Therapeutic Targeting of Protein Tyrosine Phosphatases from Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Role of Protein Tyrosine Phosphatases in Mycobacterium Tuberculosis
2.1. Protein Tyrosine Phosphatase A (mPTPA)
2.2. Protein Tyrosine Phosphatase B (mPTPB)
3. mPTPA Inhibitors
4. mPTPB Inhibitors
5. Perspectives and Future Directions
Funding
Conflicts of Interest
References
- Munro, S.A.; Lewin, S.A.; Smith, H.J.; Engel, M.E.; Fretheim, A.; Volmink, J. Patient adherence to tuberculosis treatment: A systematic review of qualitative research. PLoS Med. 2007, 4, e238. [Google Scholar] [CrossRef] [Green Version]
- 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; World Health Organization: Geneva, Switzerland, 2019.
- Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 529–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.-H.; Zhang, Z.-Y. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem. Rev. 2017, 118, 1069–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruddraraju, K.V.; Zhang, Z.-Y. Covalent inhibition of protein tyrosine phosphatases. Mol. Biosyst. 2017, 13, 1257–1279. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef]
- Bach, H.; Papavinasasundaram, K.G.; Wong, D.; Hmama, Z.; Av-Gay, Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 2008, 3, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.; Bach, H.; Sun, J.; Hmama, Z.; Av-Gay, Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc. Natl. Acad. Sci. USA 2011, 108, 19371–19376. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S.G.; Yang, Z.; Chan, R.J.; Liu, Y.; et al. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl. Acad. Sci. USA 2010, 107, 4573–4578. [Google Scholar] [CrossRef] [Green Version]
- Bright, N.A.; Gratian, M.J.; Luzio, J.P. Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr. Biol. 2005, 15, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Koul, A.; Choidas, A.; Treder, M.; Tyagi, A.K.; Drlica, K.; Singh, Y.; Ullrich, A. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J. Bacteriol. 2000, 182, 5425–5432. [Google Scholar] [CrossRef] [Green Version]
- Madhurantakam, C.; Rajakumara, E.; Mazumdar, P.A.; Saha, B.; Mitra, D.; Wiker, H.G.; Sankaranarayanan, R.; Das, A.K. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution. J. Bacteriol. 2005, 187, 2175–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturgill-Koszycki, S.; Schlesinger, P.H.; Chakraborty, P.; Haddix, P.L.; Collins, H.L.; Fok, A.K.; Allen, R.D.; Gluck, S.L.; Heuser, J.; Russell, D.G. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994, 263, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.R.; Emr, S.D. The class C Vps complex functions at multiple stages of the vacuolar transport pathway. Traffic 2001, 2, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Grundner, C.; Perrin, D.; Hooft van Huijsduijnen, R.; Swinnen, D.; Gonzalez, J.; Gee, C.L.; Wells, T.N.; Alber, T. Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB. Structure 2007, 15, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Grundner, C.; Ng, H.L.; Alber, T. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure 2005, 13, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Beresford, N.; Patel, S.; Armstrong, J.; Szöor, B.; Fordham-Skelton, A.P.; Tabernero, L. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem. J. 2007, 406, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Rao, V.; Shakila, H.; Gupta, R.; Khera, A.; Dhar, N.; Singh, A.; Koul, A.; Singh, Y.; Naseema, M.; et al. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol. Microbiol. 2003, 50, 751–762. [Google Scholar] [CrossRef]
- Fan, L.; Wu, X.; Jin, C.; Li, F.; Xiong, S.; Dong, Y. MptpB Promotes Mycobacteria Survival by Inhibiting the Expression of Inflammatory Mediators and Cell Apoptosis in Macrophages. Front. Cell. Infect. Microbiol. 2018, 8, 171. [Google Scholar] [CrossRef]
- Manger, M.; Scheck, M.; Prinz, H.; von Kries, J.P.; Langer, T.; Saxena, K.; Schwalbe, H.; Fürstner, A.; Rademann, J.; Waldmann, H. Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase A (MptpA) inhibitors based on natural products and a fragment-based approach. Chembiochem 2005, 6, 1749–1753. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-Y. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases. Acc. Chem. Res. 2017, 50, 122–129. [Google Scholar] [CrossRef]
- Chen, L.; Wu, L.; Otaka, A.; Smyth, M.S.; Roller, P.P.; Burke, T.R.; den Hertog, J.; Zhang, Z.Y. Why is phosphonodifluoromethyl phenylalanine a more potent inhibitory moiety than phosphonomethyl phenylalanine toward protein-tyrosine phosphatases? Biochem. Biophys. Res. Commun. 1995, 216, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Rawls, K.A.; Lang, P.T.; Takeuchi, J.; Imamura, S.; Baguley, T.D.; Grundner, C.; Alber, T.; Ellman, J.A. Fragment-based discovery of selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg. Med. Chem. Lett. 2009, 19, 6851–6854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Yu, Z.H.; Zhang, R.Y.; Wu, L.; Gunawan, A.M.; Lane, B.S.; Shim, J.S.; Zeng, L.F.; He, Y.; Chen, L.; et al. Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors. ACS Med. Chem. Lett. 2015, 6, 782–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, N.K.; He, R.; Pinn, M.L.; He, Y.; Burrows, F.; Zhang, Z.Y.; Karakousis, P.C. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infect. Dis. 2016, 2, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nören-Müller, A.; Reis-Corrêa, I.; Prinz, H.; Rosenbaum, C.; Saxena, K.; Schwalbe, H.J.; Vestweber, D.; Cagna, G.; Schunk, S.; Schwarz, O.; et al. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc. Natl. Acad. Sci. USA 2006, 103, 10606–10611. [Google Scholar] [CrossRef] [Green Version]
- Thanh, N.D.; Hai, D.S.; Ha, N.T.T.; Tung, D.T.; Le, C.T.; Van, H.T.K.; Toan, V.N.; Toan, D.N.; Dang, L.H. Synthesis, biological evaluation and molecular docking study of 1,2,3-1H-triazoles having 4H-pyrano[2,3-d]pyrimidine as potential Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Mascarello, A.; Chiaradia-Delatorre, L.D.; Mori, M.; Terenzi, H.; Botta, B. Mycobacterium tuberculosis-Secreted Tyrosine Phosphatases as Targets Against Tuberculosis: Exploring Natural Sources in Searching for New Drugs. Curr. Pharm. Des. 2016, 22, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Mascarello, A.; Mori, M.; Chiaradia-Delatorre, L.D.; Menegatti, A.C.; Delle Monache, F.; Ferrari, F.; Yunes, R.A.; Nunes, R.J.; Terenzi, H.; Botta, B.; et al. Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB) inhibitors from natural products. PLoS ONE 2013, 8, e77081. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Zeng, L.F.; He, Y.; Wu, L.; Gunawan, A.M.; Zhang, Z.Y. Organocatalytic multicomponent reaction for the acquisition of a selective inhibitor of mPTPB, a virulence factor of tuberculosis. Chem. Commun. 2013, 49, 2064–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Yu, Z.; He, Y.; Zeng, L.F.; Xu, J.; Wu, L.; Gunawan, A.M.; Wang, L.; Jiang, Z.X.; Zhang, Z.Y. Double click reaction for the acquisition of a highly potent and selective mPTPB inhibitor. ChemMedChem 2010, 5, 2051–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Bai, Y.; Yu, Z.H.; Wu, L.; Gunawan, A.M.; Zhang, Z.Y. Diversity-Oriented Synthesis for Novel, Selective and Drug-like Inhibitors for a Phosphatase from Mycobacterium Tuberculosis. Medchemcomm 2014, 5, 1496–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combs, A.P. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J. Med. Chem. 2010, 53, 2333–2344. [Google Scholar] [CrossRef]
- Soellner, M.B.; Rawls, K.A.; Grundner, C.; Alber, T.; Ellman, J.A. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB. J. Am. Chem. Soc. 2007, 129, 9613–9615. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Xu, J.; He, Y.; He, R.; Wu, L.; Gunawan, A.M.; Zhang, Z.Y. A facile hydroxyindole carboxylic acid based focused library approach for potent and selective inhibitors of mycobacterium protein tyrosine phosphatase B. ChemMedChem 2013, 8, 904–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Xu, J.; Yu, Z.H.; Gunawan, A.M.; Wu, L.; Wang, L.; Zhang, Z.Y. Discovery and evaluation of novel inhibitors of mycobacterium protein tyrosine phosphatase B from the 6-Hydroxy-benzofuran-5-carboxylic acid scaffold. J. Med. Chem. 2013, 56, 832–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Yu, Z.-H.; Zhang, R.-Y.; Wu, L.; Gunawan, A.M.; Zhang, Z.-Y. Cefsulodin Inspired Potent and Selective Inhibitors of mPTPB, a Virulent Phosphatase from Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2015, 6, 1231–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, C.F.; Silva, A.P.G.; Chakraborty, A.; Fernandez, P.; Kurepina, N.; Saville, C.; Naranjo, Y.; Pons, M.; Schnettger, L.S.; Gutierrez, M.G.; et al. Structure-Based Design of MptpB Inhibitors That Reduce Multidrug-Resistant Mycobacterium tuberculosis Survival and Infection Burden in Vivo. J. Med. Chem. 2018, 61, 8337–8352. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, P.; Reddy, P.V.; Singh, R.; Jaisinghani, N.; Gandotra, S.; Tyagi, A.K. Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PLoS ONE 2013, 8, e77930. [Google Scholar] [CrossRef] [Green Version]
- Ruddraraju, K.V.; Aggarwal, D.; Niu, C.; Baker, E.A.; Zhang, R.Y.; Wu, L.; Zhang, Z.Y. Highly Potent and Selective N-Aryl Oxamic Acid-Based Inhibitors for Mycobacterium tuberculosis Protein Tyrosine Phosphatase, B. J. Med. Chem. 2020, 63, 9212–9227. [Google Scholar] [CrossRef]
- Ghattas, M.A.; Raslan, N.; Sadeq, A.; Al Sorkhy, M.; Atatreh, N. Druggability analysis and classification of protein tyrosine phosphatase active sites. Drug Des. Dev. Ther. 2016, 10, 3197–3209. [Google Scholar] [CrossRef] [Green Version]
Characteristic | mPTPA | mPTPB |
---|---|---|
Molecular Weight | 17.5 kDa (163 aa) | 30 kDa (293 aa) |
Catalytic Residue | Cysteine 11 | Cysteine 160 |
P-loop residues | 11-CTGNICRS | 160-CFAGKDRT |
Specificity | pTyr specific | Triple specificity (pTyr, pSer/pThr and phospholipid) |
X-ray structures (pdb) | 1U2P, 1U2Q | 1YWF, 2OZ5 |
Substrates | VPS33B | Unknown |
Role during Infection | Inhibits phagosome acidification and maturation; blocks V-ATPase recruitment to phagosome | Activates Akt; inhibits p38 and ERK1/2 signaling pathways. Inhibits IL-6 production and caspase 3 activation. |
Phosphorylation | PtkA and STPKs | No |
Reaction with H2O2 | Leads to oxidative inactivation | Stable compared to mPTPA |
S-nitrosylation | Yes, at Cys53 by Nitric oxide | No, protected by lid domain |
Entry | Structure | mPTPA IC50 (µM) | mPTPB IC50 (µM) | Selectivity (Ref.) |
---|---|---|---|---|
1 | 1.6 ± 0.4 (Ki) | NA | 2-fold for hPTP1B (20) | |
2 | 1.4 ± 0.3 (Ki) | >100 (Ki) | >70-fold vs. PTP1B, Tc-PTP, VHR, CD45 and LAR; 11-fold vs. HCPTPA (23) | |
3 | 0.160 0.056 ± 0.002 (Ki) | 3.2 | >20-fold vs. a panel of 17 human PTPs (25) |
Entry | Structure | mPTPB IC50 (µM) | mPTPA IC50 (µM) | Selectivity (Ref.) |
---|---|---|---|---|
4 | 0.36 ± 0.12 | >100 | >100-fold vs. VE-PTP, SHP2, PTp1B, CDC25A and VHR (26) | |
5 | 0.44 ± 0.05 (Ki) | NA | >60-fold vs. a panel of six human PTPs (15) | |
6 | 1.5 ± 0.2 | 180 ± 30 | >50-fold vs. a panel of 5 PTPs (30) | |
7 | 0.160 ± 0.010 | 7.8 | >25-fold vs. a panel of 17 human PTPs (31) | |
8 | 2.0 ± 0.1 | NA | >20-fold vs. a panel of 8 PTPs (32) | |
9 | 0.22 (Ki) | >50 | 225-fold vs. VHR and TC-PTP; 35-fold vs. CD45; 98-fold vs. LAR (33) | |
10 | 0.079 ± 0.01 0.050 (Ki) | 7.8 ± 0.5 | >100- fold vs. 19 PTPs (35) | |
11 | 1.26 ± 0.22 | 77.3 ± 5.1 | >11-fold vs. 12 PTPs (9) | |
12 | 0.038 ± 0.002 | 2.5 | >37-fold vs. a panel of 17 PTPs (36) | |
13 | 0.018 ± 0.002 0.0079 (Ki) | >200 | >10,000-fold vs. 24 PTPs (37) | |
14 | 0.40 ± 0.05 | 30.2 ± 1.4 | >750-fold vs. PTP1B and >32-fold vs. VHR (38) | |
15 | 2.98 | NA | NA (38) | |
16 | 0.257 ± 0.008 | NA | >390-fold vs. PTP1B and SHP2 (40) | |
17 | 0.0064 ± 0.0005 0.0027 (Ki) | >30 | >4500-fold vs. 25 PTPs (40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruddraraju, K.V.; Aggarwal, D.; Zhang, Z.-Y. Therapeutic Targeting of Protein Tyrosine Phosphatases from Mycobacterium tuberculosis. Microorganisms 2021, 9, 14. https://doi.org/10.3390/microorganisms9010014
Ruddraraju KV, Aggarwal D, Zhang Z-Y. Therapeutic Targeting of Protein Tyrosine Phosphatases from Mycobacterium tuberculosis. Microorganisms. 2021; 9(1):14. https://doi.org/10.3390/microorganisms9010014
Chicago/Turabian StyleRuddraraju, Kasi Viswanatharaju, Devesh Aggarwal, and Zhong-Yin Zhang. 2021. "Therapeutic Targeting of Protein Tyrosine Phosphatases from Mycobacterium tuberculosis" Microorganisms 9, no. 1: 14. https://doi.org/10.3390/microorganisms9010014
APA StyleRuddraraju, K. V., Aggarwal, D., & Zhang, Z. -Y. (2021). Therapeutic Targeting of Protein Tyrosine Phosphatases from Mycobacterium tuberculosis. Microorganisms, 9(1), 14. https://doi.org/10.3390/microorganisms9010014