Strategies to Meet Nutritional Requirements and Reduce Boar Taint in Meat from Entire Male Pigs and Immunocastrates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Assessment of Energy Requirements
3. Energy Concentration
4. Feeding Level
5. Amino Acid Requirements
6. The Special Requirements of Immunocastrates
7. Dietary Control of Boar Taint
7.1. Chicory Root and Inulin
7.2. Hydrolysable Tannins
7.3. Raw Potato Starch
7.4. Other Ingredients
8. Carcass and Meat Quality Are Not Related to Boar Taint
9. Practical Considerations with Feeding Entire Males or Immunocastrates
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bee, G.; Chevillon, P.; Bonneau, M. Entire male pig production in Europe. Anim. Prod. Sci. 2015, 55, 1347–1359. [Google Scholar] [CrossRef]
- Ruiz-Ascacibar, I.; Stoll, P.; Kreuzer, M.; Bee, G. Dietary crude protein and amino acid restriction has a different impact on the dynamic of protein, amino acid and fat deposition in entire male, castrated and female pigs. Animal 2019, 13, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Ascacibar, I.; Stoll, P.; Kreuzer, M.; Boillat, V.; Spring, P.; Bee, G. Impact of amino acid and CP restriction from 20 to 140 kg BW on performance and dynamics in empty body protein and lipid deposition of entire male, castrated and female pigs. Animal 2017, 11, 394–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunshea, F.; King, R.; Campbell, R.; Sainz, R.; Kim, Y. Interrelationships between sex and ractopamine on protein and lipid deposition in rapidly growing pigs. J. Anim. Sci. 1993, 71, 2919–2930. [Google Scholar] [CrossRef] [PubMed]
- Aaslyng, M.D.; Støier, S.; Lund, B.W.; Nielsen, D.B. Slaughtering of entire male pigs seen from the slaughterhouse perspective. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012003. [Google Scholar] [CrossRef]
- Bonneau, M.; Walstra, P.; Claudi-Magnussen, C.; Kempster, A.J.; Tornberg, E.; Fischer, K.; Diestre, A.; Siret, F.; Chevillon, P.; Claus, R.; et al. An international study on the importance of androstenone and skatole for boar taint: IV. Simulation studies on consumer dissatisfaction with entire male pork and the effect of sorting carcasses on the slaughter line, main conclusions and recommendations. Meat Sci. 2000, 54, 285–295. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Colantoni, C.; Howard, K.; McCauley, I.; Jackson, P.; Long, K.A.; Lopaticki, S.; Nugent, E.A.; Simons, J.A.; Walker, J.; et al. Vaccination of boars with a GnRH vaccine (Improvac) eliminates boar taint and increases growth performance. J. Anim. Sci. 2001, 79, 2524–2535. [Google Scholar] [CrossRef]
- Pauly, C.; Luginbuhl, W.; Ampuero, S.; Bee, G. Expected effects on carcass and pork quality when surgical castration is omitted-results of a meta-analysis study. Meat Sci. 2012, 92, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Pauly, C.; Spring, P.; O’Doherty, J.V.; Ampuero Kragten, S.; Bee, G. Growth performance, carcass characteristics and meat quality of group-penned surgically castrated, immunocastrated (Improvac(R)) and entire male pigs and individually penned entire male pigs. Animal 2009, 3, 1057–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batorek, N.; Candek-Potokar, M.; Bonneau, M.; Van Milgen, J. Meta-analysis of the effect of immunocastration on production performance, reproductive organs and boar taint compounds in pigs. Animal 2012, 6, 1330–1338. [Google Scholar] [CrossRef]
- Bikker, P.; Karabinas, V.; Verstegen, M.W.; Campbell, R.G. Protein and lipid accretion in body components of growing gilts (20 to 45 kg) as affected by energy intake. J. Anim. Sci. 1995, 73, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Van Milgen, J.; Quiniou, N.; Noblet, J. Modelling the relation between energy intake and protein and lipid deposition in growing pigs. Anim. Sci. 2000, 71, 119–130. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Allison, J.R.; Bertram, M.; Boler, D.D.; Brossard, L.; Campbell, R.; Crane, J.P.; Hennessy, D.P.; Huber, L.; de Lange, C.; et al. The effect of immunization against GnRF on nutrient requirements of male pigs: A review. Animal 2013, 7, 1769–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiniou, N.; Courboulay, V.; Goues, T.; Le Roux, A.; Chevillon, P. Incidence des conditions d’élevage sur les performances de croissance, les caractéristiques de carcasse et le risque d’odeur des porcs mâles entiers. J. Rech. Porc. 2013, 45, 57–62. [Google Scholar]
- Maribo, H.; Christiansen, M. Economy in Production of Entire Males; Meddelelse nr. 984; Videncenter for Svineproduktion: Foulum, Denmark, 2013; Available online: https://svineproduktion.dk/publikationer/kilder/lu_medd/2013/984 (accessed on 20 September 2020).
- Huber, L.; Squires, E.J.; de Lange, C.F.M. Dynamics of nitrogen retention in entire male pigs immunized against gonadotropin-releasing hormone. J. Anim. Sci. 2013, 91, 4817–4825. [Google Scholar] [CrossRef]
- Needham, T.; Hoffman, L.C.; Gous, R.M. Growth responses of entire and immunocastrated male pigs to dietary protein with and without ractopamine hydrochloride. Animal 2017, 11, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Poulsen Nautrup, B.; Van Vlaenderen, I.; Aldaz, A.; Mah, C.K. The effect of immunization against gonadotropin-releasing factor on growth performance, carcass characteristics and boar taint relevant to pig producers and the pork packing industry: A meta-analysis. Res. Vet. Sci. 2018, 119, 182–195. [Google Scholar] [CrossRef]
- Squires, E.; Young, L.; Hacker, R.; Adeola, O. The role of growth hormones, ß-adrenergic agents and intact males in pork production: A review. Can. J. Anim. Sci. 1993, 73, 1–23. [Google Scholar] [CrossRef]
- Cronin, G.; Dunshea, F.; Butler, K.; McCauley, I.; Barnett, J.; Hemsworth, P. The effects of immuno-and surgical-castration on the behaviour and consequently growth of group-housed, male finisher pigs. Appl. Anim. Behav. Sci. 2003, 81, 111–126. [Google Scholar] [CrossRef]
- Black, J.; Campbell, R.; Williams, I.; James, K.; Davies, G. Simulation of energy and amino acid utilisation in the pig. Res. Dev. Agric. 1986, 3, 121–145. [Google Scholar]
- Quiniou, N.; Noblet, J. Effect of the dietary net energy concentration on feed intake and performance of growing-finishing pigs housed individually. J. Anim. Sci. 2012, 90, 4362–4372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesoly, R.; Weiler, U. Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2012, 2, 221–242. [Google Scholar] [CrossRef] [PubMed]
- Holinger, M.; Früh, B.; Hillmann, E. Group composition for fattening entire male pigs under enriched housing conditions-Influences on behaviour, injuries and boar taint compounds. Appl. Anim. Behav. Sci. 2015, 165, 47–56. [Google Scholar] [CrossRef]
- Holinger, M.; Hillmann, E.; Fruh, B. Prevalence of injuries and the resulting requirements in housing conditions of entire male pigs. Tieraerztl. Umsch. 2014, 69, 235–239. [Google Scholar]
- Quiniou, N.; Courboulay, V.; Salaün, Y.; Chevillon, P. Conséquences de la non castration des porcs males sur les performances de croissance et le comportement: Comparaison avec les mâles castrés et les femelles. J. Rech. Porc. 2010, 42, 113–118. [Google Scholar]
- Aymerich, P.; Soldevila, C.; Bonet, J.; Farré, M.; Gasa, J.; Coma, J.; Solà-Oriol, D. Interrelationships between sex and dietary lysine on growth performance and carcass composition of finishing boars and gilts. Transl. Anim. Sci. 2020, 4, txaa129. [Google Scholar] [CrossRef]
- Moore, K.L.; Mullan, B.P.; Campbell, R.G.; Kim, J.C. The response of entire male and female pigs from 20 to 100-kg liveweight to dietary available lysine. Anim. Prod. Sci. 2013, 53, 67–74. [Google Scholar] [CrossRef]
- Maribo, H.; Møller, H.; Thoning, H. Male Pigs Grow Faster Increasing the Protein and Energy Level in the Diet; Meddelelse nr. 1061; Videncenter for Svineproduktion: Foulum, Denmark, 2015; Available online: https://svineproduktion.dk/publikationer/kilder/lu_medd/2015/1061 (accessed on 21 September 2020).
- Martinez-Ramirez, H.R.; Jeaurond, E.A.; de Lange, C.F.M. Dynamics of body protein deposition and changes in body composition after sudden changes in amino acid intake: II. Entire male pigs. J. Anim. Sci. 2008, 86, 2168–2179. [Google Scholar] [CrossRef] [Green Version]
- Brunius, C.; Zamaratskaia, G.; Andersson, K.; Chen, G.; Norrby, M.; Madej, A.; Lundström, K. Early immunocastration of male pigs with Improvac®—Effect on boar taint, hormones and reproductive organs. Vaccine 2011, 29, 9514–9520. [Google Scholar] [CrossRef]
- Lealiifano, A.; Pluske, J.R.; Nicholls, R.; Dunshea, F.; Campbell, R.G.; Hennessy, D.; Miller, D.; Hansen, C.F.; Mullan, B. Reducing the length of time between slaughter and the secondary gonadotropin-releasing factor immunization improves growth performance and clears boar taint compounds in male finishing pigs. J. Anim. Sci. 2011, 89, 2782–2792. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.L.; Mullan, B.P.; Kim, J.C.; Dunshea, F.R. Standardized ileal digestible lysine requirements of male pigs immunized against gonadotrophin releasing factor. J. Anim. Sci. 2016, 94, 1982–1992. [Google Scholar] [CrossRef] [Green Version]
- Quiniou, N.; Monziols, M.; Colin, F.; Goues, T.; Courboulay, V. Effect of feed restriction on the performance and behaviour of pigs immunologically castrated with Improvac(R). Animal 2012, 6, 1420–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiler, U.; Götz, M.; Schmidt, A.; Otto, M.; Müller, S. Influence of sex and immunocastration on feed intake behavior, skatole and indole concentrations in adipose tissue of pigs. Animal 2013, 7, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Zamaratskaia, G. Regulation of porcine hepatic cytochrome p450—Implication for boar taint. Comput. Struct. Biotechnol. J. 2014, 11, 106–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamaratskaia, G.; Squires, E.J. Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal 2009, 3, 1508–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maribo, H.; Claudi-Magnussen, C.; Jensen, B.B. Effect of 15% Dried Chicory Root in Feed for Male Pigs; Meddelelse nr. 876; Videncenter for Svineproduktion: Foulum, Denmark, 2010; p. 14. Available online: https://svineproduktion.dk/publikationer/kilder/lu_medd/2010/876 (accessed on 21 September 2020).
- Maribo, H.; Jensen, B.B.; Thoning, H. Fibres Reduces Skatol in Male Pigs; Meddelelse nr. 1055; Videncenter for Svineproduktion: Foulum, Denmark, 2015; p. 13. Available online: https://svineproduktion.dk/publikationer/kilder/lu_medd/2015/1055 (accessed on 21 September 2020).
- Kjos, N.P.; Øverland, M.; Fauske, A.K.; Sørum, H. Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat. Livest. Sci. 2010, 134, 143–145. [Google Scholar] [CrossRef]
- Li, X.; Jensen, B.B.; Canibe, N. The mode of action of chicory roots on skatole production in entire male pigs is neither via reducing the population of skatole-producing bacteria nor via increased butyrate production in the hindgut. Appl. Environ. Microbiol. 2019, 85, e02327-18. [Google Scholar] [CrossRef] [Green Version]
- Aluwé, M.; Heyrman, E.; Theis, S.; Sieland, C.; Thurman, K.; Millet, S. Chicory fructans in pig diet reduce skatole in back fat of entire male pigs. Res. Vet. Sci. 2017, 115, 340–344. [Google Scholar] [CrossRef]
- Salmon, L.; Edwards, S. The effects of dietary fructo-oligosaccharide addition on boar taint compounds and performance in heavy slaughter weight boars and gilts. Anim. Feed Sci. Technol. 2015, 207, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Vhile, S.G.; Kjos, N.P.; Sørum, H.; Øverland, M. Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal 2012, 6, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Čandek-Potokar, M.; Škrlep, M.; Batorek Lukač, N.; Zamaratskaia, G.; Prevolnik Povše, M.; Velikonja Bolta, Š.; Kubale, V.; Bee, G. Hydrolysable tannin fed to entire male pigs affects intestinal production, tissue deposition and hepatic clearance of skatole. Vet. J. 2015, 204, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Bee, G.; Silacci, P.; Ampuero-Kragten, S.; Čandek-Potokar, M.; Wealleans, A.; Litten-Brown, J.; Salminen, J.; Mueller-Harvey, I. Hydrolysable tannin-based diet rich in gallotannins has a minimal impact on pig performance but significantly reduces salivary and bulbourethral gland size. Animal 2016, 11, 1617–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tretola, M.; Maghin, F.; Silacci, P.; Ampuero, S.; Bee, G. Effect of supplementing hydrolysable tannins to a grower–finisher diet containing divergent PUFA levels on growth performance, boar taint levels in back fat and intestinal microbiota of entire males. Animals 2019, 9, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Fang, L.; Sun, Y.; Su, Y.; Zhu, W. Effects of a diet high in resistant starch on fermentation end-products of protein and mucin secretion in the colons of pigs. Starch-Stärke 2017, 69, 1600032. [Google Scholar] [CrossRef]
- Pieper, R.; Boudry, C.; Bindelle, J.; Vahjen, W.; Zentek, J. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch. Anim. Nutr. 2014, 68, 263–280. [Google Scholar] [CrossRef]
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Whitfield-Cargile, C.M.; Cohen, N.D.; Chapkin, R.S.; Weeks, B.R.; Davidson, L.A.; Goldsby, J.S.; Hunt, C.L.; Steinmeyer, S.H.; Menon, R.; Suchodolski, J.S. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microbes 2016, 7, 246–261. [Google Scholar] [CrossRef] [Green Version]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 121, pp. 91–119. [Google Scholar]
- Lepczyński, A.; Herosimczyk, A.; Ożgo, M.; Marynowska, M.; Pawlikowska, M.; Barszcz, M.; Taciak, M.; Skomiał, J. Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs—A proteomic study. J. Anim. Physiol. Anim. Nutr. 2017, 101, e225–e236. [Google Scholar] [CrossRef] [PubMed]
- Uerlings, J.; Schroyen, M.; Willems, E.; Tanghe, S.; Bruggeman, G.; Bindelle, J.; Everaert, N. Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells. J. Funct. Foods 2020, 67, 103855. [Google Scholar] [CrossRef]
- Claus, R.; Lösel, D.; Lacorn, M.; Mentschel, J.; Schenkel, H. Effects of butyrate on apoptosis in the pig colon and its consequences for skatole formation and tissue accumulation. J. Anim. Sci. 2003, 81, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Øverland, M.; Kjos, N.K.; Fauske, A.K.; Teige, J.; Sørum, H. Easily fermentable carbohydrates reduce skatole formation in the distal intestine of entire male pigs. Livest. Sci. 2011, 140, 206–217. [Google Scholar] [CrossRef]
- Rasmussen, M.K.; Zamaratskaia, G.; Ekstrand, B. In vivo effect of dried chicory root (Cichorium intybus L.) on xenobiotica metabolising cytochrome P450 enzymes in porcine liver. Toxicol. Lett. 2011, 200, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Bilić-Šobot, D.; Kubale, V.; Škrlep, M.; Čandek-Potokar, M.; Prevolnik Povše, M.; Fazarinc, G.; Škorjanc, D. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs. Arch. Anim. Nutr. 2016, 70, 378–388. [Google Scholar] [CrossRef]
- Seoni, E.; Battacone, G.; Ampuero Kragten, S.; Dohme-Meier, F.; Bee, G. Impact of increasing levels of condensed tannins from sainfoin in the grower-finisher diets of entire male pigs on growth performance, carcass characteristics, and meat quality. Animal 2020, in press. [Google Scholar]
- Girard, M.; Bee, G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal 2020, 14, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Biagia, G.; Cipollini, I.; Paulicks, B.R.; Roth, F.X. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets. Arch. Anim. Nutr. 2010, 64, 121–135. [Google Scholar] [CrossRef]
- Girard, M.; Hu, D.; Pradervand, N.; Neuenschwander, S.; Bee, G. Chestnut extract but not sodium salicylate decreases the severity of diarrhea and enterotoxigenic Escherichia coli F4 shedding in artificially infected piglets. PLoS ONE 2020, 15, e0214267. [Google Scholar] [CrossRef] [Green Version]
- Girard, M.; Thanner, S.; Pradervand, N.; Hu, D.; Ollagnier, C.; Bee, G. Hydrolysable chestnut tannins for reduction of postweaning diarrhea: Efficacy on an experimental ETEC F4 model. PLoS ONE 2018, 13, e0197878. [Google Scholar] [CrossRef]
- Nofrarías, M.; Martínez-Puig, D.; Pujols, J.; Majó, N.; Pérez, J.F. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition 2007, 23, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Tuśnio, A.; Barszcz, M.; Święch, E.; Skomiał, J.; Taciak, M. Large intestine morphology and microflora activity in piglets fed diets with two levels of raw or micronized blue sweet lupin seeds. Livest. Sci. 2020, 240, 104137. [Google Scholar]
- Mølbak, L.; Thomsen, L.; Jensen, T.K.; Bach Knudsen, K.; Boye, M. Increased amount of Bifidobacterium thermacidophilum and Megasphaera elsdenii in the colonic microbiota of pigs fed a swine dysentery preventive diet containing chicory roots and sweet lupine. J. Appl. Microbiol. 2007, 103, 1853–1867. [Google Scholar] [CrossRef] [PubMed]
- Holinger, M.; Früh, B.; Stoll, P.; Pedan, V.; Kreuzer, M.; Bérard, J.; Hillmann, E. Long-term effects of castration, chronic intermittent social stress, provision of grass silage and their interactions on performance and meat and adipose tissue properties in growing-finishing pigs. Meat Sci. 2018, 145, 40–50. [Google Scholar] [CrossRef]
- Møller, S.; Maribo, H. 4 Days Feeding with Pure Grain before Slaughter Reduces Skatol in Male Pigs; Meddelelse nr. 989; Videncenter for Svineproduktion: Foulum, Denmark, 2013; p. 8. Available online: https://svineproduktion.dk/publikationer/kilder/lu_medd/2013/989 (accessed on 21 September 2020).
- Lundstörm, K.; Matthews, K.R.; Haugen, J.E. Pig meat quality from entire males. Animal 2009, 3, 1497–1507. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, X.; Monin, G.; Talmant, A.; Mourot, J.; Lebret, B. Influence of intramuscular fat content on the quality of pig meat—2. Consumer acceptability of m. longissimus lumborum. Meat Sci. 1999, 53, 67–72. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Simopoulos, A. Human requirement for N-3 polyunsaturated fatty acids. Poult. Sci. 2000, 79, 961–970. [Google Scholar] [CrossRef]
- Scheeder, M.R.L.; Gläser, K.R.; Eichenberger, B.; Wenk, C. Influence of different fats in pig feed on fatty acid composition of phospholipids and physical meat quality characteristics. Eur. J. Lipid Sci. Technol. 2000, 102, 391–401. [Google Scholar] [CrossRef]
- Scheeder, M.R.L.; Gläser, K.R.; Schwörer, D.; Wenk, C. Oxidative stability and texture properties of fermented sausage produced from pork differing in fatty acid composition. In Proceedings of the 44th International Congress of Meat Science and Technology, Barcelona, Spain, 30 August–4 September 1998; pp. 866–867. [Google Scholar]
- Hadorn, R.; Eberhard, P.; Guggisberg, D.; Piccinali, P.; Schlichtherle-Cerny, H. Effect of fat score on the quality of various meat products. Meat Sci. 2008, 80, 765–770. [Google Scholar] [CrossRef]
- Bee, G.; Wenk, C. Einfluss der Fettsäuren im Futter auf die Fettsäuren im Gesamtkörper beim Schwein. J. Anim. Physiol. Anim. Nutr 1991, 66, 122. [Google Scholar]
- Bee, G.; Gebert, S.; Messikommer, R.; Wenk, C. Effect of energy supply and dietary fat sources on the fatty acid profile of the adipose tissue in growing-finishing pig. Proc. Soc. Nutr. Physiol. 1999, 8, 137. [Google Scholar]
- Stoll, P. Fütterungsempfehlung Fettqualität beim Schwein. In Proceedings of the ETH-Schriftenreihe zur Tierernährung, Zurich, Switzerland, 2016; pp. 200–202. Available online: https://www.google.ch/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj9p7zmg8rsAhVLC-wKHfzMB1AQFjABegQIBRAC&url=https%3A%2F%2Fwww.agroscope.admin.ch%2Fagroscope%2Fde%2Fhome%2Fueber-uns%2Fmitarbeitende%2F_jcr_content%2Fpar%2Fexternalcontent.external.exturl.pdf%2FaHR0cHM6Ly9pcmEuYWdyb3Njb3BlLmNoL2l0LUNIL0VpbnplbH%2FB1Ymxpa2F0aW9uL0Rvd25sb2FkP2VpbnplbHB1Ymxpa2F0aW9u%2FSWQ9MzY3MjM%3D.pdf&usg=AOvVaw3CNZ0LJlw1dYELgwn4cA_1&cshid=1603432835310540 (accessed on 21 September 2020).
- Lebret, B.; Juin, H.; Noblet, J.; Bonneau, M. The effects of two methods of increasing age at slaughter on carcass and muscle traits and meat sensory quality in pigs. Anim. Sci. 2001, 72, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanrahan, T. Relative Performance of Boars, Gilts and Castrates; 1979; 1980. p. 67. Available online: https://www.cabdirect.org/cabdirect/abstract/19810159046 (accessed on 21 September 2020).
- Lawlor, P.G.; Lynch, P.B.; Mullane, J.; Kerry, J.P.; Hogan, S.; Allen, P. Enhancement of Pigmeat Quality by Altering Pre-Slaughter Management; 4939; Teagasc: Carlow, Ireland, 2005; p. 61. Available online: https://t-stor.teagasc.ie/bitstream/handle/11019/999/eopr-4939.pdf?sequence=1&isAllowed=y (accessed on 21 September 2020).
- Teagasc. National Herd Performance Report 2019; Teagasc Pig Development Department, Teagasc: Oak Park, Carlow, Ireland, 2020; p. 18. Available online: https://www.teagasc.ie/publications/2020/national-pig-herd-performance-report-2019.php (accessed on 21 September 2020).
- Lawlor, P.G.; Lynch, P.B.; Mullane, J.; Kerry, J.P.; Hogan, S.A.; Allen, P. Enhancement of Pigmeat Quality by Altering Pre-Slaughter Management. End of Project Report 4939; Teagasc Pig Development Department, Teagasc: Oak Park, Carlow, Ireland, 2005; p. 66. Available online: https://t-stor.teagasc.ie/handle/11019/999 (accessed on 21 September 2020).
- Boyle, L.; Björklund, L. Effects of fattening boars in mixed or single sex groups and split marketing on pig welfare. Anim. Welf. 2007, 16, 259–262. [Google Scholar]
- Lawlor, P.G. Management of Male and Female Finisher Pigs. Teagasc Pig Advisory Newsletter. March 2020, pp. 10–11. Available online: https://www.teagasc.ie/media/website/animals/pigs/Teagasc-Pig-Newsletter----March-2020.pdf (accessed on 19 October 2020).
- Allen, P.; Joseph, R.; Lynch, B. Reducing the Incidence of Boar Taint in Irish Pigs; 4404; Teagasc: Ballsbridge, Dublin, Ireland, 2001; p. 14. Available online: https://t-stor.teagasc.ie/bitstream/handle/11019/118/Report%2033.pdf?sequence=1 (accessed on 21 September 2020).
Ingredient | Amount | Duration of Each Experimental Diet | Breed and Gender | Site of Measurement | Effect on Skatole | Effect on Indole | Reference |
---|---|---|---|---|---|---|---|
Chicory inulin | 9% | From 67 kg body weight until slaughter at 101 kg | ((Landrace × Yorkshire) × Landrace)) entire male pigs | Back fat | Decreased | No | Kjos et al. [40] |
Chicory root | 25% | 7 days | (Duroc × (Danish Landrace × Yorkshire)) entire male pigs | Plasma | Tendency to be lower | No | Li et al. [41] |
Oligofructose | 5% | 21 days | Danbred × Piétrain entire male pigs | Back fat | Decreased | No | Aluwé et al. [42] |
Inulin | 5% | 21 days | Danbred × Piétrain entire male pigs | Back fat | Decreased | No | Aluwé et al. [42] |
Short chain fructooligosaccharides | 0.2% | from 60 kg body weight until slaughter at 130 kg (no information on exact duration) | White × Landrace cross entire male and female pigs | Back fat | Decreased | No | Salmon and Edwards [43] |
Jerusalem artichoke | 4.1, 8.1 and 12.2% | 1 week | ((Norwegian Landrace × Yorkshire) × (Norwegian Landrace × Duroc)) entire male pigs | Back fat | Tendency to be lower | No | Vhile et al. [44] |
Hydrolysable tannin-rich chestnut wood extract | 2% and 3% | From 123 to 190 days of age | Landrace × Large White entire male pigs | Back fat | Decreased compared to 1% supplementation | Not determined | Čandek-Potokar et al. [45] |
Hydrolysable tannin-rich chestnut wood extract | 1.5% and 3% | From 105 to 165 days of age | Swiss Large White entire male pigs | Back fat | Decreased compared to 1.5% but not 0% supplementation | Decreased | Bee et al. [46], Tretola et al. [47] |
Raw potato starch | 28% | From 120 to 170 days of age | Duroc × Landrace × Large White growing barrows | Colon | Decreased | Decreased | Zhou et al. [48] |
Mixture of lignin and cellulose | 8% | 3 weeks | Duroc × Piétrain of both genders | Proximal and distal colon | Decreased | No | Pieper et al. [49] |
Sugar beet pulp | 12% | 3 weeks | Duroc × Piétrain of both genders | Proximal and distal colon | No | Tendency to be lower | Pieper et al. [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bee, G.; Quiniou, N.; Maribo, H.; Zamaratskaia, G.; Lawlor, P.G. Strategies to Meet Nutritional Requirements and Reduce Boar Taint in Meat from Entire Male Pigs and Immunocastrates. Animals 2020, 10, 1950. https://doi.org/10.3390/ani10111950
Bee G, Quiniou N, Maribo H, Zamaratskaia G, Lawlor PG. Strategies to Meet Nutritional Requirements and Reduce Boar Taint in Meat from Entire Male Pigs and Immunocastrates. Animals. 2020; 10(11):1950. https://doi.org/10.3390/ani10111950
Chicago/Turabian StyleBee, Giuseppe, Nathalie Quiniou, Hanne Maribo, Galia Zamaratskaia, and Peadar G. Lawlor. 2020. "Strategies to Meet Nutritional Requirements and Reduce Boar Taint in Meat from Entire Male Pigs and Immunocastrates" Animals 10, no. 11: 1950. https://doi.org/10.3390/ani10111950
APA StyleBee, G., Quiniou, N., Maribo, H., Zamaratskaia, G., & Lawlor, P. G. (2020). Strategies to Meet Nutritional Requirements and Reduce Boar Taint in Meat from Entire Male Pigs and Immunocastrates. Animals, 10(11), 1950. https://doi.org/10.3390/ani10111950