The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. E. coli Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Bicocide Susceptibility Testing
2.4. Clonal Relatedness of E. coli and Whole-Genome Sequencing
2.5. Microarray-Based Detection of Virulence-Associated Genes
3. Results
3.1. Antimicrobial Susceptibility Testing
3.2. Characterization of Genotypic Antibiotic Resistance
3.3. Biocide Susceptibility Testing
3.4. E. coli Phylotyping
3.5. E. coli Clonotyping
3.6. Whole-Genome Sequencing (WGS) of Selected E. coli Isolates
3.7. E. coli Pathotyping
4. Discussion
5. Conclusions
6. Limitations of Our Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janda, J.M.; Abbott, S.L. The Changing Face of the Family Enterobacteriaceae (Order: “Enterobacterales”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin. Microbiol. Rev. 2021, 34, e00174-20. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Genet. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poolman, J.T.; Wacker, M. Extraintestinal Pathogenic Escherichia coli, a Common Human Pathogen: Challenges for Vaccine Development and Progress in the Field. J. Infect. Dis. 2016, 213, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basmaci, R.; Bonacorsi, S.; Bidet, P.; Biran, V.; Aujard, Y.; Bingen, E.; Béchet, S.; Cohen, R.; Levy, C. Escherichia ColiMeningitis Features in 325 Children From 2001 to 2013 in France. Clin. Infect. Dis. 2015, 61, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitout, J.D.D. Extraintestinal Pathogenic Escherichia coli: A Combination of Virulence with Antibiotic Resistance. Front. Microbiol. 2012, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [Green Version]
- Knöppel, A.; Näsvall, J.; Andersson, D.I. Evolution of Antibiotic Resistance without Antibiotic Exposure. Antimicrob. Agents Chemother. 2017, 61, 61. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals; World Health Organization: Geneva, Switzerland, 2017; ISBN 9241550139.
- Boerlin, P.; Travis, R.; Gyles, C.L.; Reid-Smith, R.; Lim, N.J.H.; Nicholson, V.; McEwen, S.A.; Friendship, R.; Archambault, M. Antimicrobial Resistance and Virulence Genes of Escherichia coli Isolates from Swine in Ontario. Appl. Environ. Microbiol. 2005, 71, 6753–6761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwida, M.; Awad, A.; El-Ashker, M.; Hotzel, H.; Monecke, S.; Ehricht, R.; Müller, E.; Reißig, A.; Barth, S.; Berens, C.; et al. Microarray-based detection of resistance and virulence factors in commensal Escherichia coli from livestock and farmers in Egypt. Veter Microbiol. 2020, 240, 108539. [Google Scholar] [CrossRef]
- Anjum, M.F.; Mafura, M.; Slickers, P.; Ballmer, K.; Kuhnert, P.; Woodward, M.J.; Ehricht, R. Pathotyping Escherichia coli by Using Miniaturized DNA Microarrays. Appl. Environ. Microbiol. 2007, 73, 5692–5697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, M.P. Performance Standards for Antimicrobial Susceptibility Testing: Supplement M100, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 9781684400669. [Google Scholar]
- Watts, J.L. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard; Documents/Clinical and Laboratory Standards Institute VET01-A4: Wayne, PA, USA, 2013. [Google Scholar]
- Humphries, R.M. Polymyxin Breakpoints for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp. 2020. Available online: https://clsi.org/standards/products/microbiology/companion/mr01/ (accessed on 21 July 2021).
- Caroff, N.; Espaze, E.; Bérard, I.; Richet, H.; Reynaud, A. Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum β-lactamase production. FEMS Microbiol. Lett. 1999, 173, 459–465. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Schwarz, S. Distribution of Florfenicol Resistance Genes fexA and cfr among Chloramphenicol-Resistant Staphylococcus Isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolejska, M.; Frolkova, P.; Florek, M.; Jamborova, I.; Purgertova, M.; Kutilova, I.; Cizek, A.; Guenther, S.; Literak, I. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J. Antimicrob. Chemother. 2011, 66, 2784–2790. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef] [PubMed]
- Everett, M.J.; Jin, Y.F.; Ricci, V.; Piddock, L.J. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob. Agents Chemother. 1996, 40, 2380–2386. [Google Scholar] [CrossRef] [Green Version]
- Schug, A.R.; Bartel, A.; Scholtzek, A.D.; Meurer, M.; Brombach, J.; Hensel, V.; Fanning, S.; Schwarz, S.; Feßler, A.T. Biocide susceptibility testing of bacteria: Development of a broth microdilution method. Veter Microbiol. 2020, 248, 108791. [Google Scholar] [CrossRef]
- Loncaric, I.; Misic, D.; Szostak, M.P.; Künzel, F.; Schäfer-Somi, S.; Spergser, J. Broad-Spectrum Cephalosporin-Resistant and/or Fluoroquinolone-Resistant Enterobacterales Associated with Canine and Feline Urogenital Infections. Antibiotics 2020, 9, 387. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Weissman, S.J.; Johnson, J.R.; Tchesnokova, V.; Billig, M.; Dykhuizen, D.; Riddell, K.; Rogers, P.; Qin, X.; Butler-Wu, S.; Cookson, B.T.; et al. High-Resolution Two-Locus Clonal Typing of Extraintestinal Pathogenic Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Francisco, A.P.; Bugalho, M.; Ramirez, M.; Carriço, J.A. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinform. 2009, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Lepuschitz, S.; Huhulescu, S.; Hyden, P.; Springer, B.; Rattei, T.; Allerberger, F.; Mach, R.; Ruppitsch, W. Characterization of a community-acquired-MRSA USA300 isolate from a river sample in Austria and whole genome sequence based comparison to a diverse collection of USA300 isolates. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.; Maiden, M.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.S.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 2018, 19, 1–8. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D.G.J. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014, 42, D737–D743. [Google Scholar] [CrossRef] [Green Version]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Tetzschner, A.M.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, 58. [Google Scholar] [CrossRef]
- Joensen, K.; Tetzschner, A.M.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef] [Green Version]
- Beghain, J.; Bridier-Nahmias, A.; Le Nagard, H.; Denamur, E.; Clermont, O. ClermonTyping: An easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 2018, 4, e000192. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.; Hasman, H. In SilicoDetection and Typing of Plasmids using Plasmid Finder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arredondo-Alonso, S.; Rogers, M.R.C.; Braat, J.C.; Verschuuren, T.D.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C. mlplasmids: A user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb. Genom. 2018, 4, e000224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monecke, S.; Berger-Bächi, B.; Coombs, G.; Holmes, A.; Kay, I.; Kearns, A.; Linde, H.-J.; O’Brien, F.; Slickers, P.; Ehricht, R. Comparative genomics and DNA array-based genotyping of pandemic Staphylococcus aureus strains encoding Panton-Valentine leukocidin. Clin. Microbiol. Infect. 2007, 13, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Veter Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar] [CrossRef] [Green Version]
- Luppi, A. Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porc. Health Manag. 2017, 3, 1–18. [Google Scholar] [CrossRef]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Bergeron, N.; Beauchamp, G.; Laurent-Lewandowski, S.; Fairbrother, J.M.; Letellier, A. In vivo therapeutic efficacy and pharmacokinetics of colistin sulfate in an experimental model of enterotoxigenic Escherichia coli infection in weaned pigs. Vet. Res. 2016, 47, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannatelli, A.; Giani, T.; Aiezza, N.; Di Pilato, V.; Principe, L.; Luzzaro, F.; Galeotti, C.L.; Rossolini, G.M. An allelic variant of the PmrB sensor kinase responsible for colistin resistance in an Escherichia coli strain of clinical origin. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Elbediwi, M.; Li, X.; Paudyal, N.; Pan, H.; Xie, S.; Rajkovic, A.; Feng, Y.; Fang, W.; Rankin, S.C.; Yue, M. Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980–2018). Microorganisms 2019, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net)—AER for 2019: Annual Epidemiological Report for 2019. 2020. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019 (accessed on 20 July 2021).
- Hartl, R.; Kerschner, H.; Lepuschitz, S.; Ruppitsch, W.; Allerberger, F.; Apfalter, P. Detection of the mcr-1 Gene in a Multidrug-Resistant Escherichia coli Isolate from an Austrian Patient. Antimicrob. Agents Chemother. 2017, 61, e02623-16. [Google Scholar] [CrossRef] [Green Version]
- Federal Ministry of Social Affairs, Health, Care and Consumer Protection. Resistenzbericht Österreich AURES. 2017. Available online: https://www.sozialministerium.at/dam/jcr:9f7a835d-7975-4cd5-9732-a706bf2a8203/AURES_2017.pdf (accessed on 20 July 2021).
- Manges, A.R.; Johnson, J.R. Food-Borne Origins of Escherichia coli Causing Extraintestinal Infections. Clin. Infect. Dis. 2012, 55, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Day, M.J.; Mafura, M.T.; Nunez-Garcia, J.; Fenner, J.J.; Sharma, M.; Van Essen-Zandbergen, A.; Rodríguez, I.; Dierikx, C.; Kadlec, K.; et al. Comparative Analysis of ESBL-Positive Escherichia coli Isolates from Animals and Humans from the UK, The Netherlands and Germany. PLoS ONE 2013, 8, e75392. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S.; et al. Escherichia coli ST131- H 22 as a Foodborne Uropathogen. mBio 2018, 9, e00470-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, C.J.; Blau, K.; Jechalke, S.; Smalla, K.; Djordjevic, S.P. Whole Genome Sequencing of Escherichia coli From Store-Bought Produce. Front. Microbiol. 2020, 10, 3050. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Peirano, G.; Pitout, J.D.D. Escherichia coli ST131: The Quintessential Example of an International Multiresistant High-Risk Clone. Adv. Clin. Chem. 2015, 90, 109–154. [Google Scholar] [CrossRef]
- Nicolas-Chanoine, M.-H.; Blanco, J.; Leflon-Guibout, V.; Demarty, R.; Alonso, M.P.; Caniça, M.; Park, Y.-J.; Lavigne, J.-P.; Pitout, J.; Johnson, J.R. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2008, 61, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.J.; De Vinney, R. Escherichia coli ST131: A multidrug-resistant clone primed for global domination. F1000Research 2017, 6, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manges, A. Escherichia coli and urinary tract infections: The role of poultry-meat. Clin. Microbiol. Infect. 2016, 22, 122–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepard, S.M.; Danzeisen, J.L.; Isaacson, R.E.; Seemann, T.; Achtman, M.; Johnson, T.J. Genome Sequences and Phylogenetic Analysis of K88- and F18-Positive Porcine Enterotoxigenic Escherichia coli. J. Bacteriol. 2012, 194, 395–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, V.; Meniño, I.G.; Mora, A.; Simon, S.C.F.; Jiménez, D.D.; Blanco, J.E.; Alonso, M.P.; Blanco, J. Co-occurrence of mcr-1, mcr-4 and mcr-5 genes in multidrug-resistant ST10 Enterotoxigenic and Shiga toxin-producing Escherichia coli in Spain (2006-2017). Int. J. Antimicrob. Agents 2018, 52, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Watson, V.E.; Jacob, M.E.; Flowers, J.R.; Strong, S.J.; DebRoy, C.; Gookin, J.L. Association of Atypical Enteropathogenic Escherichia coli with Diarrhea and Related Mortality in Kittens. J. Clin. Microbiol. 2017, 55, 2719–2735. [Google Scholar] [CrossRef] [Green Version]
- Afset, J.E.; Bruant, G.; Brousseau, R.; Harel, J.; Anderssen, E.; Bevanger, L.; Bergh, K. Identification of Virulence Genes Linked with Diarrhea Due to Atypical Enteropathogenic Escherichia coli by DNA Microarray Analysis and PCR. J. Clin. Microbiol. 2006, 44, 3703–3711. [Google Scholar] [CrossRef] [Green Version]
- Brandal, L.T.; Sekse, C.; Lindstedt, B.-A.; Sunde, M.; Løbersli, I.; Urdahl, A.M.; Kapperud, G. Norwegian Sheep Are an Important Reservoir for Human-Pathogenic Escherichia coli O26:H11. Appl. Environ. Microbiol. 2012, 78, 4083–4091. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Greune, L.; Heusipp, G.; Karch, H.; Fruth, A.; Tschäpe, H.; Schmidt, M.A. Identification of Unconventional Intestinal Pathogenic Escherichia coli Isolates Expressing Intermediate Virulence Factor Profiles by Using a Novel Single-Step Multiplex PCR. Appl. Environ. Microbiol. 2007, 73, 3380–3390. [Google Scholar] [CrossRef] [Green Version]
- Bok, E.; Kożańska, A.; Mazurek-Popczyk, J.; Wojciech, M.; Baldy-Chudzik, K. Extended Phylogeny and Extraintestinal Virulence Potential of Commensal Escherichia coli from Piglets and Sows. Int. J. Environ. Res. Public Health 2020, 17, 366. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Chanoine, M.-H.; Bertrand, X.; Madec, J.-Y. Escherichia coli ST131, an Intriguing Clonal Group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virolle, C.; Goldlust, K.; Djermoun, S.; Bigot, S.; Lesterlin, C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes 2020, 11, 1239. [Google Scholar] [CrossRef] [PubMed]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maertens, H.; De Reu, K.; Meyer, E.; Van Coillie, E.; Dewulf, J. Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry. BMC Veter Res. 2019, 15, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front. Microbiol. 2016, 7, 1728. [Google Scholar] [CrossRef] [Green Version]
- Bekal, S.; Brousseau, R.; Masson, L.; Prefontaine, G.; Fairbrother, J.; Harel, J. Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays. J. Clin. Microbiol. 2003, 41, 2113–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potapov, V.; Ong, J.L. Examining Sources of Error in PCR by Single-Molecule Sequencing. PLoS ONE 2017, 12, e0169774. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Phylogroup | CH-Clonotype | ESBL Phenotype | AMR Phenotype 1 | AMR Genotype | Virulence Genes Array | Mutations QRDR 2 GyrA | Mutations QRDR ParC | Mutations QRDR ParE |
---|---|---|---|---|---|---|---|---|---|
1450 | A | 27-0 | ESBL | AMP | blaTEM-1, blaCTX-M-1 | fimH1, faeG, astA, itcA | w.t. 4 | w.t. | w.t. |
3651 | A | 11-23 | ESBL | AMP, CAZ, SXT | blaCTX-M-1, sul2, dfr1, dfr17 | fimH1, fimH2, fedA, estIa, estIb | w.t. | w.t. | w.t. |
3730 | B1 | 23-31 | n.a. 6 | AMP, SXT | n.dt. 5 | fimH1, fimH2, eaeA, ent | w.t. | w.t. | w.t. |
4245 | A | 11-23 | n.a. | NR | n.dt. | fimH1, fimH2, faeG, estIa, estIb | w.t. | w.t. | w.t. |
4268 | A | 27-0 | n.a. | TET | tet(A) | fimH1, faeG, astA, itcA | n.d. | n.d. | n.d. |
101_76 | A | 27-0 | n.a. | AMP, PIP, SXT | sul2, dfr1 | fimH1, faeG, astA, itcA, hlyA | w.t. | w.t. | w.t. |
103_78 | C | 11-24 | ESBL | AMP, PIP, TET, FEP | blaCTX-M-1, tet(A), tet(B) | fimH1, estIa | w.t. | w.t. | w.t. |
104_79 | B1 | 6-31 | n.a. | TET | tet(A) | fimH1 | n.d. 3 | n.d. | n.d. |
105_80 | B1 | 1367-86 | n.a. | AMP, TET, SXT, CIP | tet(A), tet(B), sul2, dfr1, dfr12 | fimH1, fimH2 | gyrA S83L, gyrA S83A, gyrA D87N | w.t. | w.t. |
106_81 | clade 1 | 11-53 | n.a. | AMP, TET | tet(A) | fimH1, fimH2, astA, aidA | n.d. | n.d. | n.d. |
107_82 | A | 11-23 | n.a. | TET | tet(B) | fimH1, fimH2, aidA | n.d. | n.d. | n.d. |
108_83 | A | 27-0 | n.a. | NR | n.dt. | fimH1, faeG, astA, itcA | n.d. | n.d. | n.d. |
109_84 | B1 | 4-0 | n.a. | AMP | blaTEM-1 | fimH1, fimH2, iucD, papC | n.d. | n.d. | n.d. |
17_1 | A | 7-54 | n.a. | NR | n.dt. | fimH1, fimH2 | n.d. | n.d. | n.d. |
18_2 | D | 28-65 | n.a. | AMP, PIP, TET, TOB | tet(B), aadA1 | fimH1, fimH2, fedA, astA, itcA, estIb | w.t. | w.t. | w.t. |
19_3 | C | 11-54 | ESBL | AMP, PIP, TET, CTX, CHL, SXT, CIP | blaTEM-1, blaCTX-M-1, tet(B), catA, sul2, dfr17, qnrS | fimH1, fimH2, iucD, papC | gyrA S83L, gyrA D87N | parC A56T | w.t. |
20_4 | A | 11-23 | n.a. | TET, SXT | tet(A), tet(B), sul2, dfr1 | fimH1 | n.d. | n.d. | n.d. |
21_5 | A | 29-32 | n.a. | NR | n.dt. | fimH1, fimH2 | n.d. | n.d. | n.d. |
22_6 | A | 11-53 | ESBL | AMP, PIP, CAZ | blaTEM-1, blaCTX-M-1 | fimH1, fimH2 | n.d. | n.d. | n.d. |
23_7 | G | 45-97 | n.a. | AMP, TET, SXT | tet(A), sul1, sul2, dfr17 | fimH1, fimH2, iucD, papC, pic | w.t. | w.t. | w.t. |
24_8 | B2 | 40-22 | n.a. | AMP, PIP, TET, CTX, FEP, ATM | tet(A) | fimH1, fimH2, iucD, papC | w.t. | w.t. | w.t. |
25_9 | A | 11-41 | n.a. | AMP, TET | n.dt. | fimH1 | n.d. | n.d. | n.d. |
27_11 | B1 | 4-31 | n.a. | AMP | blaTEM-1 | fimH1, fimH2 | n.d. | n.d. | n.d. |
28_12 | F | 88-58 | n.a. | AMP, TET, GEN, SXT, CIP | tet(B), cmlA, sul2, dfr17 | fimH1, fimH2, astA, faeG, iucD, papC | gyrA S83L, gyrA D87N | parC E84G | parE I355T |
29_13 | F | 88-54 | n.a. | TET, GEN, SXT, CIP | tet(B), sul2, dfr17 | fimH1, fimH2, astA, iucD, papC | gyrA S83L, gyrA D87N | parC E84G | parE I355T |
26_10 | B1 | 19-86 | AmpC | AMP, TET, CAZ | blaCMY-2, blaTEM-1 | fimH1 | n.d. | n.d. | n.d. |
2945_3 | C | 4-54 | n.a. | NR | n.dt. | fimH1, astA, estIa | w.t. | w.t. | w.t. |
30_14 | A | 7-54 | n.a. | AMP, TET | blaTEM-1, tet(A), tet(B) | fimH1, fimH2 | n.d. | n.d. | n.d. |
32_16 | C | 4-35 | ESBL | AMP, PIP, TET | blaTEM-1, tet(A) | fimH1, fimH2, iucD, papC | n.d. | n.d. | n.d. |
33_17 | A | 7-0 | n.a. | TET | tet(A) | fimH1 | n.d. | n.d. | n.d. |
34_18 | C | 4-24 | n.a. | AMP, PIP, CTX, FEP, GEN, CHL, CIP, ATM | blaTEM-1, tet(A), tet (B), aadA1, florF | fimH1, fimH2, iucD, papC | gyrA S83L, gyrA D87N | w.t. | w.t. |
35_19 | A | 11-54 | ESBL | AMP, TET, CAZ, SXT, CIP | tet(A), sul3, dfr1, qnrS | fimH1, fimH2, fanA, estIa | gyrA S83L, gyrA D87N | w.t. | w.t. |
36_20 | D | 11-32 | n.a. | AMP, PIP, TET | blaTEM-1, tet(A) | fimH1, fimH2, iucD, papC | n.d. | n.d. | n.d. |
37_21 | A | 11-27 | n.a. | NR | n.dt. | fimH1, fimH2, astA, estIa, stxa2 | w.t. | w.t. | w.t. |
38_22 | B1 | 65-32 | n.a. | AMP, TET, SXT, CIP | blaTEM-1, tet(B), sul2, dfr17 | fimH1, fimH2, iucD, papC | gyrA S83L, gyrA D87N | w.t. | w.t. |
39_23 | C | 11-23 | n.a. | AMP, TET, CHL, SXT, CIP | blaTEM-1, tet(A), cml-A1, sul3, florF, dfr1, dfr12 | fimH1, fimH2 | gyrA S83L, gyrA D87N | w.t. | w.t. |
40_24 | B1 | 23-158 | n.a. | TET | tet(B) | fimH1, fimH2, fasA, estIa | n.d. | n.d. | n.d. |
40541_1 | C | 4-27 | n.a. | NR | n.dt. | fimH1, fimH2, iucD, papC | n.d. | n.d. | n.d. |
40541_2 | A | 4-27 | n.a. | AMP, PIP, TET | blaTEM-1, tet(A) | fimH1, faeG, astA, itcA | w.t. | w.t. | w.t. |
41_25 | B1 | 4-57 | n.a. | NR | n.dt. | fimH1, fimH2, hlyA | n.d. | n.d. | n.d. |
42_26 | A | 11-54 | n.a. | AMP, TET | blaTEM-1, tet(B) | fimH1, fimH2, hlyA | n.d. | n.d. | n.d. |
43_27 | A | 11-54 | n.a. | AMP, TET | blaTEM-1, tet(A) | fimH1, fimH2 | w.t. | w.t. | w.t. |
4347_1 | B1 | 579-0 | n.a. | AMP, TET, CHL, GEN, TOB | tet(A), aadA1 | fimH1, estIa, fasA | n.d. | n.d. | n.d. |
4347_2 | B1 | 579-0 | n.a. | AMP, TET | blaTEM-1, tet(A) | fimH1, estIa, fasA | n.d. | n.d. | n.d. |
4347_3 | B1 | 579-0 | n.a. | TET, FOF | blaTEM-1, tet(A) | fimH1, estIa, fasA | n.d. | n.d. | n.d. |
44_28 | C | 4-39 | ESBL | AMP, PIP, TET, CAZ, SXT | blaTEM-1, tet(A), sul2, sul3 | fimH1, fimH2, iucD, papC | n.d. | n.d. | n.d. |
448_1 | A | 27-0 | ESBL | AMP, CAZ, FEP, ATM | blaTEM-1, blaCTX-M-1 | fimH1, faeG, astA, itcA | w.t. | w.t. | w.t. |
448_2 | A | 27-0 | ESBL | AMP, PIP, CTX, FEP, ATM | blaTEM-1, blaCTX-M-1 | fimH1, faeG, astA, itcA | n.d. | n.d. | n.d. |
45_29 | A | 11-0 | ESBL | AMP, TET, CAZ | blaTEM-1, blaCTX-M-1, tet(A) | fimH1, fimH2 | n.d. | n.d. | n.d. |
46_30 | A | 11-23 | n.a. | TET | tet(A) | fimH1, fimH2, aidA, stx2e | w.t. | w.t. | w.t. |
47_31 | A | 11-0 | n.a. | AMP, TET, GEN, TOB, CIP | tet(B), aac3′-II, aac5-lb-cr | fimH1, astA, iucD, papC | gyrA S83L, gyrA D87N | w.t. | w.t. |
48_32 | A | 11-25 | ESBL | AMP, PIP, CTX | blaTEM-1, blaCTX-M-1 | fimH1, fimH2 | n.d. | n.d. | n.d. |
49_33 | B1 | 4-86 | n.a. | AMP, TET | tet(A), tet(G) | fimH1, fimH2, iucD, papC | n.d. | n.d. | n.d. |
50_34 | B1 | 23-158 | n.a. | TET | tet(A) | fimH1, fimH2, pic | n.d. | n.d. | n.d. |
51_15 | B1 | 19-32 | n.a. | AMP, TET | tet(B) | fimH1 | w.t. | w.t. | w.t. |
566_1 | D | 28-41 | n.a. | NR | n.dt. | fimH1, fimH2, fedA, estIa, estIb, aidA, hlyA, stxa2, stx2e | w.t. | w.t. | w.t. |
566_2 | D | 28-41 | n.a. | NR | n.dt. | fimH1, fimH2, fedA, estIa, aidA, hlyA, stxa2, stx2e | n.d. | n.d. | n.d. |
566_3 | D | 28-41 | n.a. | NR | n.dt. | fimH1, fimH2, fedA, estIa, aidA, hlyA, stxa2, stx2e | n.d. | n.d. | n.d. |
60_35 | A | 11-54 | n.a. | AMP, PIP, TET, CTX, CHL, SXT, CIP | blaTEM-1, tet(A), sul1, sul2, sul3, dfr1, dfr12, dfr17, catA, cmlA1 | fimH1, fimH2 | gyrA S83L, gyrA D87N | w.t. | w.t. |
61_36 | B1 | 19-38 | n.a. | AMP, TET, GEN, SXT, CIP | blaTEM-1, tet(A), tet(B), sul1, sul2, dfr17, aadA1, aadA5, qnrS | fimH1, fimH2, iucD, papC | gyrA S83L, gyrA D87N | w.t. | w.t. |
62_37 | A | 7-54 | n.a. | AMP, TET | blaTEM-1, tet(A), tet(B) | fimH1, fimH2 | n.d. | n.d. | n.d. |
63_38 | B1 | 7-31 | n.a. | AMP, PIP, TET, CTX, CIP | blaTEM-1, tet(A), qnrS | fimH1, fimH2, astA | gyrA S83L, gyrA D87N | w.t. | w.t. |
630_2 | A | 27-0 | n.a. | NR | n.dt. | fimH1, fimH2, faeG, astA, itcA | n.d. | n.d. | n.d. |
64_39 | B2 | 52-5 | ESBL | AMP, PIP, TET, CTX | blaTEM-1, tet(A) | fimH1, fimH2, astA, papC, iucD, cnf1 | n.d. | n.d. | n.d. |
65_40 | A | 11-0 | ESBL | AMP, TET, SXT, CTX?, CAZ | blaTEM-1, blaCTX-M-1, tet(A), tet(B), sul2 | fimH1 | n.d. | n.d. | n.d. |
66_41 | B1 | 41-54 | ESBL | AMP, PIP, TET, CTX, FEP, SXT, ATM | blaTEM-1, blaCTX-M-1, tet(A), tet(B), sul2, dfr1, dfr12 | fimH1, fimH2 | w.t. | w.t. | w.t. |
67_42 | A | 27-0 | n.a. | AMP | n.dt. | fimH1, astA, faeG, itcA, hlyA | w.t. | w.t. | w.t. |
68_43 | A | 27-0 | n.a. | AMP, PIP | n.dt. | fimH1, astA, faeG, itcA, hlyA | w.t. | w.t. | w.t. |
69_44 | A | 41-38 | n.a. | TET | tet(B) | fimH1, fimH2, iucD, papC | w.t. | w.t. | w.t. |
70_45 | B1 | 579-0 | n.a. | AMP, CHL, SXT | sul2, dfr1, catA | fimH1, estIa, fasA | w.t. | w.t. | w.t. |
71_46 | A | 11-54 | n.a. | AMP, PIP | blaTEM-1 | fimH1 | n.d. | n.d. | n.d. |
72_47 | A | 11-45 | n.a. | NR | n.dt. | fimH1, fimH2, astA, aidA | n.d. | n.d. | n.d. |
73_48 | A | 11-45 | n.a. | CHL, SXT? | cmlA1 | fimH1, fimH2, astA, aidA | w.t. | w.t. | w.t. |
74_49 | A | 11-23 | n.a. | AMP, TET | blaTEM-1, tet(A) | fimH1, fimH2 | n.d. | n.d. | n.d. |
75_50 | A | 11-24 | n.a. | AMP, TET | blaTEM-1, tet(A), tet(B) | fimH1, fimH2 | n.d. | n.d. | n.d. |
76_51 | A | 27-0 | n.a. | NR | n.dt. | fimH1, faeG, astA, itcA | w.t. | w.t. | w.t. |
77_52 | E | 7-31 | n.a. | NR | n.dt. | fimH1, fimH2 | n.d. | n.d. | n.d. |
78_53 | A | 11-23 | n.a. | TET | tet(A) | fimH1, fimH2 | n.d. | n.d. | n.d. |
79_54 | A | 11-24 | n.a. | TET | tet(A) | fimH1, fimH2 | n.d. | n.d. | n.d. |
80_55 | A | 11-54 | n.a. | TET, CHL | tet(A), cmlA1 | fimH1, fimH2 | n.d. | n.d. | n.d. |
81_56 | A | 4-24 | n.a. | NR | n.dt. | fimH1, fimH2 | n.d. | n.d. | n.d. |
82_57 | B1 | 6-289 | n.a. | NR | n.dt. | fimH1, fimH2, astA, fedA, aidA, stx2e | w.t. | w.t. | w.t. |
83_58 | B2 | 11-25 | n.a. | AMP, PIP, FOF | blaTEM-1, fosB | fimH1, cnf1 | n.d. | n.d. | n.d. |
84_59 | B1 | 23-158 | ESBL | AMP, CTX, FEP | blaTEM-1 blaCTX-M-1 | fimH1, fimH2 | n.d. | n.d. | n.d. |
85_60 | A | 4-27 | ESBL | AMP, PIP, TET, CTX, CAZ, FEP | blaTEM-1, tet(B) | fimH1, iucD, papC | n.d. | n.d. | n.d. |
86_61 | B1 | 41-0 | n.a. | NR | n.dt. | fimH1, fimH2, iucD, papC | n.d. | n.d. | n.d. |
87_62 | C | 11-35 | ESBL | AMP, PIP | blaTEM-1 | fimH1, iucD, papC | n.d. | n.d. | n.d. |
88_63 | A | 11-25 | n.a. | AMP, CTX | blaTEM-1, blaCTX-M-1 | fimH1, fimH2 | n.d. | n.d. | n.d. |
89_64 | A | 27-0 | n.a. | TET, SXT, CIP | tet(A), sul1, sul2, dfr1 | fimH, astA, iucD, papC | gyrA S83L, gyrA D87N | w.t. | w.t. |
90_65 | A | 27-0 | n.a. | TET, GEN, TOB, | tet(A), aadA1, aadA2, aadA5 | fimH1, faeG, astA, itcA | n.d. | n.d. | n.d. |
91_66 | A | 11-25 | n.a. | NR | fimH1, fimH2 | n.d. | n.d. | n.d. | |
92_67 | A | 11-398 | ESBL | AMP, TET | blaTEM-1, tet(B) | fimH1, fimH2 | n.d. | n.d. | n.d. |
93_68 | B1 | 4-32 | ESBL | AMP, TET, CHL, CIP | blaTEM-1, tet(C), catA, florF, cmlA | fimH1, fimH2, iucD, papC | gyrA S83L, gyrA D87N | w.t. | w.t. |
94_69 | B1 | 41_86 | n.a. | AMP, TET, SXT | blaTEM-1, tet(A), sul1, sul2, aadA1 | fimH1, fimH2 | w.t. | w.t. | w.t. |
95_70 | A | 11-34 | ESBL | AMP, PIP, TET | blaTEM-1, blaCTX-M-1, tet(A), tet(B) | fimH1, fimH2 | n.d. | n.d. | n.d. |
96_71 | B1 | 4-27 | n.a. | NR | n.dt. | fimH1, iucD, papC | n.d. | n.d. | n.d. |
97_72 | A | 27-54 | n.a. | TET | tet(A) | fimH1, fimH2 | n.d. | n.d. | n.d. |
98_73 | A | 7-54 | n.a. | NR | n.dt. | fimH1, fimH2, astA, aidA, bfpB | w.t. | w.t. | w.t. |
99_74 | B2 | 40-22 | n.a. | AMP, PIP, TET, SXT | tet(A), dfr1, dfr17 | fimH1, fimH2, papC, iucD, cnf1 | w.t. | w.t. | w.t. |
3835_2 | B1 | 4-440 | n.a. | AMP, PIP, TET, CHL, SXT, COL | mcr1 | fimH1, fimH2, astA, eaeA, ent, escV, hlyA | w.t. | w.t. | w.t. |
3835_3 | A | 11-54 | n.a. | AMP, PIP, TET, CHL, SXT, COL | mcr1 | fimH1, fimH2 | w.t. | w.t. | w.t. |
3835_4 | A | 11-54 | n.a. | AMP, PIP, TET, CHL, SXT, COL | mcr1 | fimH1, fimH2 | w.t. | w.t. | w.t. |
Isolate | Phylogroup | CH-Clonotype | Serotype 1 | Sequence-Type | ESBL 6 | AMR Phenotype 2 | WGS AMR Genes | WGS VAG | QRDR 4 GyrA 3 | QRDR 4 ParC 3 | QRDR 4 ParE 3 |
---|---|---|---|---|---|---|---|---|---|---|---|
1450 | A | 27-0 | ONT:H10 | clustered 100 | ESBL | AMP | blaTEM-1B *, blaCTX-M-1 *, mdfA, mphA | faeG *, astA *, capU, cba5, cia, cma *, gad, iha, ItcA *, stb *, terC, traT | w.t. | w.t. | w.t. |
3651 | A | 11-23 | ONT:H32 | 10 | ESBL | AMP, CAZ, SXT | blaCTX-M-1, sul2, dfrA17, aadA5, mdfA | cib, fedA, fedF, gad, iss, ompT, sta1, stb, terC, traT | w.t. | w.t. | w.t. |
3730 | B1 | 23-31 | ONT:H21 | 56 | n.a. 7 | AMP, SXT | blaTEM-1B, sul1 *, sul2 *, dfrA1 *, aadA1 *, aph(3″)-Ib *, aph(6)-Id *, mdfA, mphB | cma, cvaC, gad, hlyF, iroN, iss, IpfA, ompT, sitA, terC, traT | w.t. | w.t. | w.t. |
4245 | A | 11-23 | ONT:H26 | 1112 | n.a. | NR | sul1 *, aadA1 * | faeG, cea, cib, gad, sepA*, sta1 *, stb, terC, traT | w.t. | w.t. | w.t. |
101_76 | A | 27-0 | ONT:H10 | clustered 100 | n.a. | AMP, PIP, SXT | blaTEM-1C *, mdfA, sul2 *, dfrA1 *, qnrD1 *, aph(3″)-Ib *, aph(6)-Id * | faeG, astA, capU, gad, iha, stb, terC, traT | w.t. | w.t. | w.t. |
103_78 | C | 11-24 | ONT:H12 | 10 | ESBL | AMP, PIP, TET, FEP | blaCTX-M-1, tet(B) *, sul1 *, mdfA, mphA, aadA1 *, | cia, hra, iha, iroN, ompT, papC, terC, traT | w.t. | w.t. | w.t. |
18_2 | D | 28-65 | O108:H4 | 42 | n.a. | AMP, PIP, TET, TOB | blaTEM-1B *, tet(B) *, aac(3)-IV *, aadA1, aph(3″)-Ib *, aph(6)-Id *, aph(4)-Ia *, mdfA | air, astA, chuA, fedA, fedF, hra, iha, iss, IpfA, ItcA, neuC, ompT, stb, terC, traT | w.t. | w.t. | w.t. |
19_3 | C | 11-54 | ONT:H10 | 744 | ESBL | AMP, PIP, TET, CTX, CHL, SXT, CIP | tet(B) *, sul1, sul2 *,dfrA17, aph(3′)-Ia *, aph(3″)-Ib *, aph(6)-Id *, aadA5, catA1 *, mdfA | cba, cia, cma *, cvaC, etsC *, gad, hlyF, iroN, iss, iucC, iutA, mchF, ompT *, sitA, terC, traT, tsh * | gyrA S83L, gyrA D87N | parC A56T | w.t. |
23_7 | G | 45-97 | ONT:H4 | 117 | n.a. | AMP, TET, SXT | blaTEM-1B, sul1, sul2 *, tet(A) *, dfrA17, mdfA, mphA, aph(3″)-Ib *, aph(6)-Id *, aadA5 | cea, chuA, fyuA, gad, hlyE, hlyF, ireA, iroN, irp2, iss, iucC, iutA, katP, IpfA, ompT, pic, sitA, terC, traT, vat | w.t. | w.t. | w.t. |
24_8 | B2 | 40-22 | 025:H4 | 131 | n.a. | AMP, PIP, TET, CTX, FEP, ATM | blaTEM-1C, blaCTX-M-1 *, tet(A) *, aph(3′)-Ia, mphA *, mdfA, qnrS1 * | chuA, cia, cvaC *, etsC, fyuA, gad, hlyF, hra, ibeA, iroN, irp2, iss, iucC, iutA, kpsE, kpsMII, mchF *, ompT, papA-F48, papC, sitA, terC, traT, usp, yfcV | w.t. | w.t. | w.t. |
28_12 | F | 88-58 | ONT:H34 | 354 | n.a. | AMP, TET, GEN, SXT, CIP | blaTEM-1B, sul2 *, tet(B) *, dfrA17 *, aph(3″)-Ib *, aph(6)-Id *, aac(3)-IId, aph(3′)-Ia *, mdfA | air, astA, chuA, eiIA, gad, hra, ibeA, iucC, iutA, kpsE, kpsMII_K5, IpfA, sitA, terC, usp, yfcV | gyrA S83L, gyrA D87N | parC E84G | parE I355T |
29_13 | F | 88-54 | ONT:H34 | 354 | n.a. | TET, GEN, SXT, CIP | tet(B) *, sul2 *, dfrA17, aph(3″)-Ib *, aac(3)-IId, aph(6)-Id *, mdfA | air, astA, chuA, eiIA, gad, hra, ibeA, iucC, iutA, kpsE, kpsMII_K5, IpfA, sitA, terC, usp, yfcV | gyrA S83L, gyrA D87N | parC E84G | parE I355T |
2945_3 | C | 4-54 | O8:H17 | 23 | n.a. | NR | mdfA | asta, cia *, fanA, fyuA, gad, irp2, iss, IpfA, mcbA, ompT, sepA, terC, traT | w.t. | w.t. | w.t. |
35_19 | A | 11-54 | ONT:H9 | 10 | ESBL | AMP, TET, CAZ, SXT, CIP | blaTEM-52B *, tet(B), sul1 *, dfrA1 *,aph(3″)-Ib, aadA1, aph(6)-Id, mdfA | cia, cib, fanA, gad, iss, terC, traT * | gyrA S83L, gyrA D87N | w.t. | w.t. |
37_21 | A | 11-27 | ONT:H16 | neuer ST | n.a. | NR | mdfA | astA, gad, iha, iss, IpfA, sepA, sta1, stb, stx2A, stx2B, terC, traT, stx2 | w.t. | w.t. | w.t. |
40541_2 | A | 4-27 | n.t. | 100 | n.a. | AMP, PIP, TET | blaTEM-1B, tet(A) *, sul2 *, dfrA14 *, mdfA, aph(3″)-Ib *, aph(6)-Id * | faeG *, astA *, capU, cib, gad, iha, ItcA *, stb *, terC, traT | w.t. | w.t. | w.t. |
4347_1 | B1 | 579_0 | O64:H- | 6404 | n.a. | AMP, TET, CHL, GEN, TOB | blaTEM-1B *, tet(A), sul1, qnrS1, aph(3″)-Ib, aph(6)-Id, aph(4)-Ia *, aac(3)-IV *, aadA1, mdfA, catA1 * | cba, cea, cma, fasA, gad, iss, IpfA, ompT, terC | w.t. | w.t. | w.t. |
448_1 | A | 27-0 | ONT:H10 | clustered 100 | ESBL | AMP, CAZ, FEP, ATM | blaCTX-M-1 *, blaTEM-1B, mphA *, mdfA | faeG *, astA, capU, cba, cia, cma, gad, iha, ItcA, stb, terC, traT | w.t. | w.t. | w.t. |
46_30 | A | 11-23 | O142:H27 | neu icd | n.a. | TET | tet(A), mdfA | stx2, sepA, stx2A, stx2B, terC, traT | w.t. | w.t. | w.t. |
51_15 | B1 | 19-32 | ONT H49 | 1079 | n.a. | AMP, TET | blaTEM-1B *, tet(B) *, mdfA, aph(3″)-Ib, aph(6)-Id | gad, IpfA, terC | w.t. | w.t. | w.t. |
566_1 | D | 28-41 | O138:H14 | 760 | n.a. | NR | mdfA | stx2, chuA, fedA, fedF, gad, hra, iha, iss, ompT, sta1, stb, stx2A, stx2B, terC, traT | w.t. | w.t. | w.t. |
66_41 | B1 | 41-54 | O88:H21 | 101 | ESBL | AMP, PIP, TET, CTX, FEP, SXT, ATM | blaTEM-1B *, blaCTX-M-1, tet(B) *, dfrA1 *, aadA1 *, qnrS1 *, mdfA, mphA | gad, hra, iss, IpfA, ompT, terC | w.t. | w.t. | w.t. |
67_42 | A | 27-0 | ONT:H10 | clustered 100 | n.a. | AMP | blaTEM-1B, mdfA | faeG, astA, capU, cba, cia, cma, gad, iha, ItcA, stb, terC, traT | w.t. | w.t. | w.t. |
68_43 | A | 27-0 | ONT:H10 | clustered 100 | n.a. | AMP, PIP | blaTEM-1B, mdfA | faeG *, astA, capU, cba, cia, cma, gad, iha, ItcA, stb, terC traT * | w.t. | w.t. | w.t. |
69_44 | A | 41-38 | ONT:H21 | 101 | n.a. | TET | tet(B) *, mdfA, aph(3″)-Ib, aph(6)-Id | cia, cvaC *, etsC, gad, hlyF, iroN, iss, iucC, iutA, IpfA, ompT, sitA, terC, traT | w.t. | w.t. | w.t. |
70_45 | B1 | 579-0 | n.t. | 6404 | n.a. | AMP, CHL, SXT | blaTEM-1B, sul1, sul2 *, dfrA1 *, aadA1, aph(3″)-Ib *, aph(6)-Id *, mdfA, catA1 | cba, cea, cia, cma, fasA, gad, iss, IpfA, ompT, terC, traT | w.t. | w.t. | w.t. |
73_48 | A | 11-45 | ONT:H6 | 10 | n.a. | CHL, SXT | cmlA1,sul3, dfrA12, aadA2, aadA1, mdfA | astA, gad, stb, terC | w.t. | w.t. | w.t. |
76_51 | A | 27-0 | ONT:H10 | 100 | n.a. | NR | sul2 *, mdfA, aph(6)-Id *, aph(3″)-Ib * | faeG *, astA, capU, cba, cma, gad, iha, terC, traT | w.t. | w.t. | w.t. |
82_57 | B1 | 6-289 | O121:H10 | 641 | n.a. | NR | mdfA | stx2, astA, fedA, fedF, gad, IpfA, sepA, stx2A, stx2B, terC, traT | w.t. | w.t. | w.t. |
94_69 | B1 | 41-86 | O82:H8 | 6365 | n.a. | AMP, TET, SXT | mdfA, sul1, tet(C), aadA1 | cea, cnf1, cvaC, etsC *, gad, hlyF *, hra, iroN, iss, iucC, iutA, IpfA, mchF, ompT *, papA-F1651A, papC, sitA, terC, traT, tsh | w.t. | w.t. | w.t. |
98_73 | A | 7-54 | ONT:H10 | neu icd | n.a. | NR | mdfA | astA, fyuA, irp2, papC, stb, terC, traT | w.t. | w.t. | w.t. |
99_74 | B2 | 40-22 | O25:H4 | 131 | n.a. | AMP, PIP, TET, SXT | blaTEM-1C, aadA1, mdfA, tet(A) *, dfrA1, sul3 | cea, chuA, cia, cnf1, cvaC, etsC, fyuA, gad, hlyF, hra, ibeA, iroN, irp2, iss, iucC, iutA, kpsE, kpsMII_K5, mchF, ompT, papA_F14, papC, sitA, terC, traT, usp, yfcV | w.t. | w.t. | w.t. |
3835_2 | B1 | 4-440 | O26:H11 | 88 | n.a. | AMP, PIP, TET, CHL, SXT, COL | aadA1 *, aadA2 *, cmlA1 *, mcr-1.1 *, tet(A) *, tet(M), mefB *, mdfA, dfrA12 *, blaTEM-1B, sul3 * | astA, cif, eaE, efa1, ehxA, espP, espA, espB, espF, espJ, espP, fyuA, gad, iha, irp2, iss, katP, IpfA, nleA, nleB, ompT, terC, tir, traT * | w.t. | w.t. | w.t. |
3835_3 | A | 11-54 | O2:H2 | 10 | n.a. | AMP, PIP, TET, CHL, SXT, COL | tet(A) *, sul3, aph(3″)-Ib, aadA2 *, aph(6)-Id, mdf(A), dfrA12 *, cmlA1 *, mcr-1.1, blaTEM-1D | cea, cvaC, gad, hra, iha, iss, katP, mchF, terC, traT * | w.t. | w.t. | w.t. |
3835_4 | A | 11-54 | O2:H2 | 10 | n.a. | AMP, PIP, TET, CHL, SXT, COL | tet(A) *, sul3 *, aph(3″)-Ib, aadA2, aph(6)-Id, mdf(A),dfrA12, cmlA1, mcr-1.1, blaTEM-1D | cea, cvaC, gad, hra, iha, iss, katP, mchF, terC, traT | w.t. | w.t. | w.t. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernreiter-Hofer, T.; Schwarz, L.; Müller, E.; Cabal-Rosel, A.; Korus, M.; Misic, D.; Frankenfeld, K.; Abraham, K.; Grünzweil, O.; Weiss, A.; et al. The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms 2021, 9, 1676. https://doi.org/10.3390/microorganisms9081676
Bernreiter-Hofer T, Schwarz L, Müller E, Cabal-Rosel A, Korus M, Misic D, Frankenfeld K, Abraham K, Grünzweil O, Weiss A, et al. The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms. 2021; 9(8):1676. https://doi.org/10.3390/microorganisms9081676
Chicago/Turabian StyleBernreiter-Hofer, Tanja, Lukas Schwarz, Elke Müller, Adriana Cabal-Rosel, Maciej Korus, Dusan Misic, Katrin Frankenfeld, Kerstin Abraham, Olivia Grünzweil, Astrid Weiss, and et al. 2021. "The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates" Microorganisms 9, no. 8: 1676. https://doi.org/10.3390/microorganisms9081676
APA StyleBernreiter-Hofer, T., Schwarz, L., Müller, E., Cabal-Rosel, A., Korus, M., Misic, D., Frankenfeld, K., Abraham, K., Grünzweil, O., Weiss, A., Feßler, A. T., Allerberger, F., Schwarz, S., Szostak, M. P., Ruppitsch, W., Ladinig, A., Spergser, J., Braun, S. D., Monecke, S., ... Loncaric, I. (2021). The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms, 9(8), 1676. https://doi.org/10.3390/microorganisms9081676