Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Questionnaire Information
2.3. Microbiota Analysis
2.4. Prediction of Oral Microbiota Functions from the 16S rRNA Gene Sequences
2.5. Data Handling and Statistical Analysis
3. Results
3.1. Study Group and General Sequencing Results
3.2. Association between Self-Reported Lifestyle Characteristics and Oral Health Behaviours and Overall Oral Microbiota
3.3. Lifestyle Associations with Single Bacterial Species or Phylotypes
3.4. Lifestyle Characteristics and Oral Health Behaviours Associated with an Overall Change in Predicted Microbiota Functions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilian, M.; Chapple, I.L.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The oral microbiome—An update for oral healthcare professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef]
- Kilian, M. The oral microbiome—Friend or foe? Eur. J. Oral Sci. 2018, 126, 5–12. [Google Scholar] [CrossRef]
- Jepsen, S.; Blanco, J.; Buchalla, W.; Carvalho, J.C.; Dietrich, T.; Dörfer, C.; Eaton, K.A.; Figuero, E.; Frencken, J.E.; Graziani, F.; et al. Prevention and control of dental caries and periodontal diseases at individual and population level: Consensus report of group 3 of joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J. Clin. Periodontol. 2017, 44, S85–S93. [Google Scholar] [CrossRef]
- Chapple, I.L.; Bouchard, P.; Cagetti, M.G.; Campus, G.; Carra, M.C.; Cocco, F.; Nibali, L.; Hujoel, P.; Laine, M.L.; Lingstrom, P.; et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J. Clin. Periodontol. 2017, 44, S39–S51. [Google Scholar] [CrossRef] [Green Version]
- Burcham, Z.M.; Garneau, N.L.; Comstock, S.S.; Tucker, R.M.; Knight, R.; Metcalf, J.L.; Miranda, A.; Reinhart, B.; Meyers, D.; Woltkamp, D.; et al. Genetics of Taste Lab, Citizen Scientists Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study. Sci. Rep. 2020, 10, 2133. [Google Scholar] [CrossRef] [Green Version]
- Caselli, E.; Fabbri, C.; D’Accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Nearing, J.T.; DeClercq, V.; Van Limbergen, J.; Langille, M.G.I. Assessing the Variation within the Oral Microbiome of Healthy Adults. mSphere 2020, 5, e00451. [Google Scholar] [CrossRef]
- Cornejo Ulloa, P.; van der Veen, M.H.; Krom, B.P. Review: Modulation of the oral microbiome by the host to promote ecological balance. Odontology 2019, 107, 437–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norberg, M.; Wall, S.; Boman, K.; Weinehall, L. The Västerbotten Intervention Programme: Background, design and implications. Glob. Health Action 2010, 22. [Google Scholar] [CrossRef] [PubMed]
- The Swedish Food Composition Database. Available online: https://www7.slv.se/SokNaringsinnehall/ (accessed on 2 January 2018).
- Johansson, I.; Hallmans, G.; Wikman, A.; Biessy, C.; Riboli, E.; Kaaks, R. Validation and calibration of food-frequency questionnaire measurements in the Northern Sweden Health and Disease cohort. Public Health Nutr. 2002, 5, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Hivert, M.F.; Lemaitre, R.N.; McKeown, N.M.; Mozaffarian, D.; Tanaka, T.; Wojczynski, M.K.; Hruby, A.; Djoussé, L.; Ngwa, J.S.; et al. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts. Am. J. Epidemiol. 2013, 177, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Renaud, G.; Stenzel, U.; Maricic, T.; Wiebe, V.; Kelso, J. deML: Robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 2015, 31, 770–772. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- QIIME2 Next-Generation Microbiome Bioinformatics Platform. Available online: https://qiime2.org (accessed on 20 December 2020).
- Escapa, I.F.; Chen, T.; Huang, Y.; Gajare, P.; Dewhirst, F.E.; Lemon, K.P. New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): A Resource for the Microbiome of the Human Aerodigestive Tract. mSystems 2018, 3, e00187-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Expanded Human Oral Microbiome Database (eHOMD). Available online: http://www.homd.org. (accessed on 20 December 2020).
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- KO (KEGG ORTHOLOGY) Database of Molecular Functions. Available online: https://www.genome.jp/kegg/ko.html (accessed on 15 December 2020).
- Greengenes Database. Available online: http://greengenes.lbl.gov (accessed on 27 February 2021).
- Hammer, O.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameda, M.; Abiko, Y.; Washio, J.; Tanner, A.C.R.; Kressirer, C.A.; Mizoguchi, I.; Takahashi, N. Sugar Metabolism of Scardovia wiggsiae, a Novel Caries-Associated Bacterium. Front. Microbiol. 2020, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Kressirer, C.A.; Smith, D.J.; King, W.F.; Dobeck, J.M.; Starr, J.R.; Tanner, A.C.R. Scardovia wiggsiae and its potential role as a caries pathogen. J. Oral Biosci. 2017, 59, 135–141. [Google Scholar] [CrossRef]
- Eriksson, L.; Lif Holgerson, P.; Esberg, A.; Johansson, I. Microbial Complexes and Caries in 17-Year-Olds with and without Streptococcus mutans. J. Dent. Res. 2018, 97, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, D.J.; Lynch, R.J. Diet and the microbial aetiology of dental caries: New paradigms. Int. Dent. J. 2013, 63, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tian, J.; Hao, W.; Zhang, Q.; Zhou, Q.; Shi, W.; Qin, M.; He, X.; Chen, F. Oral Microbiome Shifts From Caries-Free to Caries-Affected Status in 3-Year-Old Chinese Children: A Longitudinal Study. Front. Microbiol. 2018, 9, 2009. [Google Scholar] [CrossRef] [Green Version]
- Kalpana, B.; Prabhu, P.; Bhat, A.H.; Senthilkumar, A.; Arun, R.P.; Asokan, S.; Gunthe, S.S.; Verma, R.S. Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Shi, C.; Cai, L.; Xun, Z.; Zheng, S.; Shao, F.; Wang, B.; Zhu, R.; He, Y. Metagenomic analysis of the salivary microbiota in patients with caries, periodontitis and comorbid diseases. J. Dent. Sci. 2021. [Google Scholar] [CrossRef]
- Marsh, P.D.; Head, D.A.; Devine, D.A. Ecological approaches to oral biofilms: Control without killing. Caries Res. 2015, 49 (Suppl. 1), 46–54. [Google Scholar] [CrossRef] [Green Version]
- Marchesan, J.T.; Byrd, K.M.; Moss, K.; Preisser, J.S.; Morelli, T.; Zandona, A.F.; Jiao, Y.; Beck, J. Flossing Is Associated with Improved Oral Health in Older Adults. J. Dent. Res. 2020, 99, 1047–1053. [Google Scholar] [CrossRef]
- David, L.A.; Materna, A.C.; Friedman, J.; Campos-Baptista, M.I.; Blackburn, M.C.; Perrotta, A.; Erdman, S.E.; Alm, E.J. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014, 15, R89. [Google Scholar] [CrossRef] [Green Version]
- Corby, P.M.; Biesbrock, A.; Bartizek, R.; Corby, A.L.; Monteverde, R.; Ceschin, R.; Bretz, W.A. Treatment outcomes of dental flossing in twins: Molecular analysis of the interproximal microflora. J. Periodontol. 2008, 79, 1426–1433. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L., Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef] [PubMed]
- André Kramer, A.C.; Pivodic, A.; Hakeberg, M.; Östberg, A.L. Multilevel Analysis of Dental Caries in Swedish Children and Adolescents in Relation to Socioeconomic Status. Caries Res. 2019, 53, 96–106. [Google Scholar] [CrossRef]
- Schwendicke, F.; Dörfer, C.E.; Schlattmann, P.; Foster Page, L.; Thomson, W.M.; Paris, S. Socioeconomic inequality and caries: A systematic review and meta-analysis. J. Dent. Res. 2015, 94, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.M.; Martins, C.C.; Pinto, M.Q.C.; Vasconcelos, M.; Abreu, M.H.N.G. Socioeconomic Factors and Caries in People between 19 and 60 Years of Age: An Update of a Systematic Review and Meta-Analysis of Observational Studies. Int. J. Environ. Res. Public. Health 2018, 15, 1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belstrøm, D.; Holmstrup, P.; Nielsen, C.H.; Kirkby, N.; Twetman, S.; Heitmann, B.L.; Klepac-Ceraj, V.; Paster, B.J.; Fiehn, N.E. Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J. Oral Microbiol. 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Al Kawas, S.; Al-Marzooq, F.; Rahman, B.; Shearston, J.A.; Saad, H.; Benzina, D.; Weitzman, M. The impact of smoking different tobacco types on the subgingival microbiome and periodontal health: A pilot study. Sci. Rep. 2021, 11, 1113. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Peters, B.A.; Dominianni, C.; Zhang, Y.; Pei, Z.; Yang, L.; Ma, Y.; Purdue, M.P.; Jacobs, E.J.; Gapstur, S.M.; et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016, 10, 2435–2446. [Google Scholar] [CrossRef] [PubMed]
- Al-Zyoud, W.; Hajjo, R.; Abu-Siniyeh, A.; Hajjaj, S. Salivary Microbiome and Cigarette Smoking: A First of Its Kind Investigation in Jordan. Int. J. Environ. Res. Public Health 2020, 17, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanwar, A.; Sah, K.; Grover, N.; Chandra, S.; Singh, R. Long-term effect of tobacco on resting whole mouth salivary flow rate and pH: An institutional based comparative study. European J. Gen. Dent. 2013, 2, 296–299. [Google Scholar] [CrossRef]
- Andersson, G.; Warfvinge, G. The influence of pH and nicotine concentration in oral moist snuff on mucosal changes and salivary pH in Swedish snuff users. Swed. Dent. J. 2003, 27, 67–75. [Google Scholar]
- Hellqvist, L.; Boström, A.; Lingström, P.; Hugoson, A.; Rolandsson, M.; Birkhed, D. Effect of nicotine-free and nicotine-containing snus on plaque pH in vivo. Swed. Dent. J. 2012, 36, 187–194. [Google Scholar] [PubMed]
- Sullivan, R.; Heavey, S.; Graham, D.G.; Wellman, R.; Khan, S.; Thrumurthy, S.; Simpson, B.S.; Baker, T.; Jevons, S.; Ariza, J.; et al. An optimised saliva collection method to produce high-yield, high-quality RNA for translational research. PLoS ONE 2020, 15, e0229791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, Y.; Hua, X.; Wan, Y.; Suman, S.; Zhu, B.; Dagnall, C.L.; Hutchinson, A.; Jones, K.; Hicks, B.D.; Shi, J.; et al. Comparison of Oral Microbiota Collected Using Multiple Methods and Recommendations for New Epidemiologic Studies. mSystems 2020, 5, e00156-20. [Google Scholar] [CrossRef]
- Omori, M.; Kato-Kogoe, N.; Sakaguchi, S.; Fukui, N.; Yamamoto, K.; Nakajima, Y.; Inoue, K.; Nakano, H.; Motooka, D.; Nakano, T.; et al. Comparative evaluation of microbial profiles of oral samples obtained at different collection time points and using different methods. Clin. Oral Investig. 2021, 25, 2779–2789. [Google Scholar] [CrossRef]
- Topkas, E.; Keith, P.; Dimeski, G.; Cooper-White, J.; Punyadeera, C. Evaluation of saliva collection devices for the analysis of proteins. Clin. Chim. Acta 2012, 413, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.L.; Cooper-White, J.; Punyadeera, C.K. Saliva proteome research: Current status and future outlook. Crit. Rev. Biotechnol. 2013, 33, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Vogtmann, E.; Chen, J.; Kibriya, M.G.; Amir, A.; Shi, J.; Chen, Y.; Islam, T.; Eunes, M.; Ahmed, A.; Naher, J.; et al. Comparison of Oral Collection Methods for Studies of Microbiota. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Peltzer, K.; Pengpid, S. Oral health behaviour and social and health factors in university students from 26 low, middle and high income countries. Int. J. Environ. Res. Public Health 2014, 11, 12247–12260. [Google Scholar] [CrossRef]
- Adair, P.M.; Pine, C.M.; Burnside, G.; Nicoll, A.D.; Gillett, A.; Anwar, S.; Broukal, Z.; Chestnutt, I.G.; Declerck, D.; Ping, F.X.; et al. Familial and cultural perceptions and beliefs of oral hygiene and dietary practices among ethnically and socio-economicall diverse groups. Community Dent. Health 2004, 21, 102–111. [Google Scholar]
General and Lifestyle Characteristics | Value | Variable in Analysis and Short Label in Figures |
---|---|---|
Women, % | 62.3 | |
Age, years, mean (95% CI) | 28.9 (27.4, 30.5) | |
<20 years, % | 51.6 | |
BMI, mean (95% CI) | 23.1 (22.8. 23.4) | |
Overweight/obese (BMI ≥25), % | 24.4 | overweight |
Highest educational level for age a, % | 47.4 | education |
How do you assess your health?, % | ||
good | 83.3 | |
not so good | 14.5 | |
How was your health last month?, % | ||
good | 89.8 | |
not so good | 10.2 | |
Were you ill the week before sampling?, % | ||
yes | 15.6 | |
no | 84.4 | |
Do you take any medicine?, % | ||
yes | 24.2 | |
no | 75.8 | |
Smoking, % | smoke | |
present/ex-smoker | 6.5 | |
never smoked | 93.5 | |
Snuff use, % | snuff | |
present/ex- user | 13.0 | |
never used | 87.0 | |
Physical activity at work, % | work-load | |
non-heavy work | 75.4 | |
heavy work | 24.6 | |
Physical activity at leisure time, % | leisure-time | |
<1 time per week | 33.4 | |
≥1 time per week | 66.6 | |
When was the last time you ate or drunk?, % | time-eat | |
≤2 h ago | 70.9 | |
>2 h ago | 29.1 | |
Sugar intake, g/day, mean (95% CI) | 56.2 (54.3, 58.0) | sugar |
Sucrose intake, g/day, mean (95% CI) | 31.0 (29.9, 32.3) | sucrose |
Heathy diet score, mean (95% CI) | 11.9 (11.5, 12.3) | diet-score |
Oral Health Behaviours | Value, % | Variable in Analysis and Short Label in Figures |
---|---|---|
Tooth brushing < 1 per day | 10.3 | brush |
Do you use floss or a toothpick, yes? | 51.9 | floss |
Do your gums bleed on brushing, yes? | 21.0 | bleeding |
Do you use a fluoridated toothpaste, yes? | 75.1 | fluoride toothpaste |
Do you use extra fluoride, yes? | 15.6 | extra-fluoride |
Do you use any mouth rinse, yes? | 25.6 | rinse |
Do you think cavities is a disease, yes? | 37.8 | caries-a-disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallang, S.; Esberg, A.; Haworth, S.; Johansson, I. Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota. Microorganisms 2021, 9, 1674. https://doi.org/10.3390/microorganisms9081674
Hallang S, Esberg A, Haworth S, Johansson I. Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota. Microorganisms. 2021; 9(8):1674. https://doi.org/10.3390/microorganisms9081674
Chicago/Turabian StyleHallang, Shirleen, Anders Esberg, Simon Haworth, and Ingegerd Johansson. 2021. "Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota" Microorganisms 9, no. 8: 1674. https://doi.org/10.3390/microorganisms9081674
APA StyleHallang, S., Esberg, A., Haworth, S., & Johansson, I. (2021). Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota. Microorganisms, 9(8), 1674. https://doi.org/10.3390/microorganisms9081674