The Role of Essential Oils against Pathogenic Escherichia coli in Food Products
Abstract
:1. Introduction
2. Mechanisms Related to Protective Effect of EOs Against Pathogenic E. coli
2.1. Regulation of Virulence-Related Genes
2.2. Antibacterial Mechanisms
3. Application of EOs in Food Systems
3.1. Meat and Meat Products
3.2. Fish and Fish Products
3.3. Milk and Dairy Products
3.4. Vegetables
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FDA Outbreaks of Foodborne Illness. Available online: https://www.fda.gov/food/recalls-outbreaks-emergencies/outbreaks-foodborne-illness (accessed on 1 May 2020).
- FDA Escherichia coli (E. coli)—FDA. Available online: https://www.fda.gov/food/foodborne-pathogens/escherichia-coli-e-coli (accessed on 1 May 2020).
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; EFSA BIOHAZ Panel. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020, 18, e05967. [Google Scholar] [CrossRef]
- Pacheco, A.R.; Sperandio, V. Shiga toxin in enterohemorrhagic E. coli: Regulation and novel anti-virulence strategies. Front. Cell. Infect. Microbiol. 2012, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.C.; Lin, C.H.; Aljuffali, I.A.; Fang, J.Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef]
- Kaper, J.B. Pathogenic Escherichia coli. Int. J. Med. Microbiol. 2005, 295, 355–356. [Google Scholar] [CrossRef]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global incidence of human shiga toxin-producing Escherichia coli infections and deaths: A systematic review and knowledge synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrig, T.G. Escherichia coli shiga toxin mechanisms of action in renal disease. Toxins 2010, 2, 2769–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeedi, P.; Yazdanparast, M.; Behzadi, E.; Salmanian, A.H.; Mousavi, S.L.; Nazarian, S.; Amani, J. A review on strategies for decreasing E. coli O157:H7 risk in animals. Microb. Pathog. 2017, 103, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Johannes, L.; Römer, W. Shiga toxins from cell biology to biomedical applications. Nat. Rev. Microbiol. 2010, 8, 105–116. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Opinion on the re-evaluation of benzoic acid (E 210), sodium benzoate (E 211), potassium benzoate (E 212) and calcium benzoate (E 213) as food additives. EFSA J. 2017, 14. [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; EFSA Panel on Food Additives and Flavourings (FAF). Opinion on the follow-up of the re-evaluation of sorbic acid (E200) and potassium sorbate (E202) as food additives. EFSA J. 2019, 17, e05625. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’Ana, A.S.; Mousavi Khaneghah, A.; Gavahian, M.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Wongkattiya, N.; Sanguansermsri, P.; Fraser, I.H.; Sanguansermsri, D. Antibacterial activity of cuminaldehyde on food-borne pathogens, the bioactive component of essential oil from Cuminum cyminum L. collected in Thailand. J. Complement. Integr. Med. 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, Y.; Kuley, E.; Ucar, Y.; Ozogul, F. Antimicrobial impacts of essential oils on food borne-pathogens. Recent Pat. Food. Nutr. Agric. 2015, 7, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Aminzare, M.; Hashemi, M.; Hassanzad Azar, H.; Hejazi, J. The use of herbal extracts and essential oils as a potential antimicrobial in meat and meat products: A review. J. Hum. Environ. Health Promot. 2016, 1, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Gouvea, F.d.S.; Rosenthal, A.; Ferreira, E.H.d.R. Plant extract and essential oils added as antimicrobials to cheeses: A review. Cienc. Rural 2017, 47, e20160908. [Google Scholar] [CrossRef]
- Hassoun, A.; Emir Çoban, Ö. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res. Int. 2018, 111, 509–523. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M. Carvacrol and human health: A comprehensive review. Phyther. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef]
- FDA CFR—Code of Federal Regulations Title 21—PART 182—Substances Generally Recognized as Safe. Available online: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=50.25 (accessed on 1 May 2020).
- Prakash, B.; Kedia, A.; Mishra, P.K.; Dubey, N.K. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities—Potentials and challenges. Food Control 2015, 47, 381–391. [Google Scholar] [CrossRef]
- Sheng, L.; Rasco, B.; Zhu, M.J. Cinnamon oil inhibits Shiga toxin type 2 phage induction and Shiga toxin type 2 production in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2016, 82, 6531–6540. [Google Scholar] [CrossRef] [Green Version]
- Khatibi, S.A.; Misaghi, A.; Moosavy, M.H.; Akhondzadeh Basti, A.; Mohamadian, S.; Khanjari, A. Effect of nanoliposomes containing Zataria multiflora Boiss. essential oil on gene expression of Shiga toxin 2 in Escherichia coli O157:H7. J. Appl. Microbiol. 2018, 124, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Lee, J.H.; Gwon, G.; Kim, S.I.; Park, J.G.; Lee, J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudzadeh, M.; Hosseini, H.; Nasrollahzadeh, J.; Khaneghah, A.M.; Rismanchi, M.; Chaves, R.D.; Shahraz, F.; Azizkhani, M.; Mahmoudzadeh, L.; Haslberger, A.G. Antibacterial activity of Carum copticum essential oil against Escherichia coli O157:H7 in meat: Stx genes expression. Curr. Microbiol. 2016, 73, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Mith, H.; Clinquart, A.; Zhiri, A.; Daube, G.; Delcenserie, V. The impact of oregano (Origanum heracleoticum) essential oil and carvacrol on virulence gene transcription by Escherichia coli O157: H7. FEMS Microbiol. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Das, G.; Baek, K.H. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella typhimurium. Bot. Stud. 2015, 56, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Stratakos, A.C.; Sima, F.; Ward, P.; Linton, M.; Kelly, C.; Pinkerton, L.; Stef, L.; Pet, I.; Corcionivoschi, N. The in vitro effect of carvacrol, a food additive, on the pathogenicity of O157 and non-O157 Shiga-toxin producing Escherichia coli. Food Control 2018, 84, 290–296. [Google Scholar] [CrossRef]
- Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J. Food Prot. 2006, 69, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mechanism of action of Taxus cuspidata stem essential oil against selected foodborne pathogens. J. Food Saf. 2013, 33, 348–359. [Google Scholar] [CrossRef]
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; Mcclements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016, 194, 410–415. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Soufi, L.; Ayatollahi, S.A.M.; Iriti, M.; Sharifi-Rad, M.; Varoni, E.M.; Shahri, F.; Esposito, S.; Kuhestani, K.; Sharifi-Rad, M. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli. Cell. Mol. Biol. 2016, 62, 69–74. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filai, F.R.; Bou-Idra, M.; Zekkori, B.; Bouymajane, A.; Moukrad, N.; Benhallam, F.; Bentayeb, A. Application of Mentha suaveolens essential oil as an antimicrobial agent in fresh turkey sausages. J. Appl. Biol. Biotechnol. 2018, 6, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Rounds, L.; Havens, C.M.; Feinstein, Y.; Friedman, M.; Ravishankar, S. Concentration-dependent inhibition of Escherichia coli O157: H7 and heterocyclic amines in heated ground beef patties by apple and olive extracts, onion powder and clove bud oil. Meat Sci. 2013, 94, 461–467. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Shavisi, N.; Mohebi, E. Effects of Ziziphora clinopodioides essential oil and nisin, both separately and in combination, to extend shelf life and control Escherichia coli O157: H7 and Staphylococcus aureus in raw beef patty during refrigerated storage. J. Food Saf. 2016, 36, 227–236. [Google Scholar] [CrossRef]
- Bortolotto, F.C.K.; Ceccoti, S.P.C.; Orso, P.B.; Wolupeck, H.L.; Holley, R.A.; Luciano, F.B.; de Macedo, R.E.F. Combined effects of garlic essential oil and allyl isothiocyanate against Escherichia coli O157:H7 in vitro and in pork sausage. Cienc. Rural 2018, 48, e20180233. [Google Scholar] [CrossRef]
- Meira, N.V.B.; Holley, R.A.; Bordin, K.; de Macedo, R.E.F.; Luciano, F.B. Combination of essential oil compounds and phenolic acids against Escherichia coli O157:H7 in vitro and in dry-fermented sausage production. Int. J. Food Microbiol. 2017, 260, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Moraes-Lovison, M.; Marostegan, L.F.P.; Peres, M.S.; Menezes, I.F.; Ghiraldi, M.; Rodrigues, R.A.F.; Fernandes, A.M.; Pinho, S.C. Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. LWT—Food Sci. Technol. 2017, 77, 233–240. [Google Scholar] [CrossRef]
- Karam, L.; Roustom, R.; Abiad, M.G.; El-Obeid, T.; Savvaidis, I.N. Combined effects of thymol, carvacrol and packaging on the shelf-life of marinated chicken. Int. J. Food Microbiol. 2019, 291, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Van Haute, S.; Raes, K.; Van der Meeren, P.; Sampers, I. The effect of cinnamon, oregano and thyme essential oils in marinade on the microbial shelf life of fish and meat products. Food Control 2016, 68, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, V.; Hosseini, S.E.; Sharifan, A. Effect of edible chitosan film enriched with anise (Pimpinella anisum L.) essential oil on shelf life and quality of the chicken burger. Food Sci. Nutr. 2018, 6, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, A.; Wang, W.; Ye, R.; Liu, Y.; Xiao, J.; Wang, K. Characterisation of microemulsion nanofilms based on Tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: Meat packaging application. Int. J. Food Sci. Technol. 2017, 52, 1670–1679. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.; Castillo-Hernández, G.; González-Gutiérrez, C.J.; Silva-Dávila, A.J.; Gracida-Rodríguez, J.N.; García-Almendárez, B.E.; Di Pierro, P.; Vázquez-Landaverde, P.; Regalado-González, C. Microbiological and physicochemical properties of meat coated with microencapsulated Mexican oregano (Lippia graveolens Kunth) and basil (Ocimum basilicum L.) essential oils mixture. Coatings 2019, 9, 414. [Google Scholar] [CrossRef] [Green Version]
- Sagdic, O.; Ozturk, I. Kinetic modeling of Escherichia coli O157:H7 growth in rainbow trout fillets as affected by oregano and thyme essential oils and different packing treatments. Int. J. Food Prop. 2014, 17, 371–385. [Google Scholar] [CrossRef]
- Abdeldaiem, M.H.M.; Ali, H.G.M.; Ramadan, M.F.; Hasan, M.; Abdeldaiem, M.H.M.; Gamal, H.; Ali, M.; Ramadan, M.F. Impact of different essential oils on the characteristics of refrigerated carp (Cyprinus carpio) fish fingers. J. Food Meas. Charact. 2017, 11, 1412–1420. [Google Scholar] [CrossRef]
- Al-Hajj, N.Q.M.; Mn, A.; Raza, H.; Thabi, R.; Ammar, A.F.; Aboshora, W.; Wang, H. Antibacterial activities of the essential oils of some aromatic medicinal plants to control pathogenic bacteria and extend the shelf-life of seafood. Turkish J. Fish. Aquat. Sci. 2017, 17, 181–191. [Google Scholar] [CrossRef]
- Raji, F.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Effect of chitosan coating nano-emulsion containing Zataria multiflora and Bunium persicum essential oils on Escherichia coli O157:H7 in vacuum-packed rainbow trout fillet. J. Hum. Environ. Health Promot. 2019, 5, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, F.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Control of Listeria monocytogenes and Escherichia coli O157:H7 inoculated on fish fillets using alginate coating containing lactoperoxidase system and zataria multiflora boiss essential oil. J. Aquat. Food Prod. Technol. 2017, 26, 1014–1021. [Google Scholar] [CrossRef]
- Jalali, N.; Ariiai, P.; Fattahi, E. Effect of alginate/carboxyl methyl cellulose composite coating incorporated with clove essential oil on the quality of silver carp fillet and Escherichia coli O157:H7 inhibition during refrigerated storage. J. Food Sci. Technol. 2016, 53, 757–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Davidson, P.M.; Zhong, Q. Inhibition of Escherichia coli O157:H7 and Listeria monocytognes growth in milk and cantaloupe juice by thymol nanoemulsions prepared with gelatin and lecithin. Food Control 2017, 73, 1499–1506. [Google Scholar] [CrossRef] [Green Version]
- Sadrizadeh, N.; Khezri, S.; Dehghan, P.; Mahmoudi, R. Antibacterial effect of Teucrium polium essential oil and Lactobacillus casei probiotic on Escherichia coli O157: H7 in Kishk. Appl. Food Biotechnol. 2018, 5, 131–140. [Google Scholar] [CrossRef]
- Shahbazi, Y. Ziziphora clinopodioides essential oil and nisin as potential antimicrobial agents against Escherichia coli O157:H7 in doogh (Iranian yoghurt drink). J. Pathog. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, A.; Hashemi, M.; Naghibi, S.S.; Mohammadi, S.; Khalili Sadaghiani, S. Properties of Bunium persicum essential oil and its application in Iranian white cheese against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Saf. 2016, 36, 563–570. [Google Scholar] [CrossRef]
- Hussien, H.; Elbehiry, A.; Saad, M.; Hadad, G.; Moussa, I.; Dawoud, T.; Mubarak, A.; Marzouk, E. Molecular characterization of Escherichia coli isolated from cheese and biocontrol of shiga toxigenic E. coli with essential oils. Ital. J. Food Saf. 2019, 8, 162–167. [Google Scholar] [CrossRef]
- Kavas, G.; Kavas, N.; Saygili, D. The effects of thyme and clove essential oil fortified edible films on the physical, chemical and microbiological characteristics of kashar cheese. J. Food Qual. 2015, 38, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Kavas, N.; Kavas, G.; Saygili, D. Use of ginger essential oil-fortified edible coatings in Kashar cheese and its effects on Escherichia coli O157:H7 and Staphylococcus aureus. CyTA—J. Food 2016, 14, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Landry, K.S.; Micheli, S.; McClements, D.J.; McLandsborough, L. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157: H7 oncontaminated broccoli and radish seeds. Food Microbiol. 2015, 51, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Kang, J.H.; Song, K. Bin Antibacterial activities of a cinnamon essential oil with cetylpyridinium chloride emulsion against Escherichia coli O157:H7 and Salmonella Typhimurium in basil leaves. Food Sci. Biotechnol. 2018, 27, 47–55. [Google Scholar] [CrossRef]
- Millan-Sango, D.; McElhatton, A.; Valdramidis, V.P. Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves. Food Res. Int. 2015, 67, 145–154. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, S.J.; Park, J.B.; Song, K. Bin Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chem. 2019, 271, 122–128. [Google Scholar] [CrossRef]
- Park, J.B.; Kang, J.H.; Song, K. Bin Geranium essential oil emulsion containing benzalkonium chloride as a wash solution on fresh-cut vegetables. Food Bioprocess Technol. 2018, 11, 2164–2171. [Google Scholar] [CrossRef]
- Yuan, W.; Teo, C.H.M.; Yuk, H.G. Combined antibacterial activities of essential oil compounds against Escherichia coli O157:H7 and their application potential on fresh-cut lettuce. Food Control 2019, 96, 112–118. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Shavisi, N.; Mohebi, E. Potential application of Ziziphora clinopodioides essential oil and nisin as natural preservatives against Bacillus cereus and Escherichia coli O157: H7 in commercial barley soup. J. Food Saf. 2016, 36, 435–441. [Google Scholar] [CrossRef]
- Cui, H.; Yuan, L.; Li, W.; Lin, L. Edible film incorporated with chitosan and Artemisia annua oil nanoliposomes for inactivation of Escherichia coli O157:H7 on cherry tomato. Int. J. Food Sci. Technol. 2017, 52, 687–698. [Google Scholar] [CrossRef]
- Severino, R.; Ferrari, G.; Vu, K.D.; Donsì, F.; Salmieri, S.; Lacroix, M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control 2015, 50, 215–222. [Google Scholar] [CrossRef]
EO (Dosage) | Tested Genes | Effect | Ref. |
---|---|---|---|
Oregano and carvacrol, free form (both at 0.05 and 0.08 µL/mL) | ler, stx2B, and luxS | Down-regulation of all tested genes in a concentration-dependent manner for both oregano EO and carvacrol. | [33] |
Cinnamon, free form (0.25, 0.50, 0.75 and 1 MIC) | hfq, luxS, qseB, qseC, and stx2 | Down-regulation of hfq, luxS, qseB, qseC, and stx2. | [29] |
Zataria multiflora, free and nanoliposomes (25, 50 and 75 of MIC) | stx2A | Down-regulation of stx2A expression at 50 and 75% MIC. | [30] |
Clove and eugenol, free form (both at 0.005%) | luxS, luxR, stx1, stx2, ler, espD, escJ, escR, and tir | Down-regulation of genes related to AEL; no effect on stx and quorum-related genes expression. | [31] |
Carum copticum, free form (0.01–0.04%) | stx1A and stx2A | Increased the expression of stx1A and stx2A at 0.03%; down-regulation of stx1A and stx2A on ground beef. | [32] |
Food | EO (Dosage) and Strategy | Processing/Storage Conditions | Effect | Ref. |
---|---|---|---|---|
Fresh turkey sausages | Mentha suaveolens EO (2, 5 and 10 mg/g) as additive | 48 h at 4 °C | Reduction of 1.2 log CFU/g after 48 h (10 mg/g). | [40] |
Beef patties | Clove bud EO (0.3 and 0.5%) as additive | After cooking | Reduction of 0.3 log CFU/g. | [41] |
Beef patties | Ziziphora clinopodioides (0.1 and 0.2%) as additive | 9 days at 4 °C | Reduction of 5.6 log CFU/g after 7 days. | [42] |
Fresh pork sausage | Garlic EO (125 and 250 ppm) and allyl isothiocyanate (125 and 250 ppm) mixture as additive | 20 days at 6 °C | Reductions of 0.7 and 1.6 log CFU/g after 20 days. | [43] |
Salami | Allyl isothiocyanate (3.125 and 6.25 μL/100 g) and o-coumaric acid (375 and 750 mg/100 g) as additive | 3 days reducing from 26 to 20 °C, 36 h reducing from 20 to 14 °C and 31 days at 14 °C | Reduction of 4.0 log CFU/g during processing. | [44] |
Chicken pâté | Oregano EO (0.6 and 12 g/kg) nanoemulsion as additive | 8 days at 4 °C | Reduction up to 1.5 log CFU/g after 3 days. | [45] |
Fresh chicken breast fillets | Thymol and carvacrol mixture (1:1; 0.4 and 0.8%) in marinating solution | 21 days at 4 °C | Reduction up to 0.8 log CFU/g after 21 days. | [46] |
Chicken skin | Cinnamon, oregano, and thyme EOs mixture (1%) in marinating solution | 24 h at 22 °C | No effect. | [47] |
Chicken burger | Anise EO (0.5–2%) in chitosan film | 12 days at 4 °C | Reduction of 1.3 log CFU/g after 3 (1–2%) and 6 (0.5%) days. | [48] |
Fresh pork meat | Ginger EO (10–80%, EO:protein in film) microencapsulated in a film | 9 days at 4 °C | Reductions from 2 to 6 log CFU/g. | [49] |
Fresh pork meat | Mexican oregano and basil EOs mixture (4:11; 1.2 mg mixture/cm2) microencapsulated in a coating layer | 28 days at 4 °C | Reduction of 5.7 log CFU/cm2 after 28 days. | [50] |
Food | EO (Dosage) and Strategy | Processing/Storage Conditions | Effect | Ref. |
---|---|---|---|---|
Rainbow trout (Oncorhynchus mykiss) fillet | Oregano and thyme (0.2%) sprayed in the surface | 4 days at 4 °C | Reductions up to 1.2 log CFU/g | [51] |
Carp (Cyprinus carpio) flesh fingers | Rosemary, cinnamon, fennel, and cardamom (10 mL/kg) | 14 days at 4 °C | Reduction by up to 1 log CFU/g | [52] |
Kachlan (Trachinotus ovatus, Linnaeus) fillet | Pulicaria inuloides (0.1–0.3 g/100 g) in dipping solution | 12 days at 10 °C | Reductions up to 1 log CFU/g | [53] |
Rainbow trout (Oncorhynchus mykiss) fillet | Zataria multiflora and Bunium persicum (0.5 and 1%) in a coating layer | 12 days at 4 °C | Reductions up to 1 log CFU/g | [54] |
Rainbow trout (Oncorhynchus mykiss) fillet | Zataria multiflora Boiss (0.5 and 1%) in a coating layer | 16 days at 4 °C | Reductions around 1.3 log CFU/g | [55] |
Silver carp (Hypophthalmicthys molitrix) fillet | Clove (1 and 1.5 %) in a coating layer | 16 days at 4 °C | Reduction between 3 (1%) and 5 log (1.5%) CFU/g | [56] |
Food | EO (Dosage) and Strategy | Processing/Storage Conditions | Effect | Ref. |
---|---|---|---|---|
Skim, 2% reduced-fat, and full fat milk | Thymol (1 and 4.5 g/L) in free and emulsion as additive | 50 h at 21 °C | Reduction up to 6 log CFU/mL, effect was dependent of EO and fat milk contents. | [57] |
Kishk | Teucrium polium (75 and 150 mg/L) as additive | 20 days at 4 °C | Reduction of 0.8 and 1.3 log CFU/g after 20 days. | [58] |
Doogh | Ziziphora clinopodioides (0.1 and 0.2%) as additive | 9 days at 4 °C | Reduction up to 0.3 log CFU/mL after 3 days. | [59] |
Iranian white cheese | Bunium persicum (1 and 2%) as additive | 45 days at 4 °C | Reduction of 0.6 log CFU/g. | [60] |
Kariesh cheese | Thyme and clove (0.5 and 1.0%) as additive | 14 days at 6 °C | Reductions of 1.8 (1%, clove EO) and 6 (1%, thyme EO). log CFU/g after 14 days | [61] |
Kashar cheese | Thyme and clove (1.5%) in coating layer | 60 days at 4 °C | Reduction up to 2 log CFU/g after 60 days of storage. | [62] |
Kashar cheese | Ginger (1.5%) in coating layer | 30 days at 4 °C | Reduction of 4.2 log CFU/g after 30 days of storage. | [63] |
Food | EO (Dosage) and Strategy | Processing/Storage Conditions | Effect | Ref. |
---|---|---|---|---|
Broccoli and radish seeds | Carvacrol emulsion (4000 or 8000 ppm) in washing solution | 30 and 60 min at room temperature | Reduction up to 3.4 log CFU/g (8000 ppm, 60 min); no effect on broccoli seeds. | [64] |
Basil leaves | Cinnamon bark and leaf in (0.25%) free and emulsion in washing solution | 3 min at room temperature | Reduction of 2.7 log CFU/mL in concentration-dependent manner. | [65] |
Lettuce leaves | Oregano (0.010, 0.014, 0.018, 0.022, and 0.025%) in washing solution with ultrasound | Washing on continuous (5 min) or pulsed (2 s on/8 s off for 25 min) mode for ultrasound | Reduction was concentration-dependent was intensified when combined with ultrasound. | [66] |
Kale leaves | Cinnamon leaf (50 ppm) in washing solution | 3 min at room temperature | Reduction of 0.6 log CFU/g. | [67] |
Redbor kale, Chinese cabbage, and green mustard | Geranium (0.1%) in free and emulsion in washing solution | Washing for 3 min at room temperature and storage for 7 days at 4 °C | Reduction around 0.7 log CFU/g for all vegetables after washing; reduction of 1.8 log CFU/g after 7 days on emulsified geranium EO on redbor kale. | [68] |
Lettuce leaves | Thymol with eugenol (both at 0.63 mg/mL), carvacrol with eugenol (both at 0.63 mg/mL), trans-cinnamaldehyde with eugenol (0.31 and 1.25 mg/mL), and carvacrol (0.63 mg/mL) in rinsing solution. | 7 days at 4 °C | Reduction around 1.5 log CFU/g after 7 days. | [69] |
Barley soup | Ziziphora clinopodioides (0.1 and 0.2%) as additive | 9 days at 4 °C | Reduction of 1 log CFU/mL after 5 days. | [70] |
Cherry tomato | Artemisia annua in nanoliposomes coating layer and film (2 mg/mL) | 10 days at 25 and 37 °C | Reduction between 3 and 4 log CFU/g. | [71] |
Green beans | Carvacrol nanoemulsion (0.05%) in a coating layer | 13 days at 4 °C | Count below detectable level after 11 days. | [72] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munekata, P.E.S.; Pateiro, M.; Rodríguez-Lázaro, D.; Domínguez, R.; Zhong, J.; Lorenzo, J.M. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms 2020, 8, 924. https://doi.org/10.3390/microorganisms8060924
Munekata PES, Pateiro M, Rodríguez-Lázaro D, Domínguez R, Zhong J, Lorenzo JM. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms. 2020; 8(6):924. https://doi.org/10.3390/microorganisms8060924
Chicago/Turabian StyleMunekata, Paulo E.S., Mirian Pateiro, David Rodríguez-Lázaro, Rubén Domínguez, Jian Zhong, and Jose M. Lorenzo. 2020. "The Role of Essential Oils against Pathogenic Escherichia coli in Food Products" Microorganisms 8, no. 6: 924. https://doi.org/10.3390/microorganisms8060924
APA StyleMunekata, P. E. S., Pateiro, M., Rodríguez-Lázaro, D., Domínguez, R., Zhong, J., & Lorenzo, J. M. (2020). The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms, 8(6), 924. https://doi.org/10.3390/microorganisms8060924