Whole Genome Sequencing Analysis of Salmonella enterica Serovar Typhi: History and Current Approaches
Abstract
:1. Introduction
2. The Early Study of S. Typhi Whole Genome Sequencing Analysis: Comparison Study of S. Typhi and Other Bacteria
3. The Middle Era of S. Typhi Whole Genome Sequencing Analysis: Detection of S. Typhi’s Variants
4. The Current and Future Trend of S. Typhi Whole Genome Sequencing Analysis: Emergence of Antimicrobial Resistance S. Typhi Strains
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, S.I.; Seriki, A.; Ajayi, A. Typhoidal and non-typhoidal Salmonella infections in Africa. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Lima, N.C.B.; Tanmoy, A.M.; Westeel, E.; de Almeida, L.G.P.; Rajoharison, A.; Islam, M.; Endtz, H.P.; Saha, S.K.; de Vasconselos, A.T.R.; Komurian-Padel, F. Analysis of isolates from Bangladesh highlights multiple ways to carry resistance genes in Salmonella Typhi. BMC Genomics 2019, 20, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Als, D.; Radhakrishnan, A.; Arora, P.; Gaffey, M.F.; Campisi, S.; Velummailum, R.; Zareef, F.; Bhutta, Z.A. Global Trends in Typhoidal Salmonellosis: A Systematic Review. Am. J. Trop. Med. Hyg. 2018, 99 (Suppl. 3), 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crump, J.A.; Luby, S.P.; Mintz, E.D. The global burden of typhoid fever. Bull. World Health Organ. 2004, 82, 346–353. [Google Scholar] [CrossRef]
- Thung, T.Y.; Mahyudin, N.A.; Basri, D.F.; Wan Mohamed Radzi, C.W.; Nakaguchi, Y.; Nishibuchi, M.; Radu, S. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia. Poult. Sci. 2016, 95, 1888–1893. [Google Scholar] [CrossRef]
- Luthra, K.; Watts, E.; Debellut, F.; Pecenka, C.; Bar-Zeev, N.; Constenla, D. A Review of the Economic Evidence of Typhoid Fever and Typhoid Vaccines. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68 (Suppl. 2), S83–S95. [Google Scholar] [CrossRef] [Green Version]
- Monte, D.F.; Lincopan, N.; Berman, H.; Cerdeira, L.; Keelara, S.; Thakur, S.; Cray, P.; Landgraf, M. Genomic Features of High-Priority Salmonella enterica Serovars Circulating in the Food Production Chain, Brazil, 2000–2016. Sci. Rep. 2019, 9, 11058. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Liou, S.R.; Plunkett, G., 3rd; Mayhew, G.F.; Rose, D.J.; Burland, V.; Kodoyianni, V.; Schwartz, D.C.; Blattner, F.R. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J. Bacteriol. 2003, 185, 2330–2337. [Google Scholar] [CrossRef] [Green Version]
- Parkhill, J.; Dougan, G.; James, K.D.; Thomson, N.R.; Pickard, D.; Wain, J.; Churcher, C.; Mungal, K.L.; Bentley, S.D.; Holden, M.T.; et al. Complete genome sequence of a multiple drug resistant Salmonella enterica Serovar Typhi CT18. Nature 2001, 413, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Dougan, G. The Genome of Salmonella enterica Serovar Typhi. Clin. Infect. Dis. 2007, 15, S29–S33. [Google Scholar] [CrossRef] [Green Version]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 2012, 251364. [Google Scholar] [CrossRef]
- Metzker, M. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Tettelin, H.; Riley, D.; Cattuto, C.; Medini, D. Comparative genomics: The bacterial pan-genome. Curr. Opin. Microbiol. 2008, 11, 472–477. [Google Scholar] [CrossRef]
- Hu, B.; Xie, G.; Lo, C.C.; Starkenburg, S.R.; Chain, P.S. Pathogen comparative genomics in the next-generation sequencing era: Genome alignments, pangenomics and metagenomics. Brief. Funct. Genom. 2011, 10, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Katiyar, A.; Sharma, P.; Dahiya, S.; Singh, H.; Kapil, A.; Kaur, P. Genomic profiling of antimicrobial resistance genes in clinical isolates of Salmonella Typhi from patients infected with Typhoid fever in India. Sci. Rep. 2020, 10, 8299. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C.; Kim, S.A.; Shi, Z.; Park, S.H. Molecular-based identification and detection of Salmonella in food production systems: Current perspectives. J. Appl. Microbiol. 2018, 125, 313–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merhej, V.; Royer-Carenzi, M.; Pontarotti, P.; Raoult, D. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol. Direct 2009, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Kwong, J.C.; McCallum, N.; Sintchenko, V.; Howden, B.P. Whole genome sequencing in clinical and public health microbiology. Pathology 2015, 47, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallman, T.J.; Byrne, L.; Ashton, P.M.; Cowley, L.A.; Perry, N.T.; Adak, G.; Petrovska, L.; Ellis, R.J.; Elson, R.; Underwood, A.; et al. Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2015, 61, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.M.; Nair, S.; Peters, T.M.; Bale, J.A.; Powell, D.G.; Painset, A.; Tewolde, R.; Schaefer, U.; Jenkins, C.; Dallman, T.J.; et al. Salmonella Whole Genome Sequencing Implementation Group: Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ 2016, 4, e1752. [Google Scholar] [CrossRef] [Green Version]
- Kidgell, C.; Reichard, U.; Wain, J.; Linz, B.; Torpdahl, M.; Dougan, G.; Achtman, M. Salmonella Typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2002, 2, 39–45. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Yan, M.; Pang, B.; Kan, B.; Xu, H.; Huang, X. Genotyping of Salmonella enterica serovar Typhi strains isolated from 1959 to 2006 in China and analysis of genetic diversity by genomic microarray. Croat. Med. J. 2011, 52, 688–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClelland, M.; Sanderson, K.E.; Spieth, J.; Clifton, S.W.; Latreille, P.; Courtney, L.; Porwollik, S.; Ali, J.; Dante, M.; Du, F.; et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413, 852–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbagh, S.C.; Forest, C.G.; Lepage, C.; Leclerc, J.M.; Daigle, F. So similar, yet so different: Uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol. Lett. 2010, 305, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothapalli, S.; Nair, S.; Alokam, S.; Pang, T.; Khakhria, R.; Woodward, D.; Johnson, W.; Stocker, B.A.; Sanderson, K.E.; Liu, S.L. Diversity of genome structure in Salmonella enterica serovar Typhi populations. J. Bacteriol. 2005, 187, 2638–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.R.; Loo, L.H.; Jeyaseelan, K.; Earnest, L.; Stackebrandt, E. Phylogenetic relationships of Salmonella Typhi and Salmonella typhimurium based on 16S rRNA sequence analysis. Int. J. Syst. Bacteriol. 1997, 47, 1253–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Soete, G. A least squares algorithm for fitting additive trees to proximity data. Psychometrika 1983, 47, 3–24. [Google Scholar] [CrossRef]
- Felsenstein, J. {PHYLIP}—Phylogeny Inference Package ({V}ersion 3.2). Cladistics 1989, 5, 164–166. [Google Scholar]
- Holt, K.E.; Thomson, N.R.; Wain, J.; Langridge, G.C.; Hasan, R.; Bhutta, Z.A.; Quail, M.A.; Norbertczak, H.; Walker, D.; Simmonds, M.; et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 2008, 10, 36. [Google Scholar] [CrossRef]
- Grimont, P.; Weill, F.-X. Antigenic Formulae of the Salmonella Servovars: WHO Collaborating Centre for Reference and Research on Salmonella, 9th ed.; Institut Pasteur: Paris, France, 2007; Available online: https://www.pasteur.fr/sites/default/files/veng_0.pdf (accessed on 7 April 2021).
- Issenhuth-Jeanjean, S.; Roggentin, P.; Mikoleit, M.; Guibourdenche, M.; de Pinna, E.; Nair, S.; Fields, P.I.; Weill, F.X. Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 2014, 165, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Yap, K.P.; Gan, H.M.; Teh, C.S.; Baddam, R.; Chai, L.C.; Kumar, N.; Tiruvayipati, S.A.; Ahmed, N.; Thong, K.L. Genome sequence and comparative pathogenomics analysis of a Salmonella enterica Serovar Typhi strain associated with a typhoid carrier in Malaysia. J. Bacteriol. 2012, 194, 5970–5971. [Google Scholar] [CrossRef] [Green Version]
- Baddam, R.; Kumar, N.; Shaik, S.; Suma, T.; Ngoi, S.T.; Thong, K.L.; Ahmed, N. Genome sequencing and analysis of Salmonella enterica serovar Typhi strain CR0063 representing a carrier individual during an outbreak of typhoid fever in Kelantan, Malaysia. Gut Pathog. 2012, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Chart, H.; Cheesbrough, J.S.; Waghorn, D.J. The serodiagnosis of infection with Salmonella typhi. J. Clin. Pathol. 2000, 53, 851–853. [Google Scholar] [CrossRef] [Green Version]
- García, B.; Latasa, C.; Solano, C.; García-del Portillo, F.; Gamazo, C.; Lasa, I. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol. Microbiol. 2004, 54, 264–277. [Google Scholar] [CrossRef] [PubMed]
- Rodionov, D.A.; Gelfand, M.S.; Hugouvieux-Cotte-Pattat, N. Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria. Microbiology 2004, 150, 3571–3590. [Google Scholar] [CrossRef] [PubMed]
- Le, T.A.H.; Fabre, L.; Rougmagnac, P.; Grimont, P.A.D.; Scavizzi, M.R.; Weill, F.-X. Clonal expansion and microevolution of quinolone-resistant Salmonella enterica serotype Typhi in Vietnam from 1996 to 2004. J. Clin. Microbiol. 2007, 45, 3485–3492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, J.S.; Marshall, J.M.; Baker, S.; Dongol, S.; Charles, R.C.; Ryan, E.T. Salmonella chronic carriage: Epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 2014, 22, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddam, R.; Kumar, N.; Thong, K.L.; Ngoi, S.T.; Teh, C.S.; Yap, K.P.; Chai, L.C.; Avasthi, T.S.; Ahmed, N. Genetic fine structure of a Salmonella enterica serovar Typhi strain associated with the 2005 outbreak of typhoid fever in Kelantan, Malaysia. J. Bacteriol. 2012, 194, 3565–3566. [Google Scholar] [CrossRef] [Green Version]
- Thomson, N.R.; Clayton, D.J.; Windhorst, D.; Vernikos, G.; Davidson, S.; Churcher, C.; Quail, M.A.; Stevens, M.; Jones, M.A.; Watson, M.; et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008, 18, 1624–1637. [Google Scholar] [CrossRef] [Green Version]
- Baddam, R.; Kumar, N.; Shaik, S.; Lankapalli, A.K.; Ahmed, N. Genome dynamics and evolution of Salmonella Typhi strains from the typhoid-endemic zones. Sci. Rep. 2014, 4, 7457. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winfield, M.D.; Groisman, E.A. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc. Natl. Acad. Sci. USA 2004, 101, 17162–17167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyson, Z.A.; Thanh, D.P.; Bodhidatta, L.; Mason, C.J.; Srijan, A.; Rabaa, M.A.; Vinh, P.V.; Thank, H.; Thwaites, G.E.; Baker, S.; et al. Whole Genome Sequence Analysis of Salmonella Typhi Isolated in Thailand before and after the Introduction of a National Immunization Program. PLoS Negl. Trop. Dis. 2017, 11, e0005274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, K.P.; Gan, H.M.; Teh, C.S.J.; Chai, L.C.; Thong, K.L. Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics 2014, 15, 1007. [Google Scholar] [CrossRef] [Green Version]
- Eng, S.K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Klemm, E.J.; Shakoor, S.; Page, A.J.; Qamar, F.N.; Judge, K.; Saeed, D.K.; Wong, V.K.; Dallman, T.J.; Nair, S.; Baker, S.; et al. Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins. MBio 2018, 9, e00105-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanmoy, A.M.; Westeel, E.; De Bruyne, K.; Goris, J.; Rajoharison, A.; Sajib, M.S.I.; van Belkum, A.; Saha, S.K.; Komurian-Pradel, F.; Endtz, H.P. Salmonella enterica Serovar typhi in Bangladesh: Exploration of genomic diversity and antimicrobial resistance. MBio 2018, 9, e02112-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, V.K.; Baker, S.; Pickard, D.J.; Parkhill, J.; Page, A.J.; Feasey, N.A.; Kingsley, R.A.; Thomson, N.R.; Keane, J.A.; Weill, F.X.; et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter-and intracontinental transmission events. Nat. Genet. 2015, 47, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feasey, N.A.; Gaskell, K.; Wong, V.; Msefula, C.; Selemani, G.; Kumwenda, S.; Allain, T.J.; Mallewa, J.; Kennedy, N.; Bennett, A.; et al. Rapid Emergence of Multidrug Resistant, H58-Lineage Salmonella Typhi in Blantyre, Malawi. PLoS Negl. Trop. Dis. 2015, 9, e0003748. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Hii, S.Y.F.; Hashim, R.; Issa, R. Draft genome sequence of Salmonella enterica serovar Typhi IMR_TP298/15, a strain with intermediate susceptibility to ciprofloxacin, isolated from a typhoid outbreak. Genome Announc. 2017, 5, e01740-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matono, T.; Morita, M.; Yahara, K.; Lee, K.I.; Izumiya, H.; Kaku, M.; Ohnishi, M. Emergence of Resistance Mutations in Salmonella enterica Serovar Typhi against Fluoroquinolones. Open Forum Infect. Dis. 2017, 4, ofx230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, D.; Potter, R.F.; Riaz, H.; Ashraf, S.T.; Wallace, M.A.; Munir, T.; Ali, A.; Burnham, C.A.; Dantas, G.; Andleeb, S. Draft Genome Sequence of a Salmonella enterica Serovar Typhi Strain Resistant to Fourth-Generation Cephalosporin and Fluoroquinolone Antibiotics. Genome Announc. 2017, 5, e00850-17. [Google Scholar] [CrossRef] [Green Version]
- Hendriksen, R.S.; Leekitcharoenphon, P.; Lukjancenko, O.; Lukwesa-Musyani, C.; Tambatamba, B.; Mwaba, J.; Kalonda, A.; Nakazwe, R.; Kwenda, G.; Jensen, J.D.; et al. Genomic signature of multidrug-resistant Salmonella enterica serovar Typhi isolates related to a massive outbreak in Zambia between 2010 and 2012. J. Clin. Microbiol. 2015, 53, 262–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procaccianti, M.; Motta, A.; Giordani, S.; Riscassi, S.; Guidi, B.; Ruffini, M.; Maffini, V.; Esposito, S.; Dodi, I. First Case of Typhoid Fever due to Extensively Drug-resistant Salmonella enterica serovar Typhi in Italy. Pathogens 2020, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Liaquat, S.; Sarwar, Y.; Ali, A.; Haque, A.; Farooq, M.; Martinez-Ballesteros, I.; Laorden, l.; Garaizar, J.; Bikandi, J. Virulotyping of Salmonella enterica serovar Typhi isolates from Pakistan: Absence of complete SPI-10 in Vi negative isolates. PLoS Negl. Trop. Dis. 2018, 12, e0006839. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.; Veuthey, T.; Caldera, S.; Serpa, P.H.; Haller, B.; Tan, M.; Neff, N.; Madera, S.; Langelier, C. Draft genome sequence of an extensively drug-resistant Salmonella enterica serovar Typhi strain from a returned traveler from Pakistan. Microbiol. Resour. Announc. 2020, 9, e00427-20. [Google Scholar] [CrossRef]
- Dahiya, S.; Kapil, A.; Kumar, R.; Das, B.K.; Sood, S.; Chaudhry, R.; Kabra, S.K.; Lodha, R.K. Multiple locus sequence typing of Salmonella Typhi, isolated in north India-a preliminary study. Indian J. Med. Res. 2013, 137, 957–962. [Google Scholar]
- Martínez-Gamboa, A.; Silva, C.; Fernández-Mora, M.; Wiesner, M.; Ponce de León, A.; Catva, E. IS200 and multilocus sequence typing for the identification of Salmonella enterica serovar Typhi strains from Indonesia. Int. Microbiol. 2015, 18, 99–104. [Google Scholar] [PubMed]
- Yap, K.-P.; Ho, W.S.; Gan, H.M.; Chai, L.C.; Thong, K.L. Global MLST of Salmonella Typhi Revisited in Post-genomic Era: Genetic Conservation, Population Structure, and Comparative Genomics of Rare Sequence Types. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Goay, Y.X.; Chin, K.L.; Tan, C.L.; Yeoh, C.Y.; Ja’Afar, J.N.; Zaidah, A.R.; Chinni, V.S.; Phua, K.K. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays. Biomed. Res. Int. 2016, 2016, 8905675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batool, N.; Waqar, M.; Batool, S. Comparative genomics study for identification of putative drug targets in Salmonella typhi Ty2. Gene 2016, 15, 544–559. [Google Scholar] [CrossRef] [PubMed]
Strain | Source of Isolates | Status | Genome Size (Mb) | Protein Coding Sequence | Accession Number | Reference |
---|---|---|---|---|---|---|
Ty2 | USA | Complete | 4.8 | 4323 | AE014613 | [9] |
CT18 | Vietnam | Complete | 5.1 | 4766 | AL513382 | [9,10] |
CR0044 | Malaysia | Draft | 4.8 | 4884 | AKZO00000000 | [35] |
CR0063 | Malaysia | Draft | 4.6 | 4946 | AKIC00000000 | [42] |
ST BL196/05 | Malaysia | Draft | 4.7 | 4875 | AJGK00000000 | [42] |
Source of Isolates | Antimicrobial Gene | Antimicrobial Gene Mutations | Resistance Type | Reference |
---|---|---|---|---|
Bangladesh | gyrA | D53N, S83F, S83Y, D87N, N529S, D87G, D87Y, A119E, D87A | Ciprofloxacin | [51] |
gyrB | S464F, S464Y | Ciprofloxacin | ||
parC | E84K, S80R, D69A, T620M, E84G, S80I | Ciprofloxacin | ||
parE | A364V, T447A, L416F, S339L, A365S, L502F, E460K | Ciprofloxacin | ||
blaCTX-M-15 | NR * | Ceftriaxone | ||
blaTEM-1B | NR | Ampicillin | ||
catA1 | NR | Chloramphenicol | ||
dfrA7 | NR | Co-trimoxazole | ||
strA, strB | NR | Streptomycin | ||
sul1, sul2 | NR | Co-trimoxazole | ||
qnrS1 | NR | Ciprofloxacin | ||
tet(A), tet(B) | NR | Tetracycline | ||
Malaysia | gyrA | S83F | Fluoroquinolones | [54] |
Japan | gyrA | S83F, D87N, S83Y, E84G, D420N | Fluoroquinolone | [55] |
parC | S80I, Glu84Gly | Fluoroquinolone | ||
parE | Asp420Asn | Fluoroquinolone | ||
Pakistan | gyrA, blaCTX-M-15, blaTEM-1, qnrS1 | S83F NR | Cefepime and fluoroquinolones (ciprofloxacin, levofloxacin, and moxifloxacin) | [56] |
Zambian | gyrA, | D87N, S83Y | Quinolone | [57] |
gyrB, parC, parE, | NR | Quinolone | ||
qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6′)-lb | NR | Quinolone | ||
sul1, sul2 | NR | Sulfamethoxazole | ||
dfrA14, dfrA7 | NR | Trimethoprim | ||
catA1 | NR | Chloramphenicol | ||
strA, strB, ∆aadA1 | NR | Streptomycin | ||
blaTEM-1 | NR | Ampicillin | ||
qucE | NR | Sulfonamide | ||
Italy | qnrS | NR | Fluoroquinolone | [58] |
blaCTX-M-15 | NR | Ceftriaxone | ||
India | gyrA | D87N, S83Y, D87Y, S83F, D87G | Fluoroquinolone | [17] |
gyrB | S464F, A574V | Fluoroquinolone | ||
parC | E84G, E84K, S80I | Fluoroquinolone | ||
parE | A364V, D420N, L416F | Fluoroquinolone | ||
acrB | R717Q | Azithromycin | ||
TEM-1, blaTEM-1B, blaTEM116 | NR | Amoxicillin | ||
dfrA7, dfrA15, sul1, sul2 | NR | Trimethoprim-sulfamethoxazole | ||
aac(6′)-Iaa, AAC(6′)-Iy, aadA1, aph(3”)-Ib, aph(6)-Id, | NR | Aminoglycosides | ||
strA, strB | NR | Streptomycin | ||
tet(A), tet(B), tet(R), | NR | Tetracycline | ||
catA1 | NR | Chloramphenicol | ||
mdtK | NR | Acrifavin, doxorubicin and norfoxacin | ||
catA1 | NR | Chloramphenicol | ||
dfrA7, sul1, sul2 | NR | Trimethoprim-sulfamethoxazole | ||
baeR, emrb, H-NS, marA, mdfA, mdtK, msbA, acrA, emrR, kpnE, kpnF, marR, sdiA, crp, soxR, and soxS | NR | Multidrug resistance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan Makhtar, W.R.W.; Bharudin, I.; Samsulrizal, N.H.; Yusof, N.Y. Whole Genome Sequencing Analysis of Salmonella enterica Serovar Typhi: History and Current Approaches. Microorganisms 2021, 9, 2155. https://doi.org/10.3390/microorganisms9102155
Wan Makhtar WRW, Bharudin I, Samsulrizal NH, Yusof NY. Whole Genome Sequencing Analysis of Salmonella enterica Serovar Typhi: History and Current Approaches. Microorganisms. 2021; 9(10):2155. https://doi.org/10.3390/microorganisms9102155
Chicago/Turabian StyleWan Makhtar, Wan Ratmaazila Wan, Izwan Bharudin, Nurul Hidayah Samsulrizal, and Nik Yusnoraini Yusof. 2021. "Whole Genome Sequencing Analysis of Salmonella enterica Serovar Typhi: History and Current Approaches" Microorganisms 9, no. 10: 2155. https://doi.org/10.3390/microorganisms9102155
APA StyleWan Makhtar, W. R. W., Bharudin, I., Samsulrizal, N. H., & Yusof, N. Y. (2021). Whole Genome Sequencing Analysis of Salmonella enterica Serovar Typhi: History and Current Approaches. Microorganisms, 9(10), 2155. https://doi.org/10.3390/microorganisms9102155