Improvement of Hydrogen Production during Anaerobic Fermentation of Food Waste Leachate by Enriched Bacterial Culture Using Biochar as an Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Enriched Bacterial Cultures
2.2. Experimental Set-Up and Operation
2.3. Analytical Methods
2.3.1. Physico-Chemical Analysis
2.3.2. Biodiversity and Phylogenetic Analysis of Promising Bacterial Strains
3. Results
3.1. Phylogenetic Analysis
3.2. Physiochemical Characteristics and Hydrolysis Performance
3.3. Effect of pH on Hydrogen Production
3.4. Microbial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Parameters | SI Units |
Temperature | Celsius (°C) |
Time | days, hours, minute (d, h, min) |
Weight | gram |
Liquid medium volume | milliliter (mL), litter (L) |
Total biochemical oxygen demand (TBOD5); soluble biochemical oxygen demand (SBOD5); total chemical oxygen demand (TCOD), soluble chemical oxygen demand (SCOD) | g/L |
Volatile fatty acid concentration | mg/L |
Hydrogen (H2) yield in volume | mL/day |
References
- Balat, M. Production of Hydrogen via Biological Processes. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 1802–1812. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenerg. 2009, 33, 848–853. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, M.K.; Jung, K.W.; Kim, M.S. Alkali-treated sewage sludge as a seeding source for hydrogen fermentation of food waste leachate. Int. J. Hydrog. Energy 2013, 38, 15751–15756. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Ahn, J.; Kim, J.; Lee, S.; Lee, I.; Kim, S.; Chang, S.; Chung, W. Volatile Fatty Acid Production from Food Waste Leachate Using Enriched Bacterial Culture and Soil Bacteria as Co-Digester. Sustainability 2021, 13, 9606. [Google Scholar] [CrossRef]
- Doran, P.M. Bioprocess Engineering Principles, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-220851-5. [Google Scholar]
- Liu, Y.; Li, X.; Wu, S.; Tan, Z.; Yang, C. Enhancing anaerobic digestion process with addition of conductive materials. Chemosphere 2021, 278, 130449. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy 2009, 34, 799–811. [Google Scholar] [CrossRef]
- Cabrol, L.; Marone, A.; Tapia-Venegas, E.; Steyer, J.-P.; Ruiz-Filippi, G.; Trably, E. Microbial ecology of fermentative hydrogen producing bioprocesses: Useful insights for driving the ecosystem function. FEMS Microbiol. Rev. 2017, 41, 158–181. [Google Scholar] [CrossRef]
- Sołowski, G.; Konkol, I.; Cenian, A. Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J. Clean. Prod. 2020, 267, 121721. [Google Scholar] [CrossRef]
- Patel, S.K.; Gupta, R.K.; Das, D.; Lee, J.-K.; Kalia, V.C. Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J. Clean. Prod. 2021, 287, 125037. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.; Qi, X.; Sahu, J. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. Int. J. Hydrogen Energy 2019, 44, 14362–14379. [Google Scholar] [CrossRef]
- Basak, N.; Jana, A.K.; Das, D.; Saikia, D. Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective. Int. J. Hydrog. Energy 2014, 39, 6853–6871. [Google Scholar] [CrossRef]
- Hallenbeck, P.C.; Liu, Y. Recent advances in hydrogen production by photosynthetic bacteria. Int. J. Hydrog. Energy 2016, 41, 4446–4454. [Google Scholar] [CrossRef] [Green Version]
- Boran, E.; Özgür, E.; van der Burg, J.; Yücel, M.; Gündüz, U.; Eroglu, I. Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J. Clean. Prod. 2010, 18, S29–S35. [Google Scholar] [CrossRef]
- Sun, Q.; Xiao, W.; Xi, D.; Shi, J.; Yan, X.; Zhou, Z. Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. Int. J. Hydrog. Energy 2010, 35, 4076–4084. [Google Scholar] [CrossRef]
- Papurello, D.; Tomasi, L.; Silvestri, S. Proton transfer reaction mass spectrometry for the gas cleaning using commer-cial and waste-derived materials: Focus on the siloxane removal for SOFC applications. Int. J. Mass Spectrom. 2018, 430, 69–79. [Google Scholar] [CrossRef]
- Salimi, P.; Norouzi, O.; Pourhoseini, S.; Bartocci, P.; Tavasoli, A.; Di Maria, F.; Pirbazari, S.; Bidini, G.; Fantozzi, F. Magnetic biochar obtained through catalytic pyrolysis of macroalgae: A promising anode material for Li-ion batteries. Renew. Energy 2019, 140, 704–714. [Google Scholar] [CrossRef]
- Sibiya, N.; Oboirien, B.; Lanzini, A.; Gandiglio, M.; Ferrero, D.; Papurello, D.; Bada, S. Effect of different pre-treatment methods on gasification properties of grass biomass. Renew. Energy 2021, 170, 875–883. [Google Scholar] [CrossRef]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A critical review of biochar-based mate-rials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Z.; Liu, Z.; Zhang, Y.; Si, B. The Role of Biochar to Enhance Anaerobic Digestion: A Review. J. Renew. Mater. 2020, 8, 1033–1052. [Google Scholar] [CrossRef]
- Mumme, J.; Srocke, F.; Heeg, K.; Werner, M. Use of biochars in anaerobic digestion. Bioresour. Technol. 2014, 164, 189–197. [Google Scholar] [CrossRef]
- Meyer-Kohlstock, D.; Haupt, T.; Heldt, E.; Heldt, N.; Kraft, E. Biochar as Additive in Biogas-Production from Bio-Waste. Energies 2016, 9, 247. [Google Scholar] [CrossRef]
- Sunyoto, N.M.S.; Zhu, M.; Zhang, Z.; Zhang, D. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 2016, 219, 29–36. [Google Scholar] [CrossRef]
- Wambugu, C.; Rene, E.R.; Van De Vossenberg, J.; Dupont, C.; van Hullebusch, E.D. Role of Biochar in Anaerobic Digestion Based Biorefinery for Food Waste. Front. Energy Res. 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Fagbohungbe, M.; Herbert, B.M.; Hurst, L.; Li, H.; Usmani, S.Q.; Semple, K.T. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresour. Technol. 2016, 216, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ai, J.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Song, C. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresour. Technol. 2017, 227, 286–296. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; APHAAWWA-WEF: Washington, DC, USA, 2011. [Google Scholar]
- Pham, V.H.T.; Ahn, J.Y.; Ro, Y.H.; Ravindran, B.; Kim, J.S.; Chang, S.W.; Shim, J.H.; Chung, W.J. The efficiency of potential food waste-degrading bacteria under harsh conditions. J. Appl. Microbiol. 2021, 1–11. [Google Scholar] [CrossRef]
- LECO. Truspec CN Carbon/Nitrogen Determinator Instructions Manual; LECO Corporation: St. Joseph, MI, USA, 2003. [Google Scholar]
- Van Pham, H.T.; Kim, J. Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi Uni-versity by using a modified culture method. Curr. Microbiol. 2014, 68, 88–95. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal dDNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste–Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Kondusam, D.; Kalamdhad, A.S. Pretreatment and anaerobic digestion of food waste for high rate methane production—A review. J. Environ. Chem. Eng. 2014, 2, 1821–1830. [Google Scholar] [CrossRef]
- Yu, J. Production of PHA from starchy wastewater via organic acids. J. Biotechnol. 2001, 86, 105–112. [Google Scholar] [CrossRef]
- Valdez-Vazquez, I.; Poggi-Varaldo, H.M. Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia. Int. J. Hydrogen Energy 2009, 34, 3639–3646. [Google Scholar] [CrossRef]
- Robledo-Narváez, P.N.; Muñoz-Páez, K.M.; Poggi-Varaldo, H.M.; Ríos-Leal, E.; Calva-Calva, G.; Ortega-Clemente, L.A.; Rinderknecht-Seijas, N.; Estrada-Vázquez, C.; Ponce-Noyola, M.T.; Salazar-Montoya, J.A. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. J. Environ. Manag. 2013, 128, 126–137. [Google Scholar] [CrossRef]
- Karthikeyan, O.P.; Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Bio/Technol. 2012, 12, 257–284. [Google Scholar] [CrossRef]
- Motte, J.-C.; Trably, E.; Escudié, R.; Hamelin, J.; Steyer, J.-P.; Bernet, N.; Delgenes, J.-P.; Dumas, C. Total solids content: A key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 2013, 6, 164. [Google Scholar] [CrossRef] [Green Version]
- Sunyoto, N.M.S.; Zhu, M.; Zhang, Z.; Zhang, D. Effect of Biochar Addition and Initial pH on Hydrogen Production from the First Phase of Two-Phase Anaerobic Digestion of Carbohydrates Food Waste. Energy Procedia 2017, 105, 379–384. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, S.; Yuan, H.; Zhou, Q.; Gu, G. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007, 41, 683–689. [Google Scholar] [CrossRef]
- Wongthanate, J.; Chinnacotpong, K.; Khumpong, M. Impacts of pH, temperature and pretreatment method on bio-hydrogen production from organic wastes by sewage microflora. Int. J. Energy. Environ. Eng. 2014, 5, 76. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenes, J.P.; Steyer, J.P.; Escudie, R. Total solids con-tent drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 2012, 111, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Oh, S.-E.; Kim, I.S.; Van Ginkel, S. Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environ. Sci. Technol. 2002, 36, 2530–2535. [Google Scholar] [CrossRef] [PubMed]
- Torri, C.; Fabbri, D. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass. Bioresour. Technol. 2014, 172, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhou, W.; Zhang, Z.; Li, J.; Zhang, D. Effect of temperature on pyrolysis products of a pine sawdust in an indirectly fired rotary kiln. In Chameca 2013: Challenging Tomorrow; Engineers Australia: Brisbane, Australia, 2013; p. 879. [Google Scholar]
- Park, J.-H.; Lee, S.-H.; Yoon, J.-J.; Kim, S.-H.; Park, H.-D. Predominance of cluster I Clostridium in hydrogen fermentation of galactose seeded with various heat-treated anaerobic sludges. Bioresour. Technol. 2014, 157, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Paganin, P.; Varrone, C.; Tabacchioni, S.; Chiarini, L. Dynamics of hydrogen-producing bacteria in a re-peated batch fermentation process using lake sediment as inoculum. Arch. Microbiol. 2014, 196, 97–107. [Google Scholar] [CrossRef]
- Luo, L.; Wong, J.W. Enhanced food waste degradation in integrated two-phase anaerobic digestion: Effect of leachate recirculation ratio. Bioresour. Technol. 2019, 291, 121813. [Google Scholar] [CrossRef]
- Tashyrev, O.; Hovorukha, V.; Havryliuk, O.; Sioma, I.; Matvieieva, N.; Tashyreva, H.; Yastremska, L.; Bielikova, O. Perspectives of the development of the industrial technologies of obtaining biohydrogen during multicomponent food waste microbial destruction. In Hydrogen in Alternative Energy and New Technologies; KIM: Kyiv, Ukraine, 2018; p. 294. [Google Scholar]
Parameters | Food Waste Leachate | Biochar |
---|---|---|
Total solids (TS%) | 16 ± 0.35 | ND * |
Volatile solids (VS%) | 14.6 ± 0.22 | ND * |
VS/TS (%) | 91 ± 0.45 | 3.68 ± 0.1 |
Moisture content (MC%) | 84 ± 0.55 | 30.8 ± 0.52 |
TBOD5 (g/L) | 146.1 ± 1.4 | ND * |
SBOD5 (g/L) | 57.87 ± 0.62 | ND * |
TCOD (g/L) | 161.17 ± 0.94 | ND * |
SCOD (g/L) | 80.41 ± 0.39 | ND * |
Total Nitrogen (TN) | 5.28 ± 0.15 | 0.14 ± 0.013 |
Total Phosphorus (TP) | 0.88 ± 0.02 | 44.7 ± 0.37 |
Total carbon | 45 ± 0.26 | 44.7 ± 0.44 |
pH | 5 ± 0.19 | 8.2 ± 0.14 |
C:N ratio | 22.5 ± 0.24 | 317.9 ± 2.2 |
Parameters | Control | Control with Biochar | MBC Only | MBC with Biochar |
---|---|---|---|---|
Acetate (mg/L) | 540 ± 5.3 | 820 ± 11.2 | 3800 ± 59.5 | 4850 ± 38.8 |
Propionate (mg/L) | 0 | 20 ± 2.4 | 1250 ± 9.4 | 1780 ± 13.5 |
Butyrate (mg/L) | 440 ± 10.6 | 480 ± 22.2 | 3450 ± 12.9 | 3670 ± 40.2 |
Total VFA production (mg/L) | 980 ± 56.7 | 1320 ± 90.5 | 8500 ± 88.7 | 9850 ± 120.4 |
Hydrogen yields (mL/day) | 1150 ± 20.7 | 1220 ± 30.1 | 1290 ± 41.3 | 1620 ± 30.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Improvement of Hydrogen Production during Anaerobic Fermentation of Food Waste Leachate by Enriched Bacterial Culture Using Biochar as an Additive. Microorganisms 2021, 9, 2438. https://doi.org/10.3390/microorganisms9122438
Pham VHT, Kim J, Chang S, Chung W. Improvement of Hydrogen Production during Anaerobic Fermentation of Food Waste Leachate by Enriched Bacterial Culture Using Biochar as an Additive. Microorganisms. 2021; 9(12):2438. https://doi.org/10.3390/microorganisms9122438
Chicago/Turabian StylePham, Van Hong Thi, Jaisoo Kim, Soonwoong Chang, and Woojin Chung. 2021. "Improvement of Hydrogen Production during Anaerobic Fermentation of Food Waste Leachate by Enriched Bacterial Culture Using Biochar as an Additive" Microorganisms 9, no. 12: 2438. https://doi.org/10.3390/microorganisms9122438
APA StylePham, V. H. T., Kim, J., Chang, S., & Chung, W. (2021). Improvement of Hydrogen Production during Anaerobic Fermentation of Food Waste Leachate by Enriched Bacterial Culture Using Biochar as an Additive. Microorganisms, 9(12), 2438. https://doi.org/10.3390/microorganisms9122438