Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Sampling
2.2. DNA Extraction
2.3. Library Preparation and Metagenomic Sequencing
2.4. Data Analysis
3. Results
3.1. Diversity
3.2. Taxonomy
4. Discussion
4.1. Peel
4.2. Pulp
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Manickavasagan, A.; Mohamed, E.M.; Sukumar, E. Dates: Production, Processing, Food, and Medicinal Values (Medicinal and Aromatic Plants—Industrial Profiles; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Navarro, S. Postharvest treatment of dates. Stewart Postharvest Rev. 2006, 2, 1–9. [Google Scholar] [CrossRef]
- Shenasi, M.; Aidoo, K.E.; Candlish, A.A.G. Microflora of date fruits and production of aflatoxins at various stages of maturation. Int. J. Food Microbiol. 2002, 79, 113–119. [Google Scholar] [CrossRef]
- Gherbawy, Y.A.; Elhariry, H.M.; Bahobial, A.A.S. Mycobiota and mycotoxins (aflatoxins and ochratoxin) associated with some Saudi date palm fruits. Foodborne Pathog. Dis. 2012, 9, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Colman, S.; Spencer, T.H.; Ghamba, P.E.; Colman, E. Isolation and identification of fungal species from dried date palm (Phoenix dactylifera) fruits sold in Maiduguri metropolis. Afr. J. Biotechnol. 2012, 11, 12063–12066. [Google Scholar] [CrossRef] [Green Version]
- Al-Bulushi, I.M.; Bani-Uraba, M.S.; Guizani, N.S.; Al-Khusaibi, M.K.; Al-Sadi, A.M. Illumina MiSeq sequencing analysis of fungal diversity in stored dates. BMC Microbiol. 2017, 17, 72. [Google Scholar] [CrossRef] [Green Version]
- Hamad, S.H.; Saleh, F.A.; Al-Otaibi, M.M. Microbial contamination of date rutab collected from the markets of Al-Hofuf city in Saudi Arabia. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pẽa, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; Pennanen, T.; et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Paulson, J.N.; Colin Stine, O.; Bravo, H.C.; Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience 2013, 2, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokulich, N.A.; Dillon, M.R.; Zhang, Y.; Rideout, J.R.; Bolyen, E.; Li, H.; Albert, P.S.; Caporaso, J.G. q2-longitudinal: Longitudinal and Paired-Sample Analyses of Microbiome Data. MSystems 2017, 3, e00219-18. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, O.A.; Tezcan, H.; Daus, A.; Cohen, L.; Wiess, B.; Droby, S. Control of preharvest and postharvest fruit rot in strawberry by Metschnikowia fructicola. Biocontrol Sci. Technol. 2004, 14, 513–521. [Google Scholar] [CrossRef]
- Spadaro, D.; Lorè, A.; Garibaldi, A.; Gullino, M.L. A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol. Technol. 2013, 75, 1–8. [Google Scholar] [CrossRef]
- Levin, E.; Sela, N.; Raphael, G.; Feygenberg, O.; Droby, S.; Wisniewski, M. Molecular Interactions between the Biocontrol Agent Metschnikowia fructicola and Citrus Fruit Tissue and Penicillium digitatum. Acta Hortic. 2014, 1053, 37–49. [Google Scholar] [CrossRef]
- Ben Chobba, I.; Elleuch, A.; Ayadi, I.; Khannous, L.; Namsi, A.; Cerqueira, F.; Drira, N.; Gharsallah, N.; Vallaeys, T. Fungal diversity in adult date palm (Phoenix dactylifera L.) revealed by culture-dependent and culture-independent approaches. J. Zhejiang Univ. Sci. B 2013, 14, 1084–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meena, M.; Gupta, S.K.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Alternaria toxins: Potential virulence factors and genes related to pathogenesis. Front. Microbiol. 2017, 8, 1451. [Google Scholar] [CrossRef] [PubMed]
- Čelakovská, J.; Bukač, J.; Vaňková, R.; Krcmova, I.; Krejsek, J.; Andrýs, C. Sensitisation to molecular allergens of Alternaria alternata, Cladosporium herbarum, Aspergillus fumigatus in atopic dermatitis patients. Food Agric. Immunol. 2019, 30, 1097–1111. [Google Scholar] [CrossRef] [Green Version]
- Rid, R.; Önder, K.; Hawranek, T.; Laimer, M.; Bauer, J.W.; Holler, C.; Simon-Nobbe, B.; Breitenbach, M. Isolation and immunological characterization of a novel Cladosporium herbarum allergen structurally homologous to the α/β hydrolase fold superfamily. Mol. Immunol. 2010, 47, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Leino, M.; Reijula, K.; Mäkinen-Kiljunen, S.; Haahtela, T.; Mäkelä, M.J.; Alenius, H. Cladosporium herbarum and Pityrosporum ovale allergen extracts share cross-reacting glycoproteins. Int. Arch. Allergy Immunol. 2006, 140, 30–35. [Google Scholar] [CrossRef]
- Breitenbach, M.; Simon-Nobbe, B. The allergens of Cladosporium herbarum and Alternaria alternata. Chem. Immunol. 2002, 81, 48–72. [Google Scholar] [CrossRef] [Green Version]
- Palou, L.; Rosales, R.; Taberner, V.; Vilella-Espla, J. Incidence and etiology of postharvest diseases of fresh fruit of date palm (Phoenix dactylifera L.) in the grove of Elx (Spain). Phytopathol. Mediterr. 2017, 55, 391–400. [Google Scholar] [CrossRef]
- Choque, E.; Klopp, C.; Valiere, S.; Raynal, J.; Mathieu, F. Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential. BMC Genom. 2018, 19, 200. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, W.; Liu, D.; Lu, C.; Zhang, D.; Wu, H.; Dong, D.; Meng, L. Identification and evaluation of Aspergillus tubingensis as a potential biocontrol agent against grey mould on tomato. J. Gen. Plant Pathol. 2018, 84, 148–159. [Google Scholar] [CrossRef]
- De Hoog, G.S.; Beguin, H.; Batenburg-van De Vegte, W.H. Phaeotheca triangularis, a new meristematic black yeast from a humidifier. Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 1997, 71, 289–295. [Google Scholar] [CrossRef]
- Ahima, J.; Zhang, X.; Yang, Q.; Zhao, L.; Tibiru, A.M.; Zhang, H. Biocontrol activity of Rhodotorula mucilaginosa combined with salicylic acid against Penicillium digitatum infection in oranges. Biol. Control 2019, 135, 23–32. [Google Scholar] [CrossRef]
- Tryfinopoulou, P.; Chourdaki, A.; Nychas, G.J.E.; Panagou, E.Z. Competitive yeast action against Aspergillus carbonarius growth and ochratoxin A production. Int. J. Food Microbiol. 2020, 317, 108460. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Patel, B.; Palfrey, W.; Isache, C. Rapidly progressive necrotizing cellulitis secondary to Candida tropicalis infection in an immunocompromised host. IDCases 2020, 19, e00691. [Google Scholar] [CrossRef] [PubMed]
- Zhimo, V.Y.; Saha, J.; Singh, B.; Chakraborty, I. Role of antagonistic yeast Candida tropicalis YZ27 on postharvest life and quality of litchi cv. Bombai. Curr. Sci. 2018, 114, 1100–1105. [Google Scholar] [CrossRef]
- Zhimo, V.Y.; Dilip, D.; Sten, J.; Ravat, V.K.; Bhutia, D.D.; Panja, B.; Saha, J. Antagonistic Yeasts for Biocontrol of the Banana Postharvest Anthracnose Pathogen Colletotrichum musae. J. Phytopathol. 2017, 165, 35–43. [Google Scholar] [CrossRef]
- Zhimo, V.Y.; Bhutia, D.D.; Saha, J. Biological control of post harvest fruit diseases using antagonistic yeasts in India. J. Plant Pathol. 2016, 98. [Google Scholar] [CrossRef]
- Yaish, M.W.; Al-Harrasi, I.; Alansari, A.S.; Al-Yahyai, R.; Glick, B.R. The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. Int. Microbiol. 2016, 19, 143–155. [Google Scholar] [CrossRef]
- Mefteh, F.B.; Daoud, A.; Bouket, A.C.; Alenezi, F.N.; Luptakova, L.; Rateb, M.E.; Kadri, A.; Gharsallah, N.; Belbahri, L. Fungal root microbiome from healthy and brittle leaf diseased date palm trees (Phoenix dactylifera L.) reveals a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites. Front. Microbiol. 2017, 8, 307. [Google Scholar] [CrossRef]
- Mohamed Mahmoud, F.; Krimi, Z.; Maciá-Vicente, J.G.; Brahim Errahmani, M.; Lopez-Llorca, L.V. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Rev. Iberoam. Micol. 2017, 34, 116–120. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Penicillium subgenus Penicillium: A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud. Mycol. 2004, 49, 1–174. [Google Scholar]
- Chooi, Y.H.; Cacho, R.; Tang, Y. Identification of the Viridicatumtoxin and Griseofulvin Gene Clusters from Penicillium aethiopicum. Chem. Biol. 2010, 17, 483–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banani, H.; Marcet-Houben, M.; Ballester, A.R.; Abbruscato, P.; González-Candelas, L.; Gabaldón, T.; Spadaro, D. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genom. 2016, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, A.S.Y.; Meon, S.; Kadir, J.; Radu, S.; Singh, G. Endophytic microorganisms as potential growth promoters of banana. BioControl 2008, 53, 541–553. [Google Scholar] [CrossRef]
- Abutaha, N.; Baabbad, A.; Al-Shami, M.; Wadaan, M.A.; Semlali, A.; Alanazi, M. Anti-proliferative and anti-inflammatory activities of entophytic Penicillium crustosum from Phoenix dactylifer. Pak. J. Pharm. Sci. 2018, 31, 421–427. [Google Scholar]
Fruit Stage | Moisture (%) | Total Soluble Solids (%) |
---|---|---|
Hababauk | 72.9 ± 1.2 | 6.1 ± 0.6 |
Kimri | 84.2 ± 0.4 | 6.5 ± 1.0 |
Khalal | 61.3 ± 0.4 | 27.0 ± 0.81 |
Tamer | 26.8 ± 2.0 | 51.5 ± 0.6 |
Group1 | Group2 | p-Value Shannon Diversity Index | p-Value OTU Number |
---|---|---|---|
Stage3:Khalal Peel | Stage4:Tamer Pulp | 0.161 | 0.891 |
Stage3:Khalal Peel | Stage1:Hababauk | 0.503 | 0.290 |
Stage4:Tamer Peel | Stage2:Kimri Peel | 0.292 | 0.179 |
Stage4:Tamer Pulp | Stage1:Hababauk | 0.305 | 0.313 |
Stage4:Tamer Peel | Stage1:Hababauk | 0.122 | 0.799 |
Stage3:Khalal Pulp | Stage1:Hababauk | 0.860 | 0.752 |
Stage2:Kimri Pulp | Stage1:Hababauk | 0.105 | 0.315 |
Stage2:Kimri Pulp | Stage2:Kimri Peel | 0.168 | 0.231 |
Stage3:Khalal Peel | Stage2:Kimri Peel | 0.357 | 0.893 |
Stage3:Khalal Peel | Stage2:Kimri Pulp | 0.091 | 0.344 |
Stage3:Khalal Peel | Stage4:Tamer Peel | 0.553 | 0.462 |
Stage3:Khalal Peel | Stage3:Khalal Pulp | 0.460 | 0.714 |
Stage4:Tamer Pulp | Stage3:Khalal Pulp | 0.363 | 0.717 |
Stage2:Kimri Pulp | Stage4:Tamer Peel | 0.087 | 0.151 |
Stage3:Khalal Pulp | Stage4:Tamer Peel | 0.308 | 0.489 |
Stage2:Kimri Pulp | Stage3:Khalal Pulp | 0.105 | 0.196 |
Stage3:Khalal Pulp | Stage2:Kimri Peel | 0.477 | 0.359 |
Stage4:Tamer Pulp | Stage2:Kimri Peel | 0.888 | 0.784 |
Stage4:Tamer Pulp | Stage4:Tamer Peel | 0.126 | 0.168 |
Stage4:Tamer Pulp | Stage2:Kimri Pulp | 0.090 | 0.333 |
Stage2:Kimri Peel | Stage1:Hababauk | 0.526 | 0.231 |
Genus | Core OTUs |
---|---|
Penicillium | 1 |
Aspergillus | 1 |
Alternaria | 2 |
Cladosporium | 2 |
Issatchenkia | 1 |
Filobasidium | 1 |
Sarocladium | 1 |
Metschnikowia | 1 |
Aureobasidium | 1 |
Unidentified | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piombo, E.; Abdelfattah, A.; Danino, Y.; Salim, S.; Feygenberg, O.; Spadaro, D.; Wisniewski, M.; Droby, S. Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest. Microorganisms 2020, 8, 641. https://doi.org/10.3390/microorganisms8050641
Piombo E, Abdelfattah A, Danino Y, Salim S, Feygenberg O, Spadaro D, Wisniewski M, Droby S. Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest. Microorganisms. 2020; 8(5):641. https://doi.org/10.3390/microorganisms8050641
Chicago/Turabian StylePiombo, Edoardo, Ahmed Abdelfattah, Yaara Danino, Shoshana Salim, Oleg Feygenberg, Davide Spadaro, Michael Wisniewski, and Samir Droby. 2020. "Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest" Microorganisms 8, no. 5: 641. https://doi.org/10.3390/microorganisms8050641
APA StylePiombo, E., Abdelfattah, A., Danino, Y., Salim, S., Feygenberg, O., Spadaro, D., Wisniewski, M., & Droby, S. (2020). Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest. Microorganisms, 8(5), 641. https://doi.org/10.3390/microorganisms8050641