A New Look at the Genus Solobacterium: A Retrospective Analysis of Twenty-Seven Cases of Infection Involving S. moorei and a Review of Sequence Databases and the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Analysis
2.2. Review of S. moorei in the Literature and Databases
3. Results and Discussion
3.1. S. moorei Isolation Characteristics and Antimicrobial Susceptibility
3.2. Analysis of S. moorei Infection Cases Revealed a Larger Spectrum of Human Infections Than Currently Described
3.2.1. Bacteremia
3.2.2. Skin and Soft Tissue Infections
3.2.3. Osteoarticular Infections
3.2.4. Central Nervous System Infections
3.2.5. Intra-Abdominal Infections
3.3. Exploring the Genetic and Metagenomic Sequence Databases for a Complete Spectrum of S. moorei Ecology
3.3.1. Lessons from the Analysis of the GenBank Database
- Digestive tract-related sequences
- Oral cavity-related sequences
- Respiratory tract-related sequences
- Vaginal tract-related sequences
- Skin-related sequences
- Blood-related sequences
- Non-human-related sequences
3.3.2. Lessons from the Metagenomic Database Screening
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kageyama, A.; Benno, Y. Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: Description of Solobacterium moorei Gen. Nov., Sp. Nov. Microbiol. Immunol. 2000, 44, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kazor, C.E.; Mitchell, P.M.; Lee, A.M.; Stokes, L.N.; Loesche, W.J.; Dewhirst, F.E.; Paster, B.J. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 2003, 41, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Haraszthy, V.I.; Zambon, J.J.; Sreenivasan, P.K.; Zambon, M.M.; Gerber, D.; Rego, R.; Parker, C. Identification of oral bacterial species associated with halitosis. J. Am. Dent. Assoc. 2007, 138, 1113–1120. [Google Scholar] [CrossRef]
- Haraszthy, V.I.; Gerber, D.; Clark, B.; Moses, P.; Parker, C.; Sreenivasan, P.K.; Zambon, J.J. Characterization and prevalence of Solobacterium moorei associated with oral halitosis. J. Breath Res. 2008, 2, 017002. [Google Scholar] [CrossRef]
- Rolph, H.J.; Lennon, A.; Riggio, M.P.; Saunders, W.P.; MacKenzie, D.; Coldero, L.; Bagg, J. Molecular identification of microorganisms from endodontic infections. J. Clin. Microbiol. 2001, 39, 3282–3289. [Google Scholar] [CrossRef] [Green Version]
- Schirrmeister, J.F.; Liebenow, A.L.; Pelz, K.; Wittmer, A.; Serr, A.; Hellwig, E.; Al-Ahmad, A. New bacterial compositions in root-filled teeth with periradicular lesions. J. Endod. 2009, 35, 169–174. [Google Scholar] [CrossRef]
- Colombo, A.P.; Boches, S.K.; Cotton, S.L.; Goodson, J.M.; Kent, R.; Haffajee, A.D.; Socransky, S.S.; Hasturk, H.; Van Dyke, T.E.; Dewhirst, F.; et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J. Periodontol. 2009, 80, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, T.; Sakamoto, M.; Takeuchi, Y.; Ohkuma, M.; Izumi, Y. Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. J. Oral Microbiol. 2010, 2. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017, 66, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Barrak, I.; Stájer, A.; Gajdács, M.; Urbán, E. Small, but smelly: The importance of Solobacterium moorei in halitosis and other human infections. Heliyon 2020, 6, e05371. [Google Scholar] [CrossRef]
- CLSI. Interpretive Criteria for Identification of Bacteria and Fungi by Targeted DNA Sequencing, 2nd ed.; CLSI Guideline MM18; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Société Française de Microbiologie. Recommandations du Comité de l’Antibiogramme. Available online: https://www.sfm-microbiologie.org (accessed on 9 March 2021).
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
- Lagkouvardos, I.; Joseph, D.; Kapfhammer, M.; Giritli, S.; Horn, M.; Haller, D.; Clavel, T. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci. Rep. 2016, 6, 33721. [Google Scholar] [CrossRef] [PubMed]
- Genderini, F.G.; Martiny, D.; Ponthieux, F.; Argudín, M.A.; Gomez Galdon, M.; Zaarour, A.; Garcia, C.; Libois, A.; Gérard, M.; Dauby, N. First case of Campylobacter rectus and Solobacterium moorei mixed bacteraemia successfully identified by MALDI TOF-MS. New Microbes New Infect. 2019, 31, 100587. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Boyanova, L.; Justesen, U.S. ESCMID Study Group of Anaerobic Infections. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin. Microbiol. Infect. 2018, 24, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detry, G.; Pierard, D.; Vandoorslaer, K.; Wauters, G.; Avesani, V.; Glupczynski, Y. Septicemia due to Solobacterium moorei in a patient with multiple myeloma. Anaerobe 2006, 12, 160–162. [Google Scholar] [CrossRef]
- Lau, S.K.; Teng, J.L.; Leung, K.W.; Li, N.K.; Ng, K.H.; Chau, K.Y.; Que, T.L.; Woo, P.C.; Yuen, K.Y. Bacteremia caused by Solobacterium moorei in a patient with acute proctitis and carcinoma of the cervix. J. Clin. Microbiol. 2006, 44, 3031–3034. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Summanen, P.H.; Talan, D.; Bennion, R.; Rowlinson, M.C.; Finegold, S.M. Phenotypic and molecular characterization of Solobacterium moorei isolates from patients with wound infection. J. Clin. Microbiol. 2010, 48, 873–876. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, R.M.; Holt, H.M.; Justesen, U.S. Solobacterium moorei bacteremia: Identification, antimicrobial susceptibility, and clinical characteristics. J. Clin. Microbiol. 2011, 49, 2766–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sárvári, K.P.; Sántha, D.; Kovács, R.; Körmöndi, S.; Pető, Z.; Vereb, T.; Sztanó, B. Six cases of Solobacterium moorei isolated alone or in mixed culture in Hungary and comparison with previously published cases. Anaerobe 2020, 65, 102241. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.; Park, D.H.; Kim, M.N.; Jung, J. First case report of Solobacterium moorei bacteremia due to acute cholangitis in South Korea. Anaerobe 2020, 66, 102278. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tap, J.; Mondot, S.; Levenez, F.; Pelletier, E.; Caron, C.; Furet, J.P.; Ugarte, E.; Munoz-Tamayo, R.; Paslier, D.L.; Nalin, R.; et al. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 2009, 11, 2574–2584. [Google Scholar] [CrossRef]
- Baumgart, M.; Dogan, B.; Rishniw, M.; Weitzman, G.; Bosworth, B.; Yantiss, R.; Orsi, R.H.; Wiedmann, M.; McDonough, P.; Kim, S.G.; et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007, 1, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.W.; Sanderson, J.D.; Churcher, C.; Parkes, G.C.; Hudspith, B.N.; Rayment, N.; Brostoff, J.; Parkhill, J.; Dougan, G.; Petrovska, L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, E.; Hamm, C.M.; Gulati, A.S.; Sartor, R.B.; Chen, H.; Wu, X.; Zhang, T.; Rohlf, F.J.; Zhu, W.; Gu, C.; et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE 2012, 7, e26284. [Google Scholar] [CrossRef] [Green Version]
- Nasidze, I.; Li, J.; Quinque, D.; Tang, K.; Stoneking, M. Global diversity in the human salivary microbiome. Genome Res. 2009, 19, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Bik, E.M.; Long, C.D.; Armitage, G.C.; Loomer, P.; Emerson, J.; Mongodin, E.F.; Nelson, K.E.; Gill, S.R.; Fraser-Liggett, C.M.; Relman, D.A. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010, 4, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Rylev, M.; Bek-Thomsen, M.; Reinholdt, J.; Ennibi, O.K.; Kilian, M. Microbiological and immunological characteristics of young Moroccan patients with aggressive periodontitis with and without detectable Aggregatibacter actinomycetemcomitans JP2 infection. Mol. Oral Microbiol. 2011, 26, 35–51. [Google Scholar] [CrossRef]
- Perkins, S.D.; Woeltje, K.F.; Angenent, L.T. Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. Int. J. Med. Microbiol. 2010, 300, 503–511. [Google Scholar] [CrossRef]
- Guss, A.M.; Roeselers, G.; Newton, I.L.; Young, C.R.; Klepac-Ceraj, V.; Lory, S.; Cavanaugh, C.M. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2011, 5, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.N.; Manigart, O.; Leroy, V.; Meda, N.; Valéa, D.; Zhang, W.; Dabis, F.; Pace, N.R.; Van de Perre, P.; Janoff, E.N. Altered vaginal microbiota are associated with perinatal mother-to-child transmission of HIV in African women from Burkina Faso. J. Acquir. Immune Defic. Syndr. 2012, 60, 299–306. [Google Scholar] [CrossRef]
- Oh, J.; Conlan, S.; Polley, E.C.; Segre, J.A.; Kong, H.H. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 2012, 4, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; Murray, P.R.; et al. NISC Comparative Sequence Program. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Funchain, P.; Bebek, G.; Altemus, J.; Zhang, H.; Niazi, F.; Peterson, C.; Lee, W.T.; Burkey, B.B.; Eng, C. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas. Genome Med. 2017, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.J.; Xiao, M.; Yi, J.; Li, Y.; Kudinha, T.; Xu, Y.C. First case report of bacteremia caused by Solobacterium moorei in China, and literature review. BMC Infect. Dis. 2019, 19, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chehoud, C.; Rafail, S.; Tyldsley, A.S.; Seykora, J.T.; Lambris, J.D.; Grice, E.A. Complement modulates the cutaneous microbiome and inflammatory milieu. Proc. Natl. Acad. Sci. USA 2013, 110, 15061–15066. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.A.; Wijesurendra, R.S.; Borland, C.D.; Karas, J.A. Femoral vein thrombophlebitis and septic pulmonary embolism due to a mixed anaerobic infection including Solobacterium moorei: A case report. J. Med. Case Rep. 2007, 1, 40. [Google Scholar] [CrossRef] [Green Version]
Case | Type of Infection | Age (Sex) | Medical History | Specimen | Co-Isolated Species |
---|---|---|---|---|---|
Bacteremia | |||||
1 | 76(M) | Diabetes, sepsis, and peritonitis after hemicolectomy for colon cancer | Blood culture | Bacteroides thetaiotaomicron, Escherichia coli | |
2 | 85(M) | Not available | Blood culture | Streptococcus constellatus | |
3 | 65(M) | Diabetes, diabetic foot infection | Blood culture | Gemella sp. | |
4 | 52(M) | Diabetes, diabetic foot infection | Blood culture | Peptoniphilus asaccharolyticus (in other vials), Staphylococcus aureus | |
5 | 37(M) | Peritonsillar phlegmon | Blood culture | Prevotella sp. | |
6 | 93(M) | Severe sepsis and diarrhea | Blood culture | None | |
7 | 42(F) | Decompensated chronic alcoholic cirrhosis with ascites | Blood culture | None | |
8 | 88(F) | Not available | Blood culture | None | |
9 | 70(M) | Not available | Blood culture | None | |
10 | 36(M) | Not available | Blood culture | Not available | |
11 | 75 (F) | Bowel obstruction and appendicular peritonitis | Blood culture | None | |
Skin and soft tissue infection | |||||
12 | Deep neck abscess | 53(M) | Oropharyngeal cancer | Pus | Streptoccus anginosus, polymicrobial anaerobic culture |
13 | Paratracheal abscess | 69(M) | Diabetes, lung cancer with thyroid metastasis | Pus | Anaerococcus murdochii, Eikenella corrodens, Staphylococcus epidermidis, S. constellatus |
14 | Auricular chondritis and abscess | 22(F) | Preauricular fistula | Pus | None |
15 | Breast abscess | 50(F) | None | Pus | Fusobacterium nucleatum, unidentified Clostridiales |
16 | Infected pressure ulcer | 35(M) | Traumatic paraplegia | Biopsy | Bacteroides fragilis, E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, S. aureus, Streptococcus dysgalactiae |
17 | Infected pressure ulcer | 60(M) | Traumatic paraplegia | Biopsy | E. coli |
18 | Stump infection | 43(F) | Below-knee amputation for tibial tumor | Biopsy | P. asaccharolyticus |
Osteo-articular infection | |||||
19 | Mandibular bone infection | 84(F) | Breast cancer, mandibular bisphosphonate-related osteonecrosis, submandibular cutaneous fistula, oral lesions | Biopsy | Enterobacter cloacae complex |
20 | Sternal osteitis | 77(F) | Diabetes, thoracic injuries after radiation for breast cancer | Collection | Actinomyces radingae, Capnocytophaga gingivalis, Klebsiella oxytoca, Morganella morganii |
21 | Ulnar osteitis | 49(F) | Self-injurious behavior, chronic forearm injury | Biopsy | Peptostreptococcus anaerobius, S. aureus, S. anginosus, Streptococcus mitis/oralis |
22 | Diabetic foot osteitis | 71(M) | Diabetes | Biopsy | Streptococcus agalactiae |
23 | Pressure ulcer-related pelvic osteomyelitis | 60(F) | Diabetes, ischemic paraplegia | Biopsy | Actinomyces turicensis, B. fragilis, Clostridium ramosum, Finegoldia magna, P. aeruginosa, S. aureus |
24 | Pressure ulcer-related femoral osteitis | 31(M) | Traumatic tetraplegia | Biopsy | S. aureus, S. mitis/oralis |
Central nervous system infection | |||||
25 | Brain abscess | 39(M) | Craniofacial trauma | Pus | Actinomyces odontolyticus, F. magna |
26 | Intracranial epidural abscess and brain abscess | 72(M) | Meningioma resection | Intracranial tissue | A. odontolyticus, Atopobium parvulum, Bacteroides uniformis, E. coli, S. anginosus |
Intra-abdominal infection | |||||
27 | Necrotizing pancreatitis | 47(M) | Obesity, severe hypertriglyceridemia, biliary lithiasis | Collection | S. aureus, S. agalactiae, S. anginosus |
Type of Metagenome | Samples (n) | Positive Samples (n) | ||
---|---|---|---|---|
All Abundances (%) | Excluding Rare Abundance <0.1% | Abundance >1% Only | ||
Host-associated metagenomes | ||||
pig gut metagenome | 3556 | 325 (9.14%) | 58 | 1 |
pig metagenome | 1162 | 5 (0.04%) | 1 | - |
plant metagenome | 12101 | 13 (0.11%) | 1 | - |
bovine gut metagenome | 9908 | 11 (0.11%) | 8 | - |
bovine metagenome | 1101 | 4 (0.36%) | 1 | - |
fish metagenome | 706 | 7 (0.99%) | 2 | - |
mouse gut metagenome | 19703 | 6 (0.03%) | - | - |
mouse skin metagenome | 685 | 6 (0.88%) | 1 | - |
mouse metagenome | 1541 | 3 (0.19%) | - | - |
coral metagenome | 2795 | 4 (0.14%) | 2 | - |
insect metagenome | 1544 | 3 (0.19%) | - | - |
invertebrate gut metagenome | 32 | 3 (9.38%) | - | - |
beetle metagenome | 327 | 2 (0.61%) | - | - |
rat gut metagenome | 1422 | 2 (0.14%) | - | - |
fungus metagenome | 395 | 2 (0.50%) | - | - |
canine metagenome | 228 | 1 (0.44%) | - | - |
nematode metagenome | 149 | 1 (0.67%) | - | - |
fish gut metagenome | 1000 | 1 (0.10%) | - | - |
primate metagenome | 222 | 1 (0.45%) | - | - |
Environmental source metagenomes | ||||
dust metagenome | 1018 | 45 (4.42%) | - | - |
soil metagenome | 67790 | 21 (0.03%) | 1 | - |
marine metagenome | 37438 | 18 (0.05%) | 1 | - |
freshwater metagenome | 14593 | 15 (0.10%) | - | - |
aquatic metagenome | 10493 | 8 (0.80%) | 1 | - |
indoor metagenome | 719 | 8 (1.11%) | 4 | - |
air metagenome | 1047 | 7 (0.67%) | - | - |
groundwater metagenome | 745 | 2 (0.27%) | - | - |
freshwater sediment metagenome | 1494 | 1 (0.07%) | - | - |
hydrothermal vent metagenome | 285 | 1 (0.35%) | - | - |
phyllosphere metagenome | 1061 | 1 (0.09%) | - | - |
rhizosphere metagenome | 14155 | 1 (0.01%) | - | - |
sand metagenome | 87 | 1 (1.15%) | - | - |
sludge metagenome | 1924 | 1 (0.05%) | - | - |
terrestrial metagenome | 887 | 1 (0.11%) | - | - |
Other metagenomes | ||||
wastewater metagenome | 2738 | 59 (2.15%) | - | - |
activated sludge metagenome | 2846 | 29 (1.02%) | - | - |
bioreactor metagenome | 2376 | 8 (0.34%) | - | - |
anaerobic digester metagenome | 1379 | 1 (0.07%) | 1 | 1 |
bioreactor sludge metagenome | 542 | 1 (0.18%) | - | - |
floral nectar metagenome | 487 | 1 (0.20%) | - | - |
food production metagenome | 376 | 1 (0.27%) | - | - |
food metagenome | 2119 | 1 (0.05%) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alauzet, C.; Aujoulat, F.; Lozniewski, A.; Ben Brahim, S.; Domenjod, C.; Enault, C.; Lavigne, J.-P.; Marchandin, H. A New Look at the Genus Solobacterium: A Retrospective Analysis of Twenty-Seven Cases of Infection Involving S. moorei and a Review of Sequence Databases and the Literature. Microorganisms 2021, 9, 1229. https://doi.org/10.3390/microorganisms9061229
Alauzet C, Aujoulat F, Lozniewski A, Ben Brahim S, Domenjod C, Enault C, Lavigne J-P, Marchandin H. A New Look at the Genus Solobacterium: A Retrospective Analysis of Twenty-Seven Cases of Infection Involving S. moorei and a Review of Sequence Databases and the Literature. Microorganisms. 2021; 9(6):1229. https://doi.org/10.3390/microorganisms9061229
Chicago/Turabian StyleAlauzet, Corentine, Fabien Aujoulat, Alain Lozniewski, Safa Ben Brahim, Chloé Domenjod, Cécilia Enault, Jean-Philippe Lavigne, and Hélène Marchandin. 2021. "A New Look at the Genus Solobacterium: A Retrospective Analysis of Twenty-Seven Cases of Infection Involving S. moorei and a Review of Sequence Databases and the Literature" Microorganisms 9, no. 6: 1229. https://doi.org/10.3390/microorganisms9061229
APA StyleAlauzet, C., Aujoulat, F., Lozniewski, A., Ben Brahim, S., Domenjod, C., Enault, C., Lavigne, J. -P., & Marchandin, H. (2021). A New Look at the Genus Solobacterium: A Retrospective Analysis of Twenty-Seven Cases of Infection Involving S. moorei and a Review of Sequence Databases and the Literature. Microorganisms, 9(6), 1229. https://doi.org/10.3390/microorganisms9061229