Genomic Comparison of Lactobacillus casei AP and Lactobacillus plantarum DR131 with Emphasis on the Butyric Acid Biosynthetic Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain Identification
2.2. Genome Sequencing and Assembly
2.2.1. Genome Component Prediction
2.2.2. Genome Function Annotation
3. Results
3.1. Genomic Characteristics of L. casei AP and L. plantarum DR131
3.2. Identification of the Butyric Acid Biosynthetic Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, C.; Huang, J.; Zhou, R. Genomics of lactic acid bacteria: Current status and potential applications. Crit. Rev. Microbiol. 2017, 43, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Angelin, J.; Kavitha, M. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Khalil, E.S.; Manap, M.Y.A.; Mustafa, S.; Alhelli, A.M.; Shokryazadan, P. Probiotic properties of exopolysaccharide-producing Lactobacil-lus strains isolated from tempoyak. Molecules 2018, 23, 398. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-R.; Corke, H.; Gan, R.-Y. Screening and spontaneous mutation of pickle-derived Lactobacillus plantarum with overprouction of riboflavin, related mechanisms, and food application. Foods 2020, 9, 88. [Google Scholar]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef] [Green Version]
- Pessione, A.; Bianco, G.L.; Mangiapane, E.; Cirrincione, S.; Pessione, E. Characterization of potentially probiotic lactic acid bacteria isolated from olives: Evaluation of short chain fatty acids production and analysis of the extracellular proteome. Food Res. Int. 2015, 67, 247–254. [Google Scholar] [CrossRef]
- Siezen, R.J.; Van Enckevort, F.H.; Kleerebezem, M.; Teusink, B. Genome data mining of lactic acid bacteria: The impact of bioinformatics. Curr. Opin. Biotechnol. 2004, 15, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Barcenilla, A.; Stewart, C.S.; Pryde, S.E.; Flint, H.J. Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transfer-ase in butyrate-producing bacteria from the human large intestine. Appl. Environ. Microbiol. 2002, 68, 5186–5190. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.J.; Mackay, W.G.; Edwards, A.C.; Preston, T.; Dodson, B.; Weaver, L.T. Butyrate production from oligofructose fermentation by the human faecal flora: What is the contribution of extracellular acetate and lactate? Br. J. Nutr. 2006, 96, 570–577. [Google Scholar]
- Ueki, T.; Nevin, K.P.; Woodard, T.L.; Lovley, D.R. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljung-dahlii. mBio 2014, 5, e01636-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel-Elizondo, S.; Ilhan, Z.E.; Garcia-Peña, E.I.; Krajmalnik-Brown, R. Insights into Butyrate Production in a Controlled Fermentation System via Gene Predictions. mSystems 2017, 2, e00051-17. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Genet. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Hadisaputro, W.; Harsita, P.A.; Sukarno, A.S.; Nurrochmad, A. Antidiabetic effect of milk fermented using intestinal probiotics. Nutr. Food Sci. 2019, 49, 1062–1074. [Google Scholar] [CrossRef]
- Kusmiyati, N.; Wahyuningsih, T.; Widodo, W. Prebiotic effect of inulin extract from dahlia tubers (dahlia pinnata L.) on the growth perfor-mance of intestinal-origin Lactobacillus casei AP. Pak. J. Nutr. 2018, 17, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Widodo, W.; Anindita, N.S.; Taufiq, T.T.; Wahyuningsih, T.D. Identification of Pediococcus strains isolated from feces of Indonesian infants with in vitro capability to consume prebiotic inulin and to adhere on mucus. Indones. J. Biotechnol. 2012, 17, 132–143. [Google Scholar]
- Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2009, 20, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jaroszewski, L.; Godzik, A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 2002, 18, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implica-tions for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Bridges, S.; Magbanua, Z.V.; Peterson, D.G. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 2008, 36, 2284–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, T.M.; Eddy, S.R. TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.P.; Daub, J.; Tate, J.G.; Nawrocki, E.P.; Kolbe, D.L.; Lindgreen, S.; Wilkinson, A.C.; Finn, R.D.; Griffiths-Jones, S.; Eddy, S.R.; et al. Rfam: Updates to the RNA families database. Nucleic Acids Res. 2008, 37, D136–D140. [Google Scholar] [CrossRef] [Green Version]
- Nawrocki, E.P.; Kolbe, D.L.; Eddy, S.R. Infernal 1.0: Inference of RNA alignments. Bioinformatics 2009, 25, 1335–1337. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32 (Suppl. 1), D277–D280. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K.F.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 2006, 34 (Suppl. 1), D354–D357. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000, 28, 45–48. [Google Scholar] [CrossRef]
- Magrane, M.; UniProt Consortium. UniProt KnowledgeBase: A hub of integrated protein data [Database]. J. Biol. Databases Curation 2011, 2011, bar009. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botta, C.; Acquadro, A.; Greppi, A.; Barchi, L.; Bertolino, M.; Cocolin, L.; Rantsiou, K. Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism. Sci. Rep. 2017, 7, 15975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogeswara, I.B.A.; Maneerat, S.; Haltrich, D. Glutamate Decarboxylase from Lactic Acid Bacteria—A Key Enzyme in GABA Synthesis. Microorganisms 2020, 8, 1923. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junior, W.J.F.L.; Guerra, A.F.; Duarte, V.D.S.; Treu, L.; Tarrah, A.; Campanaro, S.; Luchese, R.H.; Giacomini, A.; Corich, V. Draft genome sequence data of Lactobacillus paracasei strain DTA83 isolated from infant stools. Data Brief 2019, 22, 1064–1067. [Google Scholar] [CrossRef]
- Patil, A.; Dubey, A.; Malla, M.A.; Disouza, J.; Pawar, S.; Alqarawi, A.A.; Hashem, A.; Abd Allah, E.F.; Kumar, A. Complete genome se-quence of Lactobacillus plantarum Strain JDARSH, isolated Sheep Milk. Microbiol. Resour. Announc. 2020, 9, e01199-19. [Google Scholar] [CrossRef] [Green Version]
- Jing, F.; Cantu, D.C.; Tvaruzkova, J.; Chipman, J.P.; Nikolau, B.J.; Yandeau-Nelson, M.D.; Reilly, P.J. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem. 2011, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.W.; Cronan, J.E. Bacterial Fatty Acid Biosynthesis: Targets for Antibacterial Drug Discovery. Annu. Rev. Microbiol. 2001, 55, 305–332. [Google Scholar] [CrossRef]
KO | Abbreviation | Gene Names | Enzyme | Putative Gene |
---|---|---|---|---|
K01641 | E2.3.3.10 | hydroxymethylglutaryl-CoA synthase | 2.3.3.10 | LCAP_GM000043 |
K00626 | E2.3.1.9, atoB | acetyl-CoA C-acetyltransferase | 2.3.1.9 | LCAP_GM000041 |
K00656 | E2.3.1.54, pflD | formate C-acetyltransferase | 2.3.1.54 | LCAP_GM001343 |
K00929 | buk | butyrate kinase | 2.7.2.7 | LCAP_GM001757 |
K04072 | adhE | acetaldehyde dehydrogenase/alcohol dehydrogenase | 1.2.1.10 1.1.1.1 | LCAP_GM000697 |
K00135 | gabD | succinate-semialdehyde dehydrogenase/glutarate-semialdehyde dehydrogenase | 1.2.1.16 1.2.1.79 1.2.1.20 | LCAP_GM002304 |
K00634 | ptb | phosphate butyryltransferase | 2.3.1.19 | LCAP_GM001756 |
K01575 | alsD, budA, aldC | acetolactate decarboxylase | 4.1.1.5 | LCAP_GM001865 |
K01652 | E2.2.1.6L, ilvB, ilvG, ilvI | acetolactate synthase I/II/III large subunit | 2.2.1.6 | LCAP_GM001866 |
K00244 | frdA | fumarate reductase flavoprotein subunit | 1.3.5.4 | LCAP_GM002528 |
KO | Abbreviation | Gene Names | Enzyme | Putative Gene |
---|---|---|---|---|
K01641 | E2.3.3.10 | hydroxymethylglutaryl-CoA synthase | 2.3.3.10 | LPDR_GM000252 |
K00656 | E2.3.1.54, pflD | formate C-acetyltransferase | 2.3.1.54 | LPDR_GM001714 |
K00135 | gabD | succinate-semialdehyde dehydrogenase/glutarate-semialdehyde dehydrogenase | 1.2.1.16 1.2.1.79 1.2.1.20 | LPDR_GM000712 |
K01575 | alsD, budA, aldC | acetolactate decarboxylase | 4.1.1.5 | LPDR_GM000217 |
K01652 | E2.2.1.6L, ilvB, ilvG, ilvI | acetolactate synthase I/II/III large subunit | 2.2.1.6 | LPDR_GM000843 |
K00244 | frdA | fumarate reductase flavoprotein subunit | 1.3.5.4 | LPDR_GM001916 |
K04072 | adhE | acetaldehyde dehydrogenase/alcohol dehydrogenase | 1.2.1.10 1.1.1.1 | LPDR_GM000307 |
K01580 | E4.1.1.15, gadB, gadA, GAD | glutamate decarboxylase | 4.1.1.15 | LPDR_GM001627 |
K03778 | ldhA | D-lactate dehydrogenase | 1.1.1.28 | LPDR_GM001493 |
K00016 | LDH, ldh | L-lactate dehydrogenase | 1.1.1.27 | LPDR_GM002271 |
K00625 | E2.3.1.8, pta | phosphate acetyltransferase | 2.3.1.8 | LPDR_GM001551 |
K00925 | ackA | acetate kinase | 2.7.2.1 | LPDR_GM001960 |
KO | Abbreviation | Gene Names | Enzymes | Putative Gene |
---|---|---|---|---|
K01071 | MCH | medium-chain acyl-[acyl-carrier-protein] hydrolase | 3.1.2.21 | LPDR_GM001386 |
K00208 | fabI | enoyl-[acyl-carrier protein] reductase I | 1.3.1.9 1.3.1.10 | LPDR_GM002661 |
K02372 | fabZ | 3-hydroxyacyl-[acyl-carrier-protein] dehydratase | 4.2.1.59 | LPDR_GM002650 |
K09458 | fabF | 3-oxoacyl-[acyl-carrier-protein] synthase II | 2.3.1.179 | LPDR_GM002655 |
K00059 | fabG | 3-oxoacyl-[acyl-carrier protein] reductase | 1.1.1.100 | LPDR_GM000931 |
K00645 | fabD | [acyl-carrier-protein] S-malonyltransferase | 2.3.1.39 | LPDR_GM002653 |
K00648 | fabH | 3-oxoacyl-[acyl-carrier-protein] synthase III | 2.3.1.180 | LPDR_GM001441 |
K01962 | accA | acetyl-CoA carboxylase carboxyl transferase subunit alpha | 6.4.1.2 | LPDR_GM002658 |
K02160 | accB, bccP | acetyl-CoA carboxylase biotin carboxyl carrier protein | -- | LPDR_GM001440 |
K01961 | accC | acetyl-CoA carboxylase, biotin carboxylase subunit | 6.4.1.2 6.3.4.14 | LPDR_GM002658 |
K01963 | accD | acetyl-CoA carboxylase carboxyl transferase subunit beta | 6.4.1.2 | LPDR_GM002658 |
K00997 | acpS | holo-[acyl-carrier protein] synthase | 2.7.8.7 | LPDR_GM002257 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widodo, W.; Ariani, A.L.; Widianto, D.; Haltrich, D. Genomic Comparison of Lactobacillus casei AP and Lactobacillus plantarum DR131 with Emphasis on the Butyric Acid Biosynthetic Pathways. Microorganisms 2021, 9, 425. https://doi.org/10.3390/microorganisms9020425
Widodo W, Ariani AL, Widianto D, Haltrich D. Genomic Comparison of Lactobacillus casei AP and Lactobacillus plantarum DR131 with Emphasis on the Butyric Acid Biosynthetic Pathways. Microorganisms. 2021; 9(2):425. https://doi.org/10.3390/microorganisms9020425
Chicago/Turabian StyleWidodo, Widodo, Aditya Lutfe Ariani, Donny Widianto, and Dietmar Haltrich. 2021. "Genomic Comparison of Lactobacillus casei AP and Lactobacillus plantarum DR131 with Emphasis on the Butyric Acid Biosynthetic Pathways" Microorganisms 9, no. 2: 425. https://doi.org/10.3390/microorganisms9020425
APA StyleWidodo, W., Ariani, A. L., Widianto, D., & Haltrich, D. (2021). Genomic Comparison of Lactobacillus casei AP and Lactobacillus plantarum DR131 with Emphasis on the Butyric Acid Biosynthetic Pathways. Microorganisms, 9(2), 425. https://doi.org/10.3390/microorganisms9020425