganisms7010002
APA StyleRusso, R., Kolesnikova, I., Kim, T., Gupta, S., Pericleous, A., Kadouri, D. E., & Connell, N. D. (2019). Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice. Microorganisms, 7(1), 2. https://doi.org/10.3390/microorganisms7010002