Activation of Secondary Metabolism in Red Soil-Derived Streptomycetes via Co-Culture with Mycolic Acid-Containing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Co-Culture and Pure Culture of Strains
2.3. SM Extraction, Isolation, and Analysis
2.4. Bioactivity Assay
2.5. Non-Contact Co-Culture of Streptomyces sp. FXJ1.264 and Mycobacterium sp. HX09-1
2.6. Co-Culture of S. sp. FXJ1.264 and Heat-killed M. sp. HX09-1
3. Results
3.1. Preliminary Evaluation of the Activation Ability of MACB and Selection of Red Soil-Derived Streptomycetes
3.2. Co-Culture with MACB Changed the SM Profiles of Streptomycetes
3.3. Changes of Antimicrobial Activity in the Co-Cultures
3.4. Co-Culture of Streptomyces and MACB Is a Reliable Source of New Compounds
3.5. Direct Physical Contact between Streptomycetes and MACB Is Essential to Induce SMs in the Co-Culture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bade, R.; Chan, H.F.; Reynisson, J. Characteristics of known drug space. Natural products, their derivatives and synthetic drugs. Eur. J. Med. Chem. 2010, 45, 5646–5652. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Procópio, R.E.; Silva, I.R.; Martins, M.K.; Azevedo, J.L.; Araújo, J.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Devine, R.; Hutchings, M.I.; Holmes, N.A. Future directions for the discovery of antibiotics from actinomycete bacteria. Emerg. Top. Life Sci. 2017, 1, 1–12. [Google Scholar]
- Baltz, R.H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 2017, 44, 573–588. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Sun, Z.Z.; Xie, B.B. Comparative genomic insights into the taxonomic classification, diversity, and secondary metabolic potentials of Kitasatospora, a genus closely related to Streptomyces. Front. Microbiol. 2021, 12, 683814. [Google Scholar] [CrossRef]
- Baltz, R.H. Natural product drug discovery in the genomic era: Realities, conjectures, misconceptions, and opportunities. J. Ind. Microbiol. Biotechnol. 2019, 46, 281–299. [Google Scholar] [CrossRef]
- Liu, N.; Guan, H.; Niu, G.; Jiang, L.; Li, Y.; Zhang, J.; Li, J.; Tan, H. Molecular mechanism of mureidomycin biosynthesis activated by introduction of an exogenous regulatory gene ssaA into Streptomyces roseosporus. Sci. China Life Sci. 2021, 9, 1–15. [Google Scholar]
- Liu, Z.; Zhao, Y.; Huang, C.; Luo, Y. Recent advances in silent gene cluster activation in Streptomyces. Front. Bioeng. Biotechnol. 2021, 9, 6322–6330. [Google Scholar] [CrossRef]
- Cho, J.Y.; Kim, M.S. Induction of antifouling diterpene production by Streptomyces cinnabarinus PK209 in co-culture with marine-derived Alteromonas sp. KNS-16. Biosci. Biotechnol. Biochem. 2012, 76, 1849–1854. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Byun, W.S.; Moon, K.; Kwon, Y.; Bae, M.; Um, S.; Lee, S.K.; Oh, D.C. Co-culture of marine Streptomyces sp. with Bacillus sp. produces a new piperazic acid-bearing cyclic peptide. Front. Chem. 2018, 6, 498. [Google Scholar] [CrossRef]
- Maglangit, F.; Fang, Q.; Kyeremeh, K.; Sternberg, J.M.; Ebel, R.; Deng, H. A co-culturing approach enables discovery and biosynthesis of a bioactive indole alkaloid metabolite. Molecules 2020, 25, 256. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Kim, W.; Chung, J.; Lee, Y.; Cho, S.; Jang, K.S.; Kim, S.C.; Palsson, B.; Cho, B.K. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during co-culture with Myxococcus xanthus. ISME J. 2020, 14, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Straight, P.D. Antibiotic discovery through microbial interactions. Curr. Opin. Microbiol. 2019, 51, 64–71. [Google Scholar] [CrossRef]
- Onaka, H.; Mori, Y.; Igarashi, Y.; Furumai, T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 2011, 77, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, S.; Onaka, H.; Abe, I. Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. J. Ind. Microbiol. Biotechnol. 2019, 46, 363–374. [Google Scholar] [CrossRef]
- Pan, C.; Kuranaga, T.; Cao, X.; Suzuki, T.; Dohmae, N.; Shinzato, N.; Onaka, H.; Kakeya, H. Amycolapeptins A and B, cyclic nonadepsipeptides produced by combined-culture of Amycolatopsis sp. and Tsukamurella pulmonis. J. Org. Chem. 2021, 86, 1843–1849. [Google Scholar] [CrossRef]
- Jiang, Y.; Matsumoto, T.; Kuranaga, T.; Lu, S.; Wang, W.; Onaka, H.; Kakeya, H. Longicatenamides A-D, two diastereomeric pairs of cyclic hexapeptides produced by combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. J. Antibiot. 2021, 74, 307–316. [Google Scholar] [CrossRef]
- Guo, X.; Liu, N.; Li, X.; Ding, Y.; Shang, F.; Gao, Y.; Ruan, J.; Huang, Y. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl. Environ. Microbiol. 2015, 81, 3086–3103. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Song, L.; Liu, M.; Shang, F.; Anderson, Z.; Fox, D.J.; Challis, G.L.; Huang, Y. Unique post-translational oxime formation in the biosynthesis of the azolemycin complex of novel ribosomal peptides from Streptomyces sp. FXJ1.264. Chem. Sci. 2016, 7, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liu, N.; Shang, F.; Huang, Y. Activation and identification of NC-1: A cryptic cyclodepsipeptide from red soil-derived Streptomyces sp. FXJ1.172. Eur. J. Org. Chem. 2016, 23, 3943–3948. [Google Scholar] [CrossRef]
- Liu, N.; Song, F.; Shang, F.; Huang, Y. Mycemycins A-E, new dibenzoxazepinones isolated from two different Streptomycetes. Mar. Drugs 2015, 13, 6247–6258. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yan, B.; Huang, Y. Diversity of culturable actinobacteria from soils collected in Ali, Naqu and Haixi Districts on the Qinghai-Tibet Plateau. Acta Microbiol. Sin. 2017, 57, 1342–1351. [Google Scholar]
- Yan, B.; Liu, N.; Liu, M.; Du, X.; Shang, F.; Huang, Y. Soil actinobacteria tend to have neutral interactions with other co-occurring microorganisms, especially under oligotrophic conditions. Environ. Microbiol. 2021, 23, 4126–4140. [Google Scholar] [CrossRef]
- Asamizu, S.; Ozaki, T.; Teramoto, K.; Satoh, K.; Onaka, H. Killing of mycolic acid-containing bacteria aborted induction of antibiotic production by Streptomyces in combined-culture. PLoS ONE 2015, 10, e0142372. [Google Scholar] [CrossRef]
- Radzom, M.; Zeeck, A.; Antal, N.; Fiedler, H.P. Fogacin, a novel cyclic octaketide produced by Streptomyces strain Tü 6319. J. Antibiot. 2006, 59, 315–317. [Google Scholar] [CrossRef]
- Sato, K.; Katsuyama, Y.; Yokota, K.; Awakawa, T.; Tezuka, T.; Ohnishi, Y. Involvement of β-alkylation machinery and two sets of ketosynthase-chain-length factors in the biosynthesis of fogacin polyketides in Actinoplanes missouriensis. ChemBioChem 2019, 20, 1039–1050. [Google Scholar] [CrossRef]
- Tsuchida, T.; Iinuma, H.; Nishida, C.; Kinoshita, N.; Sawa, T.; Hamada, M.; Takeuchi, T. Tetrodecamycin and dihydrotetrodecamycin, new antimicrobial antibiotics against Pasteurella piscicida produced by Streptomyces nashvillensis MJ885-mF8. I. Taxonomy, fermentation, isolation, characterization and biological activities. J. Antibiot. 1995, 48, 1104–1109. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, H.; Renneberg, K.H. Collinomycin, ein gelbes antibiotikum aus Actinomyceten. Sci. Nat.-Heidelberg 1953, 40, 166–167. [Google Scholar] [CrossRef]
- Martin, R.; Sterner, O.; Alvarez, M.A.; de Clercq, E.; Bailey, J.E.; Minas, W. Collinone, a new recombinant angular polyketide antibiotic made by an engineered Streptomyces strain. J. Antibiot. 2001, 54, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, S.; Taguchi, T.; Ochi, K.; Ichinose, K. Biosynthesis of actinorhodin and related antibiotics: Discovery of alternative routes for quinone formation encoded in the act gene cluster. Chem. Biol. 2009, 16, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Adnani, N.; Vazquez-Rivera, E.; Adibhatla, S.N.; Ellis, G.A.; Braun, D.R.; Bugni, T.S. Investigation of interspecies interactions within marine Micromonosporaceae using an improved co-culture approach. Mar. Drugs 2015, 13, 6082–6098. [Google Scholar] [CrossRef]
- Miyairi, N.; Sakai, H.; Konomi, T.; Imanaka, H. Enterocin, a new antibiotic taxonomy, isolation and characterization. J. Antibiot. 1976, 29, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Piel, J.; Hertweck, C.; Shipley, P.R.; Hunt, D.M.; Newman, M.S.; Moore, B.S. Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: Evidence for the derailment of an aromatic polyketide synthase. Chem. Biol. 2000, 7, 943–955. [Google Scholar] [CrossRef] [Green Version]
- Khebizi, N.; Boudjella, H.; Bijani, C.; Bouras, N.; Klenk, H.P.; Pont, F.; Mathieu, F.; Sabaou, N. Oligomycins A and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil. J. Mycol. Med. 2018, 28, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Park, H.B.; Kwon, H.C.; Lee, C.H.; Yang, H.O. Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes. J. Nat. Prod. 2009, 72, 248–252. [Google Scholar] [CrossRef]
- Hoshino, S.; Okada, M.; Wakimoto, T.; Zhang, H.; Hayashi, F.; Onaka, H.; Abe, I. Niizalactams A-C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. J. Nat. Prod. 2015, 78, 3011–3017. [Google Scholar] [CrossRef]
- Hoshino, S.; Zhang, L.; Awakawa, T.; Wakimoto, T.; Onaka, H.; Abe, I. Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J. Antibiot. 2015, 68, 342–344. [Google Scholar] [CrossRef] [Green Version]
- Adnani, N.; Chevrette, M.G.; Adibhatla, S.N.; Zhang, F.; Yu, Q.; Braun, D.R.; Nelson, J.; Simpkins, S.W.; McDonald, B.R.; Myers, C.L.; et al. Co-culture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, Keyicin. ACS Chem. Biol. 2017, 12, 3093–3102. [Google Scholar] [CrossRef]
- Kurosawa, K.; Ghiviriga, I.; Sambandan, T.G.; Lessard, P.A.; Barbara, J.E.; Rha, C.; Sinskey, A.J. Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J. Am. Chem. Soc. 2008, 130, 1126–1127. [Google Scholar] [CrossRef]
- Liang, L.; Sproule, A.; Haltli, B.; Marchbank, D.H.; Berrué, F.; Overy, D.P.; McQuillan, K.; Lanteigne, M.; Duncan, N.; Correa, H.; et al. Discovery of a new natural product and a deactivation of a quorum sensing system by culturing a “Producer” bacterium with a heat-killed “Inducer” culture. Front. Microbiol. 2018, 9, 3351. [Google Scholar] [CrossRef]
- Liang, L.; Wang, G.; Haltli, B.; Marchbank, D.H.; Stryhn, H.; Correa, H.; Kerr, R.G. Metabolomic comparison and assessment of co-cultivation and a heat-killed inducer strategy in activation of cryptic biosynthetic pathways. J. Nat. Prod. 2020, 83, 2696–2705. [Google Scholar] [CrossRef]
Pattern(s) | M. sp. HX09-1 | M. sp. HX10-42 | R. sp. HX10-55 | N. sp. HX14-21 | Total |
---|---|---|---|---|---|
Increase | 30/44 | 27/44 | 30/44 | 20/44 | 107/176 |
New | 14/44 | 13/44 | 13/44 | 12/44 | 52/176 |
Increase/New | 39/44 | 31/44 | 33/44 | 25/44 | 128/176 |
Decrease | 23/44 | 22/44 | 21/44 | 18/44 | 84/176 |
Loss | 7/44 | 8/44 | 7/44 | 9/44 | 31/176 |
Decrease/Loss | 26/44 | 26/44 | 25/44 | 22/44 | 99/176 |
Change | 40/44 | 35/44 | 36/44 | 35/44 | 146/176 |
Streptomycete | Mycolic Acid-Containing Bacteria | Antimicrobial Activity | |||||
---|---|---|---|---|---|---|---|
M. sp. HX09-1 | M. sp. HX10-42 | R. sp. HX10-55 | N. sp. HX14-21 | EC | ML | TV | |
FXJ1.235 | |||||||
+ | |||||||
+ | |||||||
FXJ1.4012 | |||||||
+ | |||||||
FXJ1.4014 | |||||||
+ | |||||||
FXJ1.4034 | |||||||
+ | |||||||
+ | |||||||
FXJ1.4037 | |||||||
+ | |||||||
FXJ1.4094 | |||||||
+ | |||||||
+ | |||||||
+ | |||||||
FXJ1.4104 | |||||||
+ | |||||||
FXJ1.4106 | |||||||
+ | |||||||
+ | |||||||
+ | |||||||
FXJ1.4112 | |||||||
+ | |||||||
+ | |||||||
FXJ1.535 | |||||||
+ | |||||||
+ | |||||||
FXJ1.907 | |||||||
+ | |||||||
+ | |||||||
+ |
Co-Culture | Compound(s) Induced | Structural Class | Chemical Data | |
---|---|---|---|---|
UV (MeOH) | MS (m/z) | |||
FXJ1.172 + HX14-21 | 2 putative novel compounds | Unknown | 221 | [M + H] + 603.3187 |
Unknown | 221 | [M + H] + 605.2964 | ||
FXJ1.235 + HX10-42 | 2 putative novel compounds | Unknown | 244, 256, 265, 294, 307, 340 | [M + H] + 304.0403 |
FXJ1.235 + HX10-55 | Unknown | 244, 256, 265, 294, 307, 340 | [M + H] + 445.0760 | |
FXJ1.264 + HX09-1 | 6 putative novel compounds | Polyketide | 194, 251, 285, 376 | [M − H] − 371.1292 |
Polyketide | 194, 251, 285, 376 | MS no ion current | ||
Polyketide | 194, 251, 285, 376 | [M − H] − 385.1433 | ||
Polyketide | 194, 251, 285, 376 | [M − H] − 743.2671 (dimer of 371.1292) | ||
Polyketide | 194, 251, 285, 376 | [M − H] − 743.2645 (dimer of 371.1292) | ||
Polyketide | 194, 251, 285, 376 | [M − H] − 743.2634 (dimer of 371.1292) | ||
FXJ1.4038 + HX09-1 | 1 putative novel compound | Unknown | 201, 249, 336 | [M + H] + 347.0921 |
FXJ1.4059 + HX10-42 | 1 putative novel compound | Unknown | 199, 219, 276 | [M + H] + 319.0830 |
FXJ1.4064 + HX10-55 | 3 putative novel compounds | Unknown | 205, 289 | [M + H] + 477.3209 |
Unknown | 205, 294 | [M + H] + 589.3013 | ||
Unknown | 218, 275 | [M + H] + 617.3292 | ||
FXJ1.4075 + HX10-55 | 2 putative novel compounds | Unknown | 248, 343 | [M + H] + 253.1188 |
Unknown | 221, 311, 351 | [M + H] + 569.0939 | ||
FXJ1.4087 + HX10-55 | 1 putative novel compound | Unknown | 197, 224, 272, 336 | [M + H] + 288.1239 |
FXJ1.4094 + HX09-1 | 2 putative novel compounds | Unknown | 276, 373 | [M + H] + 509.2658 |
Unknown | None | [M − H] − 525.2604 | ||
FXJ1.4097 + HX09-1 | 2 putative novel compounds | Unknown | 223, 265 | [M + H] + 639.3022 |
Unknown | 225, 267 | [M + H] + 671.3289 | ||
FXJ1.4097 + HX10-42 | 3 putative novel compounds | Unknown | 197, 245 | [M + H] + 299.1128 |
Unknown | 197, 245 | [M + H] + 597.2175 (dimer of 299.1128) | ||
Unknown | 224, 266 | [M + H] + 954.4636 | ||
FXJ1.4099 + HX10-42 | 3 putative novel compounds related to fogacin | Polyketide | 221, 274, 340 | [M + H] + 863.2872 |
Polyketide | 221, 277 | [M + H] + 893.2611 | ||
Polyketide | 221, 271, 335 | [M + H] + 909.2637 | ||
FXJ1.4099 + HX10-55 | 4 putative novel compounds | Unknown | 234, 276, 340 | [M + H] + 317.2076 |
Unknown | 228, 275, 340 | [M + H] + 453.1749 | ||
Unknown | 220, 275, 310 | [M + H] + 457.1614 | ||
Unknown | 229, 275, 330, 350 | [M + H] + 607.1823 | ||
FXJ1.4102 + HX10-55 | 1 putative novel compound | Unknown | 199, 286 | [M + H] + 365.1027 |
FXJ1.4102 + HX14-21 | 2 putative novel compounds | Unknown | 237, 318, 332 | [M + H] + 622.3491 |
Siderophore | 195, 225, 274, 404 | [M + H] + 654.2662 | ||
FXJ1.4106 + HX09-1 | 1 putative novel compound related to tetrodecamycin | Polyketide | 206, 254 | [M + H] + 335.1494 |
FXJ1.4106 + HX10-42 | 2 putative novel compounds | Unknown | 194, 240 | [M + H]- 229.0674 |
Unknown | None | [M + H] + 782.5692 | ||
FXJ1.4110 + HX14-21 | 1 putative novel compound | Unknown | 227, 272, 338 | [M + H] + 261.1125 |
FXJ1.4111 + HX10-55 | 3 putative novel compounds related to actinoperylone | Polyketide | 231, 325 | [M + H] + 326.1597 |
Polyketide | 226, 275, 325 | [M + H] + 543.1457 | ||
Polyketide | 223, 325 | [M + H] + 617.1647 | ||
FXJ1.4112 + HX09-1 | 2 putative novel compounds | Unknown | 200, 225, 278, 317, 331 | [M + H] + 654.3387 |
Unknown | 196, 224 | [M − H] − 717.4581 | ||
FXJ1.4112 + HX10-42 | 2 putative novel compounds related to collinomycin | Polyketide | 220, 285, 413 | [M − H] − 507.0928 |
Polyketide | 220, 285, 415 | [M − H] − 521.1081 | ||
FXJ1.4112 + HX10-55 | 2 putative novel compounds | Unknown | 227 | [M + H] + 747.4677 |
Unknown | 197 | [M + Na] + 691.5305 | ||
FXJ1.4122 + HX14-21 | 1 putative novel compound | Unknown | 234, 278 | [M + H] + 587.1566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Liu, N.; Shang, F.; Huang, J.; Yan, B.; Liu, M.; Huang, Y. Activation of Secondary Metabolism in Red Soil-Derived Streptomycetes via Co-Culture with Mycolic Acid-Containing Bacteria. Microorganisms 2021, 9, 2187. https://doi.org/10.3390/microorganisms9112187
Wang K, Liu N, Shang F, Huang J, Yan B, Liu M, Huang Y. Activation of Secondary Metabolism in Red Soil-Derived Streptomycetes via Co-Culture with Mycolic Acid-Containing Bacteria. Microorganisms. 2021; 9(11):2187. https://doi.org/10.3390/microorganisms9112187
Chicago/Turabian StyleWang, Kairui, Ning Liu, Fei Shang, Jiao Huang, Bingfa Yan, Minghao Liu, and Ying Huang. 2021. "Activation of Secondary Metabolism in Red Soil-Derived Streptomycetes via Co-Culture with Mycolic Acid-Containing Bacteria" Microorganisms 9, no. 11: 2187. https://doi.org/10.3390/microorganisms9112187
APA StyleWang, K., Liu, N., Shang, F., Huang, J., Yan, B., Liu, M., & Huang, Y. (2021). Activation of Secondary Metabolism in Red Soil-Derived Streptomycetes via Co-Culture with Mycolic Acid-Containing Bacteria. Microorganisms, 9(11), 2187. https://doi.org/10.3390/microorganisms9112187