Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Data/Data Mining
2.2. Phylogenetic Analyses
2.3. %GC Content
3. Results
3.1. Overall Patterns of Horizontal Gene Transfer (HGT)
3.2. TnaA Gene in Archaea
3.3. Significance of tnaA in the Eukaryotic Life Cycle
Organism | Classification (Class; Order; and Family) | Indole Production | Reference | Organism | Classification (Class; Order; and Family) | Indole Production | Reference |
---|---|---|---|---|---|---|---|
Gram−negative bacteria | |||||||
A. caviae | Gammaproteobacteria; Aeromonadales; Aeromonadaceae | + | [59] | M. viscosa | Gammaproteobacteria; Alteromonadales; Moritellaceae | − | [60] |
A. dhakensis | + | [61] | O. splanchnicus | Bacteroidia; Bacteroidales; Odoribacteraceae | n/a | ||
A. hydrophila | + | [59] | P. ananatis | Gammaproteobacteria; Enterobacterales; Erwiniaceae | + | [62] | |
A. media | + | [59] | P. stewartia | + | [63] | ||
A. salmonicida | + | [64] | P. laumondii | Gammaproteobacteria; Enterobacterales; Morganellaceae | − | [65] | |
A. veronii | + | [59] | P. luminescens | − | [65] | ||
A. actinomycetemcomitans | Gammaproteobacteria; Pasteurellales; Pasteurellaceae | n/a | P. shigelloides | Gammaproteobacteria; Enterobacterales; Enterobacterales incertae sedis | + | [66] | |
A. muciniphila | Verrucomicrobiae; Verrucomicrobiales; Akkermansiaceae | n/a | P. gingivalis | Bacteroidia; Bacteroidales; Porphyromonadaceae | + | [67] | |
A. wodanis | Gammaproteobacteria; Vibrionales; Vibrionaceae | + | [68] | P. gulae | + | [69] | |
B. cellulosilyticus | Bacteroidia; Bacteroidales; Bacteroidaceae | n/a | P. intermedia | Bacteroidia; Bacteroidales; Prevotellaceae | + | [70] | |
B. eggerthii | + | [71] | P. vulgaris | Gammaproteobacteria; Enterobacterales; Morganellaceae | + | [72] | |
B. faecis | + | [73] | P. alcalifaciens | Gammaproteobacteria; Enterobacterales; Morganellaceae | + | [74] | |
B. intestinalis | + | [75] | P. rettgeri | + | [76] | ||
B. ovatus | + | [73] | P. stuartii | + | [76] | ||
B. salyersiae | + | [73] | R. ornithinolytica | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | + | [77] | |
B. stercoris | + | [78] | R. capsulatus | Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae | n/a | ||
B. thetaiotaomicron | + | [73] | R. palustris | Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae | n/a | ||
B. uniformis | + | [71] | R. pneumotropicus | Gammaproteobacteria; Pasteurellales; Pasteurellaceae | + | [79] | |
B. hyodysenteriae | Spirochaetia; Brachyspirales; Brachyspiraceae | + | [80] | S. ruber | Bacteroidetes Order II. Incertae sedis; Rhodothermaceae | − | [81] |
C. violaceum | Betaproteobacteria; Neisseriales; Chromobacteriaceae | + | [82] | S. boydii | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | − | [83] |
C. indologenes | Flavobacteriia; Flavobacteriales; Weeksellaceae | − | [84] | S. dysenteriae | − | [33] | |
C. amalonaticus | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | n/a | S. flexneri | − | [33] | ||
C. koseri | + | [85] | S. sonnei | − | [33] | ||
C. portucalensis | − | [86] | V. alginolyticus | Gammaproteobacteria; Vibrionales; Vibrionaceae | + | [68] | |
C.dublinensis | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | + | [87] | V. anguillarum | v | [68] | |
D. dadantii | Gammaproteobacteria; Enterobacterales; Pectobacteriaceae | + | [88] | V. campbellii | + | [68] | |
D. dianthicola | + | [89] | V. cholerae | + | [90] | ||
D. solani | + | [91] | V. coralliilyticus | + | [92] | ||
D. zeae | + | [89] | V. crassostreae | + | [93] | ||
E. piscicida | Gammaproteobacteria; Enterobacterales; Hafniaceae | + | [94] | V. cyclitrophicus | − | [68] | |
E. tarda | + | [94] | V. diabolicus | + | [95] | ||
E. anophelis | Flavobacteriia; Flavobacteriales; Weeksellaceae | + | [96] | V. fluvialis | + | [68] | |
E. meningoseptica | + | [97] | V. furnissii | v | [98] | ||
E. miricola | + | [97] | V. jasicida | + | [99] | ||
E. norvegicus | Gammaproteobacteria; Vibrionales; Vibrionaceae | + | [100] | V. kanaloae | + | [93] | |
E. albertii | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | + | [101] | V. lentus | + | [68] | |
E. coli | + | [102] | V. metoecus | + | [103] | ||
E. fergusonii | + | [104] | V. mimicus | + | [68] | ||
E. marmotae | − | [105] | V. nigripulchritudo | + | [68] | ||
F. hwasookii | Fusobacteria; Fusobacteriales; Fusobacteriaceae | + | [106] | V. owensii | + | [99] | |
F. necrophorum | + | [107] | V. rotiferianus | + | [99] | ||
F. nucleatum | + | [106] | V. splendidus | + | [68] | ||
F. nucleatum | + | [106] | V. tasmaniensis | + | [68] | ||
G. hollisae | Gammaproteobacteria; Vibrionales; Vibrionaceae | + | [108] | V. vulnificus | + | [68] | |
H. haemolyticus | Gammaproteobacteria; Pasteurellales; Pasteurellaceae | + | [109] | X. bovienii | Gammaproteobacteria; Enterobacterales; Morganellaceae | n/a | |
H. influenzae | + | [109] | Y. enterocolitica | Gammaproteobacteria; Enterobacterales; Yersiniaceae | + | [110] | |
H. parainfluenzae | + | [111] | Y. frederiksenii | + | [112] | ||
H. somni | Gammaproteobacteria; Pasteurellales; Pasteurellaceae | + | [113] | Y. intermedia | + | [114] | |
K. michiganensis | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | + | [115] | Y. kristensenii | v | [116] | |
K. oxytoca | + | [117] | Y. massiliensis | + | [118] | ||
Ladecarboxylata | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | + | [119] | Y. regensburgei | Gammaproteobacteria; Enterobacterales; Enterobacteriaceae | − | [31] |
Gram−positive bacteria | |||||||
A. colihominis | Clostridia; Clostridiales; Ruminococcaceae | + | [120] | P. bifermentans | Clostridia; Clostridiales; Peptostreptococcaceae | + | [121] |
C. novyi | Clostridia; Clostridiales; Clostridiaceae | + | [122] | S. erythraea | Actinobacteria; Pseudonocardiales; Pseudonocardiaceae | n/a | |
C. tetani | + | [123] | S. scabiei | Actinobacteria; Streptomycetales; Streptomycetaceae | n/a | ||
C. acnes | Actinobacteria; Propionibacteriales; Propionibacteriaceae | − | [124] | T. denticola | Spirochaetia; Spirochaetales; Spirochaetaceae | + | [125] |
E. clostridioformis | Clostridia; Clostridiales; Lachnospiraceae | n/a | T. phagedenis | + | [126] | ||
P. sordellii | Clostridia; Clostridiales; Peptostreptococcaceae | n/a | |||||
Archaea | |||||||
A. pernix | Thermoprotei; Desulfurococcales; Desulfurococcaceae | n/a | H. larsenii | Halobacteria; Halobacteriales; Halobacteriaceae | n/a | ||
H. jeotgali | Halobacteria; Halobacteriales; Halobacteriaceae | v | [127] | H. pelagica | Halobacteria; Halobacteriales; Halobacteriaceae | + | [128] |
H. sulfurireducens | Halobacteria; Halobacteriales; Halobacteriaceae | n/a | H. daqingensis | Halobacteria; Natrialbales; Natrialbaceae | − | [129] | |
H. hispanica | Halobacteria; Halobacteriales; Haloarculaceae | v | [130] | H. jeotgali | Halobacteria; Natrialbales; Natrialbaceae Halobacteria; Natrialbales; Natrialbaceae | + | [131] |
H. marismortui | − | [132] | H. turkmenica | + | [133] | ||
H. taiwanensis | − | [134] | Natrarchaeobaculum sulfurireducens | − | [135] | ||
Haloarcula sp. | − | [134] | N. magadii | Halobacteria; Natrialbales; Natrialbaceae | n/a | ||
H. hubeiense | Halobacteria; Halobacteriales; Halobacteriaceae | n/a | N. pallidum | Halobacteria; Natrialbales; Natrialbaceae | − | [136] | |
H. salinarum | v | [137] | N. pellirubrum | Halobacteria; Natrialbales; Natrialbaceae Halobacteria; Natrialbales; Natrialbaceae | − | [136] | |
Halobacterium sp. | n/a | N. versiforme | + | [138] | |||
H. lacisalsi | Halobacteria; Natrialbales; Natrialbaceae | − | [139] | Natrinema sp. | v | ||
H. alexandrinus | Halobacteria; Haloferacales; Haloferacaceae | + | [140] | N. gregoryi | n/a | ||
H. gibbonsii | + | [130] | N. occultus | Halobacteria; Natrialbales; Natrialbaceae | n/a | ||
H. mediterranei | + | [141] | N. aibiense | Halobacteria; Natrialbales; Natrialbaceae | + | [142] | |
H. volcanii | + | [143] | N. bangense | + | [144] | ||
H. borinquense | Halobacteria; Haloferacales; Haloferacaceae | + | [145] | ||||
H. xanaduensis | Halobacteria; Halobacteriales; Halobacteriaceae | − | [146] | ||||
Eukaryotes | |||||||
Protists | |||||||
A. aculeatinus | Eurotiomycetes; Eurotiales; Aspergillaceae | n/a | N. gruberi | Heterolobosea; Schizopyrenida; Vahlkampfiidae | n/a | ||
A. aculeatus | n/a | T. vaginalis | --; Trichomonadida; Trichomonadidae | + | [49] | ||
A. brunneoviolaceus | n/a | E. dispar | Amoebozoa; Mastigamoebida; Entamoebidae Amoebozoa; Mastigamoebida; Entamoebidae | n/a | |||
A. japonicus | n/a | E. histolytica | + | [50] | |||
A. saccharolyticus | n/a | E. invadens | n/a | ||||
A. uvarum | n/a | E. nuttalli | n/a | ||||
C. graminicola | Sordariomycetes; Glomerellales; Glomerellaceae | n/a | |||||
F. fujikuroi | Sordariomycetes; Hypocreales; Nectriaceae | n/a | Higher eukaryotes | ||||
F. proliferatum | n/a | O. bimaculoides | Cephalopoda; Octopoda; Octopodidae Cephalopoda; Octopoda; Octopodidae Anthozoa; Scleractinia; Acroporidae | n/a | |||
F. vanettenii | n/a | O. vulgaris | n/a | ||||
M. acridum | Sordariomycetes; Hypocreales; Clavicipitaceae | n/a | A. digitifera | Anthozoa; Scleractinia; Acroporidae Anthozoa; Scleractinia; Pocilloporidae Anthozoa; Scleractinia; Acroporidae Anthozoa; Scleractinia; Pocilloporidae | n/a | ||
M. brunneum | n/a | A. millepora | n/a | ||||
M. robertsii | n/a | S. pistillata | Anthozoa; Actiniaria; Aiptasiidae | n/a | |||
P. chrysogenum | Eurotiomycetes; Eurotiales; Aspergillaceae | n/a | E. pallida | Anthozoa; Actiniaria; Aiptasiidae | n/a | ||
P. anserina | Sordariomycetes; Sordariales; Chaetomiaceae | n/a | A. tenebrosa | Anthozoa; Actiniaria; Actiniidae | n/a | ||
T. virens | Sordariomycetes; Hypocreales; Hypocreaceae | n/a | N. vectensis | Anthozoa; Actiniaria; Edwardsiidae | n/a | ||
O. faveolata | Anthozoa; Scleractinia; Merulinidae | n/a | |||||
M. neglectum | Chlorophyceae; Sphaeropleales; Selenastraceae | n/a | P. damicornis | Anthozoa; Scleractinia; Pocilloporidae | n/a | ||
D. purpureum | Eumycetozoa; Dictyosteliales; Dictyosteliaceae | n/a | S. kowalevskii | Enteropneusta; --; Harrimaniidae [Hemichordata] | n/a | ||
B. hominis, | Bigyra; Opalinata; Blastocystidae | n/a | L. polyphemus | Merostomata; Xiphosura; Limulidae | n/a | ||
Blastocystis sp. | n/a | F. candida | Collembola; Entomobryomorpha; Isotomidae | n/a | |||
P. tricornutum | Bacillariophyceae; Naviculales; Phaeodactylaceae | n/a | D. melanogaster | Insecta; Diptera; Drosophilidae | n/a | ||
P. caudatus | Priapulimorpha; Priapulimorphida; Priapulidae | n/a |
Organism | Unique Growth Requirements | Indole | Biofilm (EPS or QS Signal) | References | |
---|---|---|---|---|---|
Gene (NCBI) | Production | ||||
Aeropyrum pernix K1 | Thermophile, 90 °C | + | − | − | [147] |
Halalkalicoccus jeotgali B3 | 1.70–5.1 M NaCl | + | + | − | [131] |
Halanaeroarchaeum sulfurireducens strain HSR2 | 3–5 M NaCl | + | NR | − | [148] |
Halanaeroarchaeum sulfurireducens strain M27-SA2 | 3–5 M NaCl | + | NR | − | [149] |
Haloarcula hispanica ATCC 33960 | 1.70–5.1 M NaCl | + | + | EPS | [132] [150] |
Haloarcula hispanica N601 | + | +/− | EPS | ||
Haloarcula marismortui ATCC 43049 | + | − | EPS | ||
Haloarcula taiwanensis strain Taiwanensis | + | NR | NR | ||
Haloarcula sp. CBA1115 | + | ||||
Halobacterium hubeiense strain JI20-1 | + | ||||
Halobacterium salinarum NRC-1 | 3.5–5 M NaCl | + | NR | + | |
Halobacterium salinarum R1 | 4.2 M NaCl | + | NR | EPS/AHL | |
Halobiforma lacisalsi AJ5 | >1.7 M NaCl | + | − | − | |
Haloferax alexandrinus strain wsp1 | 4.3 M NaCl | + | + | − | [140] |
Haloferax gibbonsii strain ARA6 | 1.7–4.3 M NaCl | + | + | EPS | |
Haloferax mediterranei ATCC 33500 | 1–5.2 M NaCl | + | + | EPS | |
Haloferax volcanii DS2 | 2.6–4.3 M NaCl | + | NR | +/AHLs | |
Halogeometricum borinquense DSM 11551 | 3.4–4.3 M NaCl | + | + | +/AHLs | |
Halopiger xanaduensis SH-6 | 4.3 M NaCl | + | − | − | |
Haloprofundus sp. MHR1 | 0.9–4.8 M NaCl | + | − | − | |
Halostagnicola larsenii XH-48 | 2.5–5.0 M NaCl | + | − | − | |
Halostella pelagica strain DL-M4 | 2.6 M NaCl | + | NA | − | |
Haloterrigena daqingensis strain JX313 | 1.7–5.5 M NaCl | + | − | − | |
Haloterrigena jeotgali strain A29 | 2.6–3.4 M NaCl | + | + | − | |
Haloterrigena turkmenica DSM 5511 | 2.6–3.4 M NaCl | + | NA | NA | |
Natrarchaeobaculum sulfurireducens strain AArc1 | 3–5 M NaCl | + | − | NA | |
Natrialba magadii ATCC 43099 | 3.4 M NaCl | + | NR | NA | |
Natrinema pallidum strain BOL6-1 | 3.4–4.3 M NaCl | + | − | NA | |
Natrinema pellirubrum DSM 15624 | 3.4–4.3 M NaCl | + | − | NA | |
Natrinema versiforme strain BOL5-4 | 3.4–4.3 M NaCl | + | + | NA | |
Natronobacterium gregoryi SP2 | 2.0–5 M NaCl | + | NR | NA | |
Natronococcus occultus SP4 | 2 M NaCl | + | NR | AHL/Biofilm | |
Natronorubrum aibiense strain 7-3 | 2.0–4.3 M NaCl | + | + | NA | [142] |
Natronorubrum bangense strain JCM 10635 | 2.0–4.3 M NaCl | + | + | NA | [144] |
(a) | (b) | (c) | |||
Organism | %GC content | Organism | %GC content | Organism | %GC content |
N. occultus SP4 | 68 | N. occultus SP4 | 68 | A. aculeatinus CBS 121060 | 65 |
N. aibiense strain 7-3 | 66 | N. aibiense strain 7-3 | 66 | A. aculeatus ATCC 16872 | 63 |
N. gregoryi SP2 | 65 | N. gregoryi SP2 | 65 | A. brunneoviolaceus CBS 621.78 | 65 |
N. pallidum strain BOL6-1 | 66 | N. pallidum strain BOL6-1 | 66 | A. japonicus CBS 114.51 | 62 |
N. magadii ATCC 43099 | 66 | N. magadii ATCC 43099 | 66 | A. saccharolyticus JOP 1030-1 | 65 |
N. sulfurireducens strain AArc1 | 67 | N. sulfurireducens strain AArc1 | 67 | A. uvarum CBS 121591 | 64 |
H. borinquense DSM 11551 | 63 | H. borinquense DSM 11551 | 63 | P. anserina S mat+ | 56 |
H. gibbonsii strain ARA6 | 68 | H. gibbonsii strain ARA6 | 68 | M. acridum CQMa 102 | 53 |
H. jeotgali strain A29 | 68 | H. jeotgali strain A29 | 68 | M. brunneum ARSEF 3297 | 52 |
H. pelagica strain DL-M4 | 67 | H. pelagica strain DL-M4 | 67 | M. robertsii ARSEF 23 | 53 |
H. larsenii XH-48 | 65 | H. larsenii XH-48 | 65 | F. fujikuroi IMI 58289 | 50 |
H. xanaduensis SH-6 | 69 | H. xanaduensis SH-6 | 69 | F. proliferatum ET1 | 50 |
H. lacisalsi AJ5 | 69 | H. lacisalsi AJ5 | 69 | F. vanettenii | 58 |
Halobacterium sp. DL1 | 71 | Halobacterium sp. DL1 | 71 | C. graminicola M1.001 | 56 |
H. salinarum NRC-1 | 71 | H. salinarum NRC-1 | 71 | ||
H. sulfurireducens strain HSR2 | 67 | H. sulfurireducens strain HSR2 | 67 | ||
H. jeotgali B3 | 65 | H.jeotgali B3 | 65 | ||
A. pernix K1 | 56 | S. ruber DSM 13855 | 67 | ||
(d) | (e) | (f) | |||
Organism | %GC content | Organism | %GC content | Organism | %GC content |
P. anserina S mat+ | 56 | F. hwasookii ChDC | 34 | B. cellulosilyticus strain WH2 | 46 |
M. acridum CQMa 102 | 53 | F. hwasookii ChDC F300 | 31 | B. eggerthii strain NCTC11155 | 45 |
M. brunneum ARSEF 3297 | 52 | F. necrophorum strain 1_1_36S | 40 | B. faecis MAJ27 | 46 |
M. robertsii ARSEF 23 | 53 | F. nucleatum ATCC 25586 | 33 | B. intestinalis DSM 17393 | 46 |
F. fujikuroi IMI 58289 | 50 | F. nucleatum strain NCTC10562 | 33 | B. ovatus strainBSD2780061688st1_C6 | 47 |
F. proliferatum ET1 | 50 | E. histolytica HM-1 | 33 | B. salyersiae CL02T12C01 | 46 |
F. vanettenii | 58 | B. stercoris ATCC 43183 | 44 | ||
C. graminicola M1.001 | 56 | B. thetaiotaomicron strain 7330 | 48 | ||
B. hominis, Singapore isolate B | 56 | T. vaginalis G3 | 48 | ||
Blastocystis sp. strain WR1 | 57 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertin, Y.; Deval, C.; de la Foye, A.; Masson, L.; Gannon, V.; Harel, J.; Martin, C.; Desvaux, M.; Forano, E. The gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. PLoS ONE 2014, 9, e98367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwidar, M.; Nam, D.; Mitchell, R.J. Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ. Microbiol. 2015, 17, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Romano, B.; Gollihar, J.; Brown, S.A.; Whiteley, M.; Valenzuela, E.; Kaplan, H.B.; Wood, T.K.; McLean, R.J.C. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. Microbiology 2014, 160, 2464–2473. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.G.; Baek, K.H.; Cho, M.H.; Lee, J. The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens. Environ. Microbiol. 2015, 17, 1234–1244. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 2010, 34, 426–444. [Google Scholar] [CrossRef]
- Lee, C.-R.; Cho, I.H.; Jeong, B.C.; Lee, S.H. Strategies to minimize antibiotic resistance. Int. J. Environ. Res. Public Health 2013, 10, 4274–4305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.Y.; Kim, D.M.; Jo, Y.; Kim, J.M.; Yoo, S.M. DNA Microarray-based detection of bacteria in samples containing antibiotics: Effect of antibiotics on the performance of pathogen detection assays. Biotechnol. Bioprocess Eng. 2021, 26, 447–455. [Google Scholar] [CrossRef]
- Lee, J.; Jayaraman, A.; Wood, T.K. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 2007, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Zhang, X.-S.; Hegde, M.; Bentley, W.E.; Jayaraman, A.; Wood, T.K. Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J. 2008, 2, 1007–1023. [Google Scholar] [CrossRef]
- Dekel, A.; Yakir, E.; Bohbot, J.D. The evolutionarily conserved indolergic receptors of the non-hematophagous elephant mosquito Toxorhynchites amboinensis. Insect Biochem. Mol. Biol. 2019, 110, 45–51. [Google Scholar] [CrossRef]
- Jürgens, A.; Dötterl, S.; Meve, U. The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). N. Phytol. 2006, 172, 452–468. [Google Scholar] [CrossRef] [PubMed]
- Urech, R.; Green, P.E.; Rice, M.J.; Brown, G.W.; Duncalfe, F.; Webb, P. Composition of chemical attractants affects trap catches of the australian sheep blowfly, Lucilia cuprina, and Other Blowflies. J. Chem. Ecol. 2004, 30, 851–866. [Google Scholar] [CrossRef]
- Kumar, P.; Lee, J.-H.; Lee, J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol. Rev. 2021. [Google Scholar] [CrossRef]
- Bogner, C.W.; Kamdem, R.S.; Sichtermann, G.; Matthaus, C.; Holscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.; Schouten, A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017, 10, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, C.; Li, X.; Tang, Y.; Wang, Y.; Chen, S.; Yan, S. RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato. Pest. Manag. Sci. 2018, 74, 2793–2805. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.G.; Kim, M.; Kim, E.; Choi, H.; Kim, Y.; Lee, J. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ. Microbiol. 2017, 19, 1776–1790. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhang, X.; Qu, Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front. Microbiol. 2018, 9, 2625. [Google Scholar] [CrossRef] [PubMed]
- Ngangbam, A.K.; Baten, A.; Waters, D.L.E.; Whalan, S.; Benkendorff, K. Characterization of bacterial communities associated with the tyrian purple producing gland in a marine gastropod. PLoS ONE 2015, 10, e0140725. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Sheng, Y.; Su, P.; Qiu, Y.; Ke, C.; Feng, D. Antifouling activity towards mussel by small-molecule compounds from a strain of Vibrio alginolyticus bacterium associated with sea anemone Haliplanella sp. J. Microbiol. Biotechnol. 2017, 27, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Hendrikx, T.; Schnabl, B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J. Intern. Med. 2019, 286, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Huć, T.; Nowinski, A.; Drapala, A.; Konopelski, P.; Ufnal, M. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol. Res. 2018, 130, 172–179. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef] [Green Version]
- Costantini, C.; Bellet, M.M.; Renga, G.; Stincardini, C.; Borghi, M.; Pariano, M.; Cellini, B.; Keller, N.; Romani, L.; Zelante, T. Tryptophan co-metabolism at the host-pathogen interface. Front. Immunol. 2020, 11, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuidate, T.; Tansila, N.; Chomchuen, P.; Phattaranit, P.; Eangchuan, S.; Vuddhakul, V. Characterization of tryptophanase from Vibrio cholerae. Appl. Biochem. Biotechnol. 2015, 175, 243–252. [Google Scholar] [CrossRef]
- Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Jain, R.; Rivera, M.C.; Moore, J.E.; Lake, J.A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 2003, 20, 1598–1602. [Google Scholar] [CrossRef] [PubMed]
- Noon, J.; Baum, T. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients. BMC Evol. Biol. 2016, 16, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almagro, G.; Viale, A.M.; Montero, M.; Rahimpour, M.; Munoz, F.J.; Baroja-Fernandez, E.; Bahaji, A.; Zuniga, M.; Gonzalez-Candelas, F.; Pozueta-Romero, J. Comparative genomic and phylogenetic analyses of Gammaproteobacterial glg genes traced the origin of the Escherichia coli glycogen glgBXCAP operon to the last common ancestor of the sister orders Enterobacteriales and Pasteurellales. PLoS ONE 2015, 10, e0115516. [Google Scholar] [CrossRef] [Green Version]
- Abbott, S.L.; Janda, J.M. Isolation of Yokenella regensburgei (“Koserella trabulsii”) from a patient with transient bacteremia and from a patient with a septic knee. J. Clin. Microbiol. 1994, 32, 2854–2855. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Gaind, R.; Gupta, K.B.; Dawar, R.; Kumar, D.; Paul, P.; Sardana, R.; Deb, M. Yokenella regensburgei infection in India mimicking enteric fever. J. Med. Microbiol. 2013, 62, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Rezwan, F.; Lan, R.; Reeves, P.R. Molecular basis of the indole-negative reaction in Shigella Strains: Extensive damages to the tna operon by insertion sequences. J. Bacteriol. 2004, 186, 7460–7465. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Jeong, Y.; Kim, J.-E.; Kim, Y.; Paek, N.-S.; Kang, C.-H. Anti-obesity potential of Lactobacillus spp. isolated from infant feces. Biotechnol. Bioprocess Eng. 2021, 26, 575–585. [Google Scholar] [CrossRef]
- Van Wolferen, M.; Orell, A.; Albers, S.-V. Archaeal biofilm formation. Nat. Rev. Microbiol. 2018, 16, 699–713. [Google Scholar] [CrossRef]
- Bang, C.; Ehlers, C.; Orell, A.; Prasse, D.; Spinner, M.; Gorb, S.N.; Albers, S.V.; Schmitz, R.A. Biofilm formation of mucosa-associated methanoarchaeal strains. Front. Microbiol. 2014, 5, 353. [Google Scholar] [CrossRef] [PubMed]
- Fröls, S.; Dyall-Smith, M.; Pfeifer, F. Biofilm formation by haloarchaea. Environ. Microbiol. 2012, 14, 3159–3174. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Morales, B.O.; Narváez-Zapata, J.A.; Schmalenberger, A.; Sosa-López, A.; Tebbe, C.C. Biofilms fouling ancient limestone Mayan monuments in Uxmal, Mexico: A cultivation-independent analysis. Biofilms 2004, 1, 79–90. [Google Scholar] [CrossRef]
- Gupta, R.S.; Naushad, S.; Baker, S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: A proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 1050–1069. [Google Scholar] [CrossRef]
- Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhao, J.; Tang, N.; Sun, H.; Huang, J. Horizontal gene transfer from bacteria and plants to the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front. Plant Sci. 2018, 9, 701. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S.; Aravind, L. Horizontal gene transfer in prokaryotes: Quantification and classification. Annu. Rev. Microbiol. 2001, 55, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Eme, L.; Gentekaki, E.; Curtis, B.; Archibald, J.M.; Roger, A.J. Lateral Gene transfer in the adaptation of the anaerobic parasite Blastocystis to the gut. Curr. Biol. 2017, 27, 807–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imachi, H.; Nobu, M.K.; Nakahara, N.; Morono, Y.; Ogawara, M.; Takaki, Y.; Takano, Y.; Uematsu, K.; Ikuta, T.; Ito, M.; et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020, 577, 519–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeling, P.J.; Palmer, J.D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 2008, 9, 605–618. [Google Scholar] [CrossRef]
- Rosenberg, E.; Zilber-Rosenberg, I. The hologenome concept of evolution: Do mothers matter most? BJOG 2020, 127, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, H.J.; Ball, H.J. Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. J. Exp. Zool. B Mol. Dev. Evol. 2015, 324, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Stairs, C.W.; Roger, A.J.; Hampl, V. Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute. Mol. Biol. Evol. 2011, 28, 2087–2099. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.; Lauritsen, F.R.; Degn, H. The parasitic flagellates Trichomonas vaginalis and Tritrichomonas foetus produce indole and dimethyl disulphide: Direct characterization by membrane inlet tandem mass spectrometry. Microbiology 1991, 137, 1743–1747. [Google Scholar] [CrossRef] [Green Version]
- Nývltová, E.; Šut’ák, R.; Žárský, V.; Harant, K.; Hrdý, I.; Tachezy, J. Lateral gene transfer of p-cresol- and indole-producing enzymes from environmental bacteria to Mastigamoeba balamuthi. Environ. Microbiol. 2017, 19, 1091–1102. [Google Scholar] [CrossRef]
- Eichinger, L.; Pachebat, J.A.; Glockner, G.; Rajandream, M.A.; Sucgang, R.; Berriman, M.; Song, J.; Olsen, R.; Szafranski, K.; Xu, Q.; et al. The genome of the social amoeba Dictyostelium discoideum. Nature 2005, 435, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Husnik, F.; McCutcheon, J.P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 2018, 16, 67–79. [Google Scholar] [CrossRef]
- Xu, W.; Gavia, D.J.; Tang, Y. Biosynthesis of fungal indole alkaloids. Nat. Prod. Rep. 2014, 31, 1474–1487. [Google Scholar] [CrossRef] [Green Version]
- Halsey, C.R.; Lei, S.; Wax, J.K.; Lehman, M.K.; Nuxoll, A.S.; Steinke, L.; Sadykov, M.; Powers, R.; Fey, P.D. Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression. mBio 2017, 8, e01434-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.; Mentel, M.; van Hellemond, J.J.; Henze, K.; Woehle, C.; Gould, S.B.; Yu, R.Y.; van der Giezen, M.; Tielens, A.G.; Martin, W.F. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 2012, 76, 444–495. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Jerlström-Hultqvist, J.; Einarsson, E.; Astvaldsson, A.; Svärd, S.G.; Andersson, J.O. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014, 10, e1004053. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.L.; Youssef, N.H.; Hanafy, R.A.; Couger, M.B.; Stajich, J.E.; Wang, Y.; Baker, K.; Dagar, S.S.; Griffith, G.W.; Farag, I.F.; et al. Horizontal gene transfer as an indispensable driver for evolution of neocallimastigomycota into a distinct gut-dwelling fungal lineage. Appl. Environ. Microbiol. 2019, 85, e00988-19. [Google Scholar] [CrossRef] [Green Version]
- Bunsangiam, S.; Sakpuntoon, V.; Srisuk, N.; Ohashi, T.; Fujiyama, K.; Limtong, S. Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis. Mycobiology 2019, 47, 292–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteve, C.; Gutierrez, M.C.; Ventosa, A. Aeromonas encheleia sp. nov., isolated from European eels. Int. J. Syst. Bacteriol. 1995, 45, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Park, S.; Lee, J.M.; Park, S.; Jung, W.; Kang, J.-S.; Joo, H.M.; Seo, K.-W.; Kang, S.-H. Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int. J. Syst. Evol. Microbiol. 2008, 58, 817–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harf-Monteil, C.; Flèche, A.L.; Riegel, P.; Prévost, G.; Bermond, D.; Grimont, P.A.D.; Monteil, H. Aeromonas simiae sp. nov., isolated from monkey faeces. Int. J. Syst. Evol. Microbiol. 2004, 54, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Baere, T.D.; Verhelst, R.; Labit, C.; Verschraegen, G.; Wauters, G.; Claeys, G.; Vaneechoutte, M. Bacteremic Infection with Pantoea ananatis. J. Clin. Microbiol. 2004, 42, 4393–4395. [Google Scholar] [CrossRef] [Green Version]
- Pal, N.; Block, C.C.; Gardner, C.A.C. A real-time PCR differentiating Pantoea stewartii subsp. stewartii from P. stewartii subsp. indologenes in Corn Seed. Plant Dis. 2019, 103, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdóttir, D.B.K.; Helgason, S.; Høie, S.; Thoresen, O.F.; Wichardt, U.-P.; Wiklund, T. Identification of atypical Aeromonas salmonicida: Inter-laboratory evaluation and harmonization of methods. J. Appl. Microbiol. 1998, 84, 999–1006. [Google Scholar] [CrossRef]
- Hazir, S.; Stackebrandt, E.; Lang, E.; Schumann, P.; Ehlers, R.-U.; Keskin, N. Two new subspecies of photorhabdus luminescens, isolated from heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst. Appl. Microbiol. 2004, 27, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Millership, S.E.; Chattopadhyay, B. Methods for the isolation of Aeromonas hydrophila and Plesiomonas shigelloides from faeces. J. Hyg. 1984, 92, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, Y.; Sasaki, T.; Ito, S.; Tamura, H.; Kunimatsu, K.; Kato, H. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis. Microbiology 2009, 155, 968–978. [Google Scholar] [CrossRef] [Green Version]
- Urbanczyk, H.; Ast, J.C.; Higgins, M.J.; Carson, J.; Dunlap, P.V. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int. J. Syst. Evol. Microbiol. 2007, 57, 2823–2829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, D.; Mouton, C.; Lapierre, P.; Kato, T.; Okuda, K.; Ménard, C. Porphyromonas gulae sp. nov., an anaerobic, gram-negative coccobacillus from the gingival sulcus of various animal hosts. Int. J. Syst. Evol. Microbiol. 2001, 51, 1179–1189. [Google Scholar] [CrossRef]
- Sasaki-Imamura, T.; Yoshida, Y.; Suwabe, K.; Yoshimura, F.; Kato, H. Molecular basis of indole production catalyzed by tryptophanase in the genus Prevotella. FEMS Microbiol. Lett. 2011, 322, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, S.G.; Birk, R.J.; Zabransky, R.J. Differences in susceptibilities of species of the Bacteroides fragilis group to several beta-lactam antibiotics: Indole production as an indicator of resistance. Antimicrob. Agents Chemother. 1982, 22, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bale, M.J.; Mclaws, S.M.; Matsen, J.M. The spot indole test for identification of swarming proteus. Am. J. Clin. Pathol. 1985, 83, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-S.; Roh, S.W.; Bae, J.-W. Bacteroides faecis sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2010, 60, 2572–2576. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M.; Wright, J.W. Spot indole test: Evaluation of four reagents. J. Clin. Microbiol. 1982, 15, 589–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakir, M.A.; Kitahara, M.; Sakamoto, M.; Matsumoto, M.; Benno, Y. Bacteroides intestinalis sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2006, 56, 151–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, A.L.; Yeoman, P.; Rasburn, J.W.; Ng, M. Sensitive reagents for detection of indole production by bacteria. Zent. für Bakteriol. Mikrobiol. Hygiene. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1986, 262, 195–202. [Google Scholar] [CrossRef]
- Alves, M.S.; da Silva Dias, R.C.; de Castro, A.C.D.; Riley, L.W.; Moreira, B.M. Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. J. Clin. Microbiol. 2006, 44, 3640–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.L.; Moore, W.E.C.; Moore, L.V.H. Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. Isolated from Human Feces. Int. J. Syst. Evol. Microbiol. 1986, 36, 499–501. [Google Scholar] [CrossRef] [Green Version]
- Adhikary, S.; Nicklas, W.; Bisgaard, M.; Boot, R.; Kuhnert, P.; Waberschek, T.; Aalbæk, B.; Korczak, B.; Christensen, H. Rodentibacter gen. nov. including Rodentibacter pneumotropicus comb. nov., Rodentibacter heylii sp. nov., Rodentibacter myodis sp. nov., Rodentibacter ratti sp. nov., Rodentibacter heidelbergensis sp. nov., Rodentibacter trehalosifermentans sp. nov., Rodentibacter rarus sp. nov., Rodentibacter mrazii and two genomospecies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1793–1806. [Google Scholar] [CrossRef] [PubMed]
- Fellström, C.; Karlsson, M.; Pettersson, B.; Zimmerman, U.; Gunnarsson, A.; Aspan, A. Emended descriptions of indole negative and indole positive isolates of Brachyspira (Serpulina) hyodysenteriae. Vet. Microbiol. 1999, 70, 225–238. [Google Scholar] [CrossRef]
- Antón, J.; Oren, A.; Benlloch, S.; Rodriguez-Valera, F.; Amann, R.; Rossello-Mora, R. Salinibacter ruber gen. nov., sp. nov., a novel, extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 2002, 52, 485–491. [Google Scholar] [CrossRef]
- Sebek, O.K.; JÄGer, H. Divergent pathways of indole metabolism in chromobacterium violaceum. Nature 1962, 196, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, K.P. The relationship of the enterobacterium A 12 (Sachs) to Shigella boydii 14. Microbiology 1961, 26, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panpatte, D. Chryseobacterium indologenes a novel root nodule endophyte in vigna radiata. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 836–844. [Google Scholar] [CrossRef]
- Martino, P.D.; Fursy, R.; Bret, L.; Sundararaju, B.; Phillips, R.S. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can. J. Microbiol. 2003, 49, 443–449. [Google Scholar] [CrossRef]
- Ribeiro, T.G.; Gonçalves, B.R.; da Silva, M.S.; Novais, Â.; Machado, E.; Carriço, J.A.; Peixe, L. Citrobacter portucalensis sp. nov., isolated from an aquatic sample. Int. J. Syst. Evol. Microbiol. 2017, 67, 3513–3517. [Google Scholar] [CrossRef]
- Iversen, C.; Mullane, N.; McCardell, B.; Tall, B.D.; Lehner, A.; Fanning, S.; Stephan, R.; Joosten, H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Ngadze, E.; Coutinho, T.A.; van der Waals, J.E. First report of soft rot of potatoes caused by dickeya dadantii in Zimbabwe. Plant Dis. 2010, 94, 1263. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T.; Yasuoka, S.; Aono, Y.; Nakayama, T.; Ohki, T.; Sayama, M.; Maoka, T. Biochemical, physiological, and molecular characterization of Dickeya dianthicola (formerly named Erwinia chrysanthemi) causing potato blackleg disease in Japan. J. Gen. Plant Pathol. 2018, 84, 124–136. [Google Scholar] [CrossRef]
- Nuidate, T.; Tansila, N.; Saengkerdsub, S.; Kongreung, J.; Bakkiyaraj, D.; Vuddhakul, V. Role of indole production on virulence of vibrio cholerae using galleria mellonella larvae model. Indian J. Microbiol. 2016, 56, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Wolf, J.M.; Nijhuis, E.H.; Kowalewska, M.J.; Saddler, G.S.; Parkinson, N.; Elphinstone, J.G.; Pritchard, L.; Toth, I.K.; Lojkowska, E.; Potrykus, M.; et al. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2014, 64, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Ben-Haim, Y.; Thompson, F.L.; Thompson, C.C.; Cnockaert, M.C.; Hoste, B.; Swings, J.; Rosenberg, E. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. Syst. Evol. Microbiol. 2003, 53, 309–315. [Google Scholar] [CrossRef]
- Kim, D.; Baik, K.S.; Hwang, Y.S.; Choi, J.-S.; Kwon, J.; Seong, C.N. Vibriohemicentroti sp. nov., an alginate lyase-producing bacterium, isolated from the gut microflora of sea urchin (Hemicentrotus pulcherrimus). Int. J. Syst. Evol. Microbiol. 2013, 63, 3697–3703. [Google Scholar] [CrossRef] [Green Version]
- Buján, N.; Toranzo, A.E.; Magariños, B. Edwardsiella piscicida: A significant bacterial pathogen of cultured fish. Dis. Aquat. Org. 2018, 131, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Raguénès, G.; Christen, R.; Guezennec, J.; Pignet, P.; Barbier, G. Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Evol. Microbiol. 1997, 47, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Janda, J.M.; Lopez, D.L. Mini review: New pathogen profiles: Elizabethkingia anophelis. Diagn. Microbiol. Infect. Dis. 2017, 88, 201–205. [Google Scholar] [CrossRef]
- Kim, K.K.; Kim, M.K.; Lim, J.H.; Park, H.Y.; Lee, S.-T. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Gil, B.; Thompson, F.L.; Thompson, C.C.; Swings, J. Vibrio pacinii sp. nov., from cultured aquatic organisms. Int. J. Syst. Evol. Microbiol. 2003, 53, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, S.; Tsuruya, Y.; Fukui, Y.; Sawabe, T.; Yokota, A.; Kogure, K.; Higgins, M.; Carson, J.; Thompson, F.L. Vibrio jasicida sp. nov., a member of the Harveyi clade, isolated from marine animals (packhorse lobster, abalone and Atlantic salmon). Int. J. Syst. Evol. Microbiol. 2012, 62, 1864–1870. [Google Scholar] [CrossRef]
- Thompson, F.L.; Hoste, B.; Thompson, C.C.; Goris, J.; Gomez-Gil, B.; Huys, L.; De Vos, P.; Swings, J. Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: A new member of the family Vibrionaceae. Int. J. Syst. Evol. Microbiol. 2002, 52, 2015–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, S.; Konno, T.; Kashio, H.; Suzuki, S.; Kumagai, Y. Isolation and characterization of Escherichia albertii from environmental water in Akita prefecture, Japan. Jpn. J. Food Microbiol. 2020, 37, 81–86. [Google Scholar] [CrossRef]
- Bueschkens, D.H.; Stiles, M.E. Escherichia coli variants for gas and indole production at elevated incubation temperatures. Appl. Environ. Microbiol. 1984, 48, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Kirchberger, P.C.; Turnsek, M.; Hunt, D.E.; Haley, B.J.; Colwell, R.R.; Polz, M.F.; Tarr, C.L.; Boucher, Y. Vibriometoecus sp. nov., a close relative of Vibrio cholerae isolated from coastal brackish ponds and clinical specimens. Int. J. Syst. Evol. Microbiol. 2014, 64, 3208–3214. [Google Scholar] [CrossRef] [PubMed]
- Farmer, J.J.; Fanning, G.R.; Davis, B.R.; O’Hara, C.M.; Riddle, C.; Hickman-Brenner, F.W.; Asbury, M.A.; Lowery, V.A.; Brenner, D.J. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 1985, 21, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Jin, D.; Lan, R.; Wang, Y.; Meng, Q.; Dai, H.; Lu, S.; Hu, S.; Xu, J. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int. J. Syst. Evol. Microbiol. 2015, 65, 2130–2134. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.; Park, S.-N.; Lim, Y.K.; Shin, Y.; Paek, J.; Hwang, C.H.; Chang, Y.-H.; Kook, J.-K. Fusobacterium hwasookii sp. nov., Isolated from a human periodontitis lesion. Curr. Microbiol. 2015, 70, 169–175. [Google Scholar] [CrossRef]
- Tan, Z.L.; Nagaraja, T.G.; Chengappa, M.M. Selective enumeration of Fusobacterium necrophorum from the bovine rumen. Appl. Environ. Microbiol. 1994, 60, 1387–1389. [Google Scholar] [CrossRef] [Green Version]
- Thompson, F.L.; Hoste, B.; Vandemeulebroecke, K.; Swings, J. Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1615–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrea, K.W.; Xie, J.; LaCross, N.; Patel, M.; Mukundan, D.; Murphy, T.F.; Marrs, C.F.; Gilsdorf, J.R. Relationships of Nontypeable Haemophilus influenzae strains to hemolytic and nonhemolytic Haemophilus haemolyticus strains. J. Clin. Microbiol. 2008, 46, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Toma, S.; Lafleur, L. Survey on the Incidence of Yersinia enterocolitica infection in Canada. Appl. Microbiol. 1974, 28, 469–473. [Google Scholar] [CrossRef]
- Oberhofer, T.R.; Back, A.E. Biotypes of Haemophilus encountered in clinical laboratories. J. Clin. Microbiol. 1979, 10, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Ursing, J.; Don Brennert, J.; Bercovier, H.; Richard Fanning, G.; Steigerwalt, A.G.; Brault, J.; Mollaret, H.H. Yersinia frederiksenii: A new species of enterobacteriaceae composed of rhamnose-positive strains (formerly called atypicalyersinia enterocolitica or Yersinia enterocolitica-Like). Curr. Microbiol. 1980, 4, 213–217. [Google Scholar] [CrossRef]
- Angen, Ø.; Ahrens, P.; Kuhnert, P.; Christensen, H.; Mutters, R. Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedis ‘Haemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. Int. J. Syst. Evol. Microbiol 2003, 53, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Bercovier, H.; Ursing, J.; Alonso, J.M.; Steigerwalt, A.G.; Fanning, G.R.; Carter, G.P.; Mollaret, H.H. Yersinia intermedia: A new species of enterobacteriaceae composed of rhamnose-positive, melibiose-positive, raffinose-positive strains (formerly called Yersinia enterocolitica or Yersinia enterocolitica-like). Curr. Microbiol. 1980, 4, 207–212. [Google Scholar] [CrossRef]
- Saha, R.; Farrance, C.E.; Verghese, B.; Hong, S.; Donofrio, R.S. Klebsiella michiganensis sp. nov., A new bacterium isolated from a tooth brush holder. Curr. Microbiol. 2013, 66, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Wauters, G.; Janssens, M.; Steigerwalt, A.G.; Brenner, D.J. Yersinia mollaretii sp. nov. and Yersinia bercovieri sp. nov., Formerly Called Yersinia enterocolitica Biogroups 3A and 3B. Int. J. Syst. Evol. Microbiol. 1988, 38, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Maslow, J.N.; Brecher, S.M.; Adams, K.S.; Durbin, A.; Loring, S.; Arbeit, R.D. Relationship between indole production and differentiation of Klebsiella species: Indole-positive and -negative isolates of Klebsiella determined to be clonal. J. Clin. Microbiol. 1993, 31, 2000–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merhej, V.; Adékambi, T.; Pagnier, I.; Raoult, D.; Drancourt, M. Yersinia massiliensis sp. nov., isolated from fresh water. Int. J. Syst. Evol. Microbiol. 2008, 58, 779–784. [Google Scholar] [CrossRef]
- Tamura, K.; Sakazaki, R.; Kosako, Y.; Yoshizaki, E. Leclercia adecarboxylata gen. Nov., Comb. Nov., formerly known as Escherichia adecarboxylata. Curr. Microbiol. 1986, 13, 179–184. [Google Scholar] [CrossRef]
- Lawson, P.A.; Song, Y.; Liu, C.; Molitoris, D.R.; Vaisanen, M.-L.; Collins, M.D.; Finegold, S.M. Anaerotruncus colihominis gen. nov., sp. nov., from human faeces. Int. J. Syst. Evol. Microbiol. 2004, 54, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Sasi Jyothsna, T.S.; Tushar, L.; Sasikala, C.; Ramana, C.V. Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int. J. Syst. Evol. Microbiol. 2016, 66, 1268–1274. [Google Scholar] [CrossRef]
- Nishida, S.; Nakagawara, G. Isolation of toxigenic strains of clostridium novyi from soil. J. Bacteriol. 1964, 88, 1636–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombard, G.L.; Dowell, V.R. Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems. J. Clin. Microbiol. 1983, 18, 609–613. [Google Scholar] [CrossRef] [Green Version]
- Baek, C.; Yi, H. A report of 22 unrecorded bacterial species in Korea, isolated from Namhangang. J. Species Res. 2018, 7, 114–122. [Google Scholar] [CrossRef]
- Clark, D.T.; Soory, M. The metabolism of cholesterol and certain hormonal steroids by Treponema denticola. Steroids 2006, 71, 352–363. [Google Scholar] [CrossRef]
- Kuhnert, P.; Brodard, I.; Alsaaod, M.; Steiner, A.; Stoffel, M.H.; Jores, J. Treponema phagedenis (ex Noguchi 1912) Brumpt 1922 sp. nov., nom. rev., isolated from bovine digital dermatitis. Int. J. Syst. Evol. Microbiol. 2020, 70, 2115–2123. [Google Scholar] [CrossRef]
- Cui, H.-L.; Qiu, X.-X. Salinarubrum litoreum gen. nov., sp. nov.: A new member of the family Halobacteriaceae isolated from Chinese marine solar salterns. Antonie Van Leeuwenhoek 2014, 105, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Cui, H.-L. Halostella pelagica sp. nov. and Halostella litorea sp. nov., isolated from salted brown alga Laminaria. Int. J. Syst. Evol. Microbiol. 2020, 70, 1969–1976. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Q.; Liu, Z.-H.; Sun, L.; Wei, D.; Zhang, J.-Z.; Song, J.-Z.; Yuan, H.-F. Haloterrigena daqingensis sp. nov., an extremely haloalkaliphilic archaeon isolated from a saline–alkaline soil. Int. J. Syst. Evol. Microbiol. 2010, 60, 2267–2271. [Google Scholar] [CrossRef] [Green Version]
- Juez, G.; Rodriguez-Valera, F.; Ventosa, A.; Kushner, D.J. Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec, nov., Two new species of extremely halophilic archaebacteria. Syst. Appl. Microbiol. 1986, 8, 75–79. [Google Scholar] [CrossRef]
- Roh, S.W.; Nam, Y.-D.; Chang, H.-W.; Kim, K.-H.; Sung, Y.; Kim, M.-S.; Oh, H.-M.; Bae, J.-W. Haloterrigena jeotgali sp. nov., an extremely halophilic archaeon from salt-fermented food. Int. J. Syst. Evol. Microbiol. 2009, 59, 2359–2363. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Ginzburg, M.; Ginzburg, B.Z.; Hochstein, L.I.; Volcani, B.E. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an Extremely Halophilic Bacterium from the Dead Sea. Int. J. Syst. Evol. Microbiol. 1990, 40, 209–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, S.; Hagagy, N. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15. Genom. Data 2016, 7, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Hezayen, F.F.; Rehm, B.H.; Tindall, B.J.; Steinbüchel, A. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int. J. Syst. Evol. Microbiol. 2001, 51, 1133–1142. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D.Y.; Merkel, A.Y.; Messina, E.; Yakimov, M.M.; Itoh, T.; Mesbah, N.M.; Wiegel, J.; Oren, A. Reclassification of the genus Natronolimnobius: Proposal of two new genera, Natronolimnohabitans gen. nov. to accommodate Natronolimnobius innermongolicus and Natrarchaeobaculum gen. nov. to accommodate Natronolimnobius aegyptiacus and Natronolimnobius sulfurireducens. Int. J. Syst. Evol. Microbiol. 2020, 70, 3399–3405. [Google Scholar] [CrossRef]
- McGenity, T.J.; Gemmell, R.T.; Grant, W.D. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int. J. Syst. Evol. Microbiol. 1998, 48, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Hassanshahian, M.; Jafar, M. Isolation and characterization of Halobacterium salinarum from saline lakes in Iran. Jundishapur J. Microbiol. 2011, 4, 59–65. [Google Scholar]
- Xin, H.; Itoh, T.; Zhou, P.; Suzuki, K.; Kamekura, M.; Nakase, T. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int. J. Syst. Evol. Microbiol. 2000, 50, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.-W.; Wu, M.; Zhou, P.-J.; Liu, S.-J. Halobiforma lacisalsi sp. nov., isolated from a salt lake in China. Int. J. Syst. Evol. Microbiol. 2005, 55, 1949–1952. [Google Scholar] [CrossRef]
- Asker, D.; Ohta, Y. Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int. J. Syst. Evol. Microbiol. 2002, 52, 729–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akmoussi-Toumi, S.; Khemili-Talbi, S.; Ferioune, I.; Kebbouche-Gana, S. Purification and characterization of an organic solvent-tolerant and detergent-stable lipase from Haloferax mediterranei CNCMM 50101. Int. J. Biol. Macromol. 2018, 116, 817–830. [Google Scholar] [CrossRef]
- Cui, H.-L.; Tohty, D.; Feng, J.; Zhou, P.-J.; Liu, S.-J. Natronorubrum aibiense sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China, and emended description of the genus Natronorubrum. Int. J. Syst. Evol. Microbiol. 2006, 56, 1515–1517. [Google Scholar] [CrossRef] [Green Version]
- Franzmann, P.D.; Stackebrandt, E.; Sanderson, K.; Volkman, J.K.; Cameron, D.E.; Stevenson, P.L.; McMeekin, T.A.; Burton, H.R. Halobacterium lacusprofundi sp. nov., a Halophilic Bacterium Isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 1988, 11, 20–27. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, P.; Tian, X. Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 1999, 49, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, A.; Montalvo-Rodríguez, R. Halogeometricum. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2015; pp. 1–9. [Google Scholar]
- Gutiérrez, M.C.; Castillo, A.M.; Kamekura, M.; Xue, Y.; Ma, Y.; Cowan, D.A.; Jones, B.E.; Grant, W.D.; Ventosa, A. Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int. J. Syst. Evol. Microbiol. 2007, 57, 1402–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sako, Y.; Nomura, N.; Uchida, A.; Ishida, Y.; Morii, H.; Koga, Y.; Hoaki, T.; Maruyama, T. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C. Int. J. Syst. Bacteriol. 1996, 46, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D.Y.; Kublanov, I.V.; Gavrilov, S.N.; Rojo, D.; Roman, P.; Golyshin, P.N.; Slepak, V.Z.; Smedile, F.; Ferrer, M.; Messina, E.; et al. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J. 2016, 10, 240–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokin, D.Y.; Kublanov, I.V.; Yakimov, M.M.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int. J. Syst. Evol. Microbiol. 2016, 66, 2377–2381. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.C.; Chen, T.W.; Han, Y.A.; Ng, W.V.; Yang, C.S. Complete genome sequence of a new halophilic archaeon, Haloarcula taiwanensis, isolated from a solar saltern in Southern Taiwan. Genome Announc. 2018, 6, e01529-17. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boya, B.R.; Kumar, P.; Lee, J.-H.; Lee, J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021, 9, 2156. https://doi.org/10.3390/microorganisms9102156
Boya BR, Kumar P, Lee J-H, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms. 2021; 9(10):2156. https://doi.org/10.3390/microorganisms9102156
Chicago/Turabian StyleBoya, Bharath Reddy, Prasun Kumar, Jin-Hyung Lee, and Jintae Lee. 2021. "Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms" Microorganisms 9, no. 10: 2156. https://doi.org/10.3390/microorganisms9102156
APA StyleBoya, B. R., Kumar, P., Lee, J. -H., & Lee, J. (2021). Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms, 9(10), 2156. https://doi.org/10.3390/microorganisms9102156