New Insights into the Co-Occurrences of Glycoside Hydrolase Genes among Prokaryotic Genomes through Network Analysis
Abstract
:1. Introduction
2. Methods
2.1. Information Acquisition and Matrix Construction
2.2. Calculations on the Distribution of GHs
2.3. Network Construction and Functional Group Classification
2.4. Heatmap Construction
2.5. Co-Evolution Analysis
3. Results
3.1. GH Information Acquisition and Matrix Construction
3.2. Occurrences of Genes from Various GHFs
3.3. Co-Occurrence and Network Analysis of GHs
3.4. Network Analysis of Microbes
3.5. Classification of Functional Categories
3.6. Heatmap Illustration of Gene Doses in Various Functional Categories
3.7. Co-Evolution Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gougoulias, C.; Clark, J.M.; Shaw, L.J. The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 2014, 94, 2362–2371. [Google Scholar] [CrossRef]
- Park, B.H.; Karpinets, T.V.; Syed, M.H.; Leuze, M.R.; Uberbacher, E.C. CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 2010, 20, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Kirk, O.; Borchert, T.V.; Fuglsang, C.C. Industrial enzyme applications. Curr. Opin. Biotechnol. 2002, 13, 345–351. [Google Scholar] [CrossRef]
- Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef]
- Shendure, J.; Ji, H.L. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef]
- Garron, M.L.; Henrissat, B. The continuing expansion of CAZymes and their families. Curr. Opin. Chem. Biol. 2019, 53, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Aspeborg, H.; Coutinho, P.M.; Wang, Y.; Brumer, H.; Henrissat, B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol. Biol. 2012, 12, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewis, K.; Lenfant, N.; Lombard, V.; Henrissat, B. Dividing the large glycoside hydrolase family 43 into subfamilies: A motivation for detailed enzyme characterization. Appl. Environ. Microbiol. 2016, 82, 1686–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordero, O.X.; Snel, B.; Hogeweg, P. Coevolution of gene families in prokaryotes. Genome Res. 2008, 18, 462–468. [Google Scholar] [CrossRef] [Green Version]
- de Juan, D.; Pazos, F.; Valencia, A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 2013, 14, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Fraser, H.B.; Hirsh, A.E.; Wall, D.P.; Eisen, M.B. Coevolution of gene expression among interacting proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 9033–9038. [Google Scholar] [CrossRef] [Green Version]
- Cope, A.L.; O’Meara, B.C.; Gilchrist, M.A. Gene expression of functionally-related genes coevolves across fungal species: Detecting coevolution of gene expression using phylogenetic comparative methods. BMC Genom. 2020, 21, 370. [Google Scholar] [CrossRef] [PubMed]
- Berlemont, R.; Martiny, A.C. Glycoside hydrolases across environmental microbial communities. PLoS Comput. Biol. 2016, 12, e1005300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, S.T.C.; Freund, H.L.; Kasanjian, J.; Berlemont, R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl. Microbiol. Biotechnol. 2018, 102, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Berlemont, R.; Martiny, A.C. Genomic potential for polysaccharide deconstruction in bacteria. Appl. Environ. Microbiol. 2015, 81, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 2014, 9, e98679. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Abe, K.; Nakajima, M.; Yamashita, T.; Matsunaga, H.; Kamisuki, S.; Nihira, T.; Takahashi, Y.; Sugimoto, N.; Miyanaga, A.; Nakai, H.; et al. Biochemical and structural analyses of a bacterial endo-beta-1,2-glucanase reveal a new glycoside hydrolase family. J. Biol. Chem. 2017, 292, 7487–7506. [Google Scholar] [CrossRef] [Green Version]
- Koeck, D.E.; Pechtl, A.; Zverlov, V.V.; Schwarz, W.H. Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol. 2014, 29, 171–183. [Google Scholar] [CrossRef]
- Ochoa, D.; Pazos, F. Studying the co-evolution of protein families with the Mirrortree web server. Bioinformatics 2010, 26, 1370–1371. [Google Scholar] [CrossRef] [Green Version]
- Naumoff, D.G. Hierarchical classification of glycoside hydrolases. Biochemistry 2011, 76, 622–635. [Google Scholar] [CrossRef] [PubMed]
- Blohs, M.; Moissl-Eichinger, C.; Mahnert, A.; Spang, A.; Dombrowski, N.; Krupovic, M.; Klingl, A. Encyclopedia of Microbiology; Schmidt, T.M., Ed.; Academic Press: New York, NY, USA, 2019; p. 243. [Google Scholar]
- Oslowski, D.M.; Jung, J.H.; Seo, D.H.; Park, C.S.; Holden, J.F. Production of hydrogen from alpha-1,4-and beta-1,4-linked saccharides by marine hyperthermophilic archaea. Appl. Environ. Microbiol. 2011, 77, 3169–3173. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D.Y.; Toshchakov, S.V.; Kolganova, T.V.; Kublanov, I.V. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol. 2015, 6, 942. [Google Scholar] [CrossRef] [Green Version]
- Naumoff, D.G.; Dedysh, S.N. Bacteria from poorly studied phyla as a potential source of new enzymes: Beta-galactosidases from planctomycetes and verrucomicrobia. Microbiology. 2018, 87, 796–805. [Google Scholar] [CrossRef]
- Popa, O.; Dagan, T. Trends and barriers to lateral gene transfer in prokaryotes. Curr. Opin. Microbiol. 2011, 14, 615–623. [Google Scholar] [CrossRef]
- Ndeh, D.; Rogowski, A.; Cartmell, A.; Luis, A.S.; Basle, A.; Gray, J.; Venditto, I.; Briggs, J.; Zhang, X.Y.; Labourel, A.; et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 2017, 544, 65–70. [Google Scholar] [CrossRef]
- Maehara, T.; Yagi, H.; Sato, T.; Ohnishi-Kameyama, M.; Fujimoto, Z.; Kamino, K.; Kitamura, Y.; St John, F.; Yaoi, K.; Kaneko, S. GH30 glucuronoxylan-specific xylanase from Streptomyces turgidiscabies C56. Appl. Environ. Microbiol. 2018, 84, e01850-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, P.J.; Price, N.D. Genetic co-occurrence network across sequenced microbes. PLoS Comput. Biol. 2011, 7, e1002340. [Google Scholar] [CrossRef]
- Maamar, H.; Abdou, L.; Boileau, C.; Valette, O.; Tardif, C. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J. Bacteriol. 2006, 188, 2614–2624. [Google Scholar] [CrossRef] [Green Version]
- Svartström, O.; Alneberg, J.; Terrapon, N.; Lombard, V.; de Bruijn, I.; Malmsten, J.; Dalin, A.-M.; Muller, E.E.; Shah, P.; Wilmes, P. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 2017, 11, 2538–2551. [Google Scholar] [CrossRef]
- Marynowska, M.; Goux, X.; Sillam-Dussès, D.; Rouland-Lefèvre, C.; Halder, R.; Wilmes, P.; Gawron, P.; Roisin, Y.; Delfosse, P.; Calusinska, M. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre-and soil-feeding higher termites. Microbiome 2020, 8, 1–18. [Google Scholar] [CrossRef]
- Andrade, A.C.; Fróes, A.; Lopes, F.Á.C.; Thompson, F.L.; Krüger, R.H.; Dinsdale, E.; Bruce, T. Diversity of microbial carbohydrate-active enZYmes (CAZYmes) associated with freshwater and soil samples from Caatinga biome. Microb. Ecol. 2017, 74, 89–105. [Google Scholar] [CrossRef]
- Faysal, M.A.M.; Arifuzzaman, S. A comparative analysis of large-scale network visualization tools. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: Seattle, WA, USA, 2018; pp. 4837–4843. [Google Scholar]
- Barberan, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.J.; Howe, A.; Hofmockel, K.S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol. 2014, 5, 358. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Wang, W.B. Benzyldimethyldodecyl ammonium chloride shifts the proliferation of functional genes and microbial community in natural water from eutrophic lake. Environ. Pollut. 2018, 236, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Blennow, A.; Engelsen, S.B.; Nielsen, T.H.; Baunsgaard, L.; Mikkelsen, R. Starch phosphorylation: A new front line in starch research. Trends Plant Sci. 2002, 7, 445–450. [Google Scholar] [CrossRef]
- Scheurwater, E.; Reid, C.W.; Clarke, A.J. Lytic transglycosylases: Bacterial space-making autolysins. Int. J. Biochem. Cell Biol. 2008, 40, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.C.; Li, N.; Yuan, X.F.; Hua, B.B.; Wang, J.G.; Ishii, M.; Igarashi, Y.; Cui, Z.J. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.). Appl. Biochem. Biotechnol. 2013, 171, 1578–1588. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Cao, G.L.; Zheng, J.; Fu, D.F.; Song, J.Z.; Zhang, J.Z.; Zhao, L.; Yang, Q. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess. Biotechnol. Biofuels 2015, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.M.; Mai, G.Q.; Wang, Z.W.; Liu, Q.; Zhou, V.; Ma, Y.F.; Liu, C.L. Metagenomic insights into a cellulose-rich niche reveal microbial cooperation in cellulose degradation. Front Microbiol. 2019, 10, 618. [Google Scholar] [CrossRef]
- Akinosho, H.; Yee, K.; Close, D.; Ragauskas, A. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem. 2014, 2, 66. [Google Scholar] [CrossRef]
- Chung, D.; Cha, M.; Guss, A.M.; Westpheling, J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl. Acad. Sci. USA 2014, 111, 8931–8936. [Google Scholar] [CrossRef] [Green Version]
- McBride, M.J.; Xie, G.; Martens, E.C.; Lapidus, A.; Henrissat, B.; Rhodes, R.G.; Goltsman, E.; Wang, W.; Xu, J.; Hunnicutt, D.W.; et al. Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl. Environ. Microbiol. 2009, 75, 6864–6875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.H.P.; Ding, S.Y.; Mielenz, J.R.; Cui, J.B.; Elander, R.T.; Laser, M.; Himmel, M.E.; McMillan, J.R.; Lynd, L.R. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 2007, 97, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Rettenmaier, R.; Schneider, M.; Munk, B.; Lebuhn, M.; Jünemann, S.; Sczyrba, A.; Maus, I.; Zverlov, V.; Liebl, W. Importance of Defluviitalea raffinosedens for hydrolytic biomass degradation in co-culture with Hungateiclostridium thermocellum. Microorganisms 2020, 8, 915. [Google Scholar] [CrossRef] [PubMed]
- Gullert, S.; Fischer, M.A.; Turaev, D.; Noebauer, B.; Ilmberger, N.; Wemheuer, B.; Alawi, M.; Rattei, T.; Daniel, R.; Schmitz, R.A.; et al. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol. Biofuels 2016, 9, 121. [Google Scholar] [CrossRef] [Green Version]
Groups | Ghfs | Profiles of the Enzymatic Functions | No. of Species (Phyla) Largely Fitted a | No. of Species (Phyla) Partially Fitted b | Sources c | Predominant Phyla (No. of Species, Frequency) d |
---|---|---|---|---|---|---|
A | 3, 5, 9, 10, 16, 30, 31, 43, 51, 67, 115 | Widely distributed GHs for the decomposition of bulk lignocellulose components, such as cellulose, β-glucan, and glucuronoarabinoxylan, xyloglucan | 283 (12) | 2281 (28) | m | Actinobacteria (516, 78%), Bacteroidetes (262, 88%), Firmicutes (337, 48%), Proteobacteria (895, 50%) |
B | 2, 27, 35, 36, 42, 53, 78, 95, 106, 127, 146 | Widely distributed GHs for the debranching of pectic polysaccharides, specifically Rhamnogalacturonan II | 154 (10) | 1475 (24) | m | Actinobacteria (341, 53%), Bacteroidetes (202, 72%), Firmicutes (335, 48%), Proteobacteria (413, 23%) |
C | 13, 77 | GHs for the decomposition or modification of starch | 2007 (30) e | / | m | Actinobacteria (457, 69%), Cyanobacteria (89, 98%), Deinococcus-Thermus (27, 100%), Proteobacteria (896, 50%) |
D | 1, 4 | Glycosidases | 844 (16) e | / | m | Actinobacteria (222, 34%), Firmicutes (269, 38%), Proteobacteria (262, 15%) |
E | 137, 138, 139, 141, 142, 143 | GHs for the debranching of pectic polysaccharides, specifically Rhamnogalacturonan II | 37(1) | 73 (4) | s | Acidobacteria (5, 38%), Bacteroidetes (52, 18%) |
F | 82, 86, 117, 150, 167 | GHs for the decomposition of cell wall polysaccharides from red algae and seaweeds | 13 (4) | 43 (6) | s | Bacteroidetes (19, 6%), Planctomycetes (6, 17%) |
G | 20, 109 | GHs for the decomposition of hexosamine | 294 (10) e | / | s | Actinobacteria (70, 10%), Bacteroidetes (162, 55%) |
H | 29, 92, 97, 125 | α-Glycosidases | 314 (9) | 579 (14) | m | Actinobacteria (132, 20%), Bacteroidetes (221, 75%) |
I | 23, 102, 103 | GHs for the decomposition of peptidoglycan | 1080 (4) e | 1701 (9) | m | Cyanobacteria (74, 81%), Proteobacteria (1608, 90%) |
J | 28, 88, 105, 154 | GHs for the decomposition of the main chain of pectic polysaccharides, including Homogalacturonan, Rhamnogalacturonan I, and Rhamnogalacturonan II | 312 (11) | 623 (15) | m | Acidobacteria (10, 77%), Bacteroidetes (144, 49%), Firmicutes (114, 16%), Proteobacteria (231, 13%) |
K | 46, 55, 64, 75, 87, 114 | GHs for the decomposition of fungal cell wall polysaccharides, including alpha-1,3- glucan, beta-1,3-glucan, chitosan, and polygalactosamine | 78 (2) | 231 (9) | s | Acidobacteria (6, 46%), Actinobacteria (128, 26%) |
L | 6, 11, 12, 48, 55, 62, 64, 74 | Supplemental GHs of group A for more efficient decomposition of bulk lignocellulose components, such as cellulose, beta-glucan, and glucuronoarabinoxylan, xyloglucan | 93 (2) | 338 (12) | m | Actinobacteria (201, 30%), Firmicutes (49, 7%), Proteobacteria (59, 3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, A.; Jin, M.; Li, N.; Zhu, D.; Xie, R.; Wang, Q.; Lin, H.; Sun, J. New Insights into the Co-Occurrences of Glycoside Hydrolase Genes among Prokaryotic Genomes through Network Analysis. Microorganisms 2021, 9, 427. https://doi.org/10.3390/microorganisms9020427
Geng A, Jin M, Li N, Zhu D, Xie R, Wang Q, Lin H, Sun J. New Insights into the Co-Occurrences of Glycoside Hydrolase Genes among Prokaryotic Genomes through Network Analysis. Microorganisms. 2021; 9(2):427. https://doi.org/10.3390/microorganisms9020427
Chicago/Turabian StyleGeng, Alei, Meng Jin, Nana Li, Daochen Zhu, Rongrong Xie, Qianqian Wang, Huaxing Lin, and Jianzhong Sun. 2021. "New Insights into the Co-Occurrences of Glycoside Hydrolase Genes among Prokaryotic Genomes through Network Analysis" Microorganisms 9, no. 2: 427. https://doi.org/10.3390/microorganisms9020427
APA StyleGeng, A., Jin, M., Li, N., Zhu, D., Xie, R., Wang, Q., Lin, H., & Sun, J. (2021). New Insights into the Co-Occurrences of Glycoside Hydrolase Genes among Prokaryotic Genomes through Network Analysis. Microorganisms, 9(2), 427. https://doi.org/10.3390/microorganisms9020427