Preserving Porphyra umbilicalis and Saccharina latissima as Silages for Ruminant Feeding
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Seaweed Collection and Silage Preparation
2.2. Ruminal Fluid Donors and In Vitro Incubations
2.3. Chemical Analyses
2.4. Calculations and Statistics
3. Results and Discussion
3.1. Chemical Composition and In Vitro Gas Production Parameters of the Seaweeds Pre-Ensiling
3.2. Characteristics of the Seaweed Silages
3.3. Chemical Composition and In Vitro Gas Production Parameters of the Seaweed Silages
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture Statistics 2009; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO. FAO Yearbook—Fisheries and Aquaculture Statistics 2009; FAO: Rome, Italy, 2011. [Google Scholar]
- Makarov, V.N.; Makarov, M.V.; Schoschina, E.V. Seasonal dynamics of growth in the Barents Sea seaweed: Endogenous and exogenous regulation. Bot. Mar. 1999, 42, 43–49. [Google Scholar] [CrossRef]
- Lüning, K.; Kadel, P. Daylength range for circannual rhythmicity in Pterygophora californica (Alariaceae, Phaeophyta) and synchronization of seasonal growth by day length cycles in several other brown algae. Phycologia 1993, 32, 379–387. [Google Scholar] [CrossRef]
- Enríquez, S.; Duarte, C.M.; Sand-Jensen, K.A.J. Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content. Oecologia 1993, 94, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Kraan, S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 27–46. [Google Scholar] [CrossRef]
- Goecke, F.; Labes, A.; Wiese, J.; Imhoff, J.F. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 2010, 409, 267–300. [Google Scholar] [CrossRef]
- Kenrick, P.; Crane, P.R. The origin and early evolution of plants on land. Nature 1997, 389, 33–39. [Google Scholar] [CrossRef]
- Magnusson, M.; Carl, C.; Mata, L.; de Nys, R.; Paul, N.A. Seaweed salt from Ulva: A novel first step in a cascading biorefinery model. Algal Res. 2016, 16, 308–316. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Øverland, M.; Myand, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2018, 99, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Alexander, T.W.; McAllister, T.A. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. J. Sci. Food Agric. 2009, 89, 2252–2260. [Google Scholar] [CrossRef]
- Michel, C.; Macfarlane, G.T. Digestive fates of soluble polysaccharides from marine macroalgae: Involvement of the colonic microflora and physiological consequences for the host. J. Appl. Bacteriol. 1996, 80, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Arieli, A.; Sklan, D.; Kissil, G. A note on the nutritive value of Ulva lactuca for ruminants. Anim. Sci. 1993, 57, 329–331. [Google Scholar] [CrossRef]
- Lahaye, M. Marine-algae as sources of fibers—Determination of soluble and insoluble dietary fiber contents in some sea vegetables. J. Sci. Food Agric. 1991, 54, 587–594. [Google Scholar] [CrossRef]
- Lahaye, M.; Kaeffer, B. Seaweed Dietary Fibres: Structure, Physico-Chemical and Biological Properties Relevant to Intestinal Physiology. Sci. Aliment. 1997, 17, 563–584. [Google Scholar]
- Gaillard, C.B.; Bhatti, H.S.; Novoa-Garrido, M.; Lind, V.; Roleda, M.Y.; Weisbjerg, M.R. Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Anim. Feed Sci. Technol. 2018, 241, 201–222. [Google Scholar] [CrossRef]
- de la Moneda, A.; Carro, M.D.; Weisbjerg, M.R.; Roleda, M.Y.; Lind, V.; Novoa-Garrido, M.; Molina-Alcaide, E. Variability and potential of seaweeds as ingredients of ruminant diets: An in vitro study. Animals 2019, 9, 851. [Google Scholar] [CrossRef] [Green Version]
- Tayyab, U.; Novoa-Garrido, M.; Roleda, M.Y.; Lind, V.; Weisbjerg, M.R. Ruminal and intestinal protein degradability of various seaweed species measured in situ in dairy cows. Anim. Feed Sci. Technol. 2016, 213, 44–54. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Carro, M.D.; Roleda, M.Y.; Weisbjerg, M.R.; Lind, V.; Novoa-Garrido, M. In vitro ruminal fermentation and methane production of different seaweed species. Anim. Feed Sci. Technol. 2017, 228, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rjiba-Ktita, S.; Chermiti, A.; Bodas, R.; France, J.; López, S. Aquatic plants and macroalgae as potential feed ingredients in ruminant diets. J. Appl. Phycol. 2017, 29, 449–458. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Redden, H.; Milledge, J.J.; Christopher Greenwell, H.; Dyer, P.W.; Harvey, P.J. Changes in higher heating value and ash content of seaweed during ensiling. J. Appl. Phycol. 2016, 29, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
- Cabrita, A.; Maia, M.R.G.; Sousa Pinto, I.; Fonseca, A. Ensilage of seaweeds from an integrated multi-trophic aquaculture system. Algal Res. 2017, 24, 290–298. [Google Scholar] [CrossRef]
- Campbell, M.; Ortuño, J.; Ford, L.; Davies, D.R.; Koidis, A.; Walsh, P.J.; Theodoridou, K. The Effect of Ensiling on the Nutritional Composition and Fermentation Characteristics of Brown Seaweeds as a Ruminant Feed Ingredient. Animals 2020, 10, E1019. [Google Scholar] [CrossRef]
- Stévant, P.; Rebours, C.; Chapman, A. Seaweed aquaculture in Norway: Recent industrial developments and future perspectives. Aquacult. Int. 2017, 25, 1373–1390. [Google Scholar] [CrossRef] [Green Version]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis: Apparatus, Reagents, Procedures, and Some Applications. In Agricultural Handbook No. 379; U.S. Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- Kristensen, N.B.; Sloth, K.H.; Høiberg, O.; Spliid, N.H.; Jensen, C.; Thøgersen, R. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J. Dairy Sci. 2010, 93, 3764–3774. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Marcos, C.N.; García-Rebollar, P.; de Blas, C.; Carro, M.D. Variability in chemical composition and in vitro ruminal fermentation of olive cake in Spain. Animals 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS Institute. SAS/STAT® Users Guide, Version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Ranilla, M.J.; López, S.; Giráldez, F.J.; Valdés, C.; Carro, M.D. Comparative digestibility and digesta flow kinetics in two breeds of sheep. Anim. Sci. 1998, 66, 389–396. [Google Scholar] [CrossRef]
- Marcos, C.N.; Carro, M.D.; García, S.; González, J. The ADIN analysis overestimates the amount of N associated to ADF. Anim. Feed Sci. Technol. 2018, 244, 36–41. [Google Scholar] [CrossRef]
- Boyce, C.K.; Zwieniecki, M.A.; Cody, G.D.; Jacobsen, C.; Wirick, S.; Knoll, A.H.; Holbrook, N.M. Evolution of xylem lignification and hydrogel transport regulation. Proc. Natl. Acad. Sci. USA 2004, 101, 17555–17558. [Google Scholar] [CrossRef] [Green Version]
- Peter, G.; Neale, D.B. Molecular basis for the evolution of xylem lignification. Curr. Opin. Plant Biol. 2005, 7, 737–742. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Gülzari, S.Ö.; Lind, V.; Aasen, I.M.; Steinshamn, H. Effect of supplementing sheep diets with macroalgae species on in vivo nutrient digestibility, rumen fermentation and blood amino acid profile. Animals 2019, 13, 2792–2801. [Google Scholar] [CrossRef] [Green Version]
- Usman, A.; Khalid, S.; Usaman, A.; Hussain, Z.; Wand, Y. Algal polysaccharides, novel applications and outlook. In Algae Based Polymers, Blends, and Composites; Zia, K.M., Zuber, M., Ali, M., Eds.; Elsevier Inc.: London, UK, 2017; pp. 115–183. [Google Scholar]
- Roleda, M.Y.; Marfaing, H.; Desnica, N.; Jonsdottir, R.; Skjermo, J.; Rebours, C.; Nitschke, U. Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: Health risk assessment and implication for food applications. Food Control 2019, 95, 121–134. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; p. 341. [Google Scholar]
- Jones, D.I.H.; Jones, R. The effect of crop characteristics and ensiling methodology on grass silage effluent production. J. Agric. Eng. Res. 1995, 60, 63–81. [Google Scholar] [CrossRef]
- Woolford, M.K.; Pahlow, G. The silage fermentation. In Microbiology of Fermented Foods, 2nd ed.; Wood, B.J.B., Ed.; Thomson Science: London, UK, 1998; pp. 73–102. [Google Scholar]
- Herrmann, C.; Fitzgerald, J.; O’Shea, R.; Xia, A.; O’Kiely, P.; Murphy, J.D. Ensiling of seaweed for a seaweed biofuel industry. Bioresour. Technol. 2015, 196, 301–313. [Google Scholar] [CrossRef]
- Jard, G.; Marfaing, H.; Carrère, H.; Delgenes, J.P.; Steyer, J.P.; Dumas, C. French Brittany macroalgae screening: Composition and methane potential for potential alternative sources of energy and products. Bioresour. Technol. 2013, 144, 492–498. [Google Scholar] [CrossRef]
- Uchida, M.; Amakasu, H.; Satoh, Y.; Murata, M. Combinations of lactic acid bacteria and yeasts suitable for preparation of marine silage. Fish. Sci. 2004, 70, 507–517. [Google Scholar] [CrossRef]
- Moen, E.; Horn, S.; Østgaard, K. Biological degradation of Ascophyllum nodosum. J. Appl. Phycol. 1997, 9, 347–357. [Google Scholar] [CrossRef]
- Williams, A.G.; Withers, S.; Sutherland, A.D. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro. Microb. Biotechnol. 2013, 6, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, S. The effect of cell wall degrading enzymes on the preservation of grass and on the silage intate and digestibility in sheep. J. Agric. Sci. Finl. 1990, 62, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Jaakkola, S.; Huhtanen, P.; Hissa, K. The effect of cell wall degrading enzymes or formic acid on fermentation quality and on digestion of grass silage by cattle. Grass Forage Sci. 1991, 46, 75–87. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2014, 27, 363–373. [Google Scholar] [CrossRef]
- Sandbakken, I.S.; Sæther, M.; Funderud, J.; Aasen, I.M. Acid preservation of Saccharina latissima for application as a carbon source for fermentation to biofuels and chemicals. J. Appl. Phycol. 2018, 30, 3581–3588. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Johansen, M.; Søegaard, K.; Lund, P.; Weisbjerg, M.R. Digestibility and clover proportion determine milk production when silages of different grass and clover species are fed to dairy cows. J. Dairy Sci. 2017, 100, 1–20. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- FEDNA (Federación Española para el Desarrollo de la Nutrición Animal). Available online: http://www.fundacionfedna.org/ (accessed on 12 September 2020).
- Baldan, B.; Andolfo, P.; Navazio, L.; Tolomio, C.; Mariani, P. Cellulose in algal cell wall: An “in situ” localization. Eur. J. Histochem. 2001, 45, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Castro, N.M.; Valdez, M.C.; Alvarez, A.M.; Ramirez, R.N.A.; Rodriguez, I.S.; Contreras, H.H.; Garcia, L.S. Thekelp Macrocystis pyrifera as nutritional supplement for goats. Rev. Cient. Fac. Cienc. Vet. Univ. Zulia 2009, 19, 63–70. [Google Scholar]
Porphyra umbilical | Saccharina latissima | |||
---|---|---|---|---|
Item | Unwashed | Washed | Unwashed | Washed |
Chemical composition 1 | ||||
DM (g/kg fresh matter) | 215 | 198 | 137 | 144 |
Ash (g/kg DM) | 210 | 152 | 290 | 259 |
N (g/kg DM) | 34.8 | 37.2 | 9.19 | 8.23 |
ADIN (g/100 g total N) | 1.50 | 1.16 | 3.68 | 3.52 |
NDF (g/kg DM) | 443 | 428 | 94.2 | 102.0 |
ADF (g/kg DM) | 27.6 | 25.8 | 65.7 | 61.3 |
Lignin | nd | nd | nd | nd |
Gas production parameters 2 | ||||
PGP (mL/g DM) | 80.3 | 85.3 | 185 | 195 |
c (%/h) | 1.87 | 2.07 | 4.03 | 3.97 |
Lag (h) | 0.15 | 0.0 | 2.90 | 2.28 |
AGPR (mL/h) | 1.06 | 1.24 | 4.58 | 4.93 |
DMED (g/kg) | 308 | 327 | 468 | 479 |
DMPD (g/kg) | 814 | 811 | 922 | 921 |
Unwilted | Pre-Wilted | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | CON | WAS | WASFAC | CON | WAS | WASFAC | SEM | Pre-Wilting | Silage Type | Pre-Wilting × Silage Type |
Dry matter (DM; g/kg fresh matter) | 181 | 166 | 170 | 666 b | 457 a | 439 a | 19.2 | <0.001 | <0.001 | <0.001 |
Effluent measures 2 | ||||||||||
Free juice | 20.0 a | 31.3 c | 25.1 b | nd 4 | nd | nd | 1.47 | <0.001 | 0.008 | 0.008 |
Particles and particle-bound juice | 80.0 c | 68.7 a | 74.9 b | 100 | 100 | 100 | 1.47 | <0.001 | 0.008 | 0.008 |
Parameters in silage extracts 3 | ||||||||||
pH | 4.67 b | 4.54 b | 3.98 a | 5.75 c | 4.92 b | 3.78 a | 0.08 | <0.001 | <0.001 | <0.001 |
NH3-N | 5.30 b | 2.46 a | 1.74 a | 0.16 | 0.79 | 0.43 | 0.419 | <0.001 | 0.006 | 0.001 |
Glucose | 0.14 | 0.57 | 0.75 | 0.44 | 0.67 | 0.63 | 1.191 | 0.550 | 0.110 | 0.561 |
DL-lactate | 2.26 a | 23.0 b | 10.0 a | 0.51a | 14.2 b | 2.22 a | 3.760 | 0.070 | 0.002 | 0.611 |
L-lactate | 1.35 a | 12.23 b | 5.87 a | 0.57 a | 8.61 b | 2.22 a | 1.93 | 0.115 | 0.001 | 0.704 |
Acetate | 34.4 c | 25.7 b | 18.8a | 0.97 a | 7.50 b | 3.33 a,b | 1.83 | <0.001 | 0.008 | <0.001 |
Propionate | 33.0 b | 9.8 a | 4.2 a | nd | nd | nd | 2.19 | <0.001 | <0.001 | <0.001 |
Butyrate | 13.5 b | 7.09 a,b | 4.67 a | nd | 0.19 | 0.20 | 2.29 | <0.001 | 0.193 | 0.167 |
Isobutyrate | 0.57 b | 0.18 a | 0.16 a | nd | nd | nd | 0.11 | 0.004 | 0.139 | 0.139 |
Isovalerate | 0.55 b | 0.21 a,b | 0.15 a | nd | 0.03 | nd | 0.11 | 0.008 | 0.222 | 0.188 |
Valerate | 0.45 | 0.34 | 0.28 | nd | nd | nd | 0.20 | 0.053 | 0.918 | 0.918 |
Caproate | 0.07 | 0.12 | nd | 0.02 | nd | nd | 0.06 | 0.242 | 0.571 | 0.595 |
Ethanol | 3.34 | 3.65 | 2.16 | 0.04 | 0.36 | 0.10 | 0.50 | <0.001 | 0.250 | 0.397 |
Propanol | 0.92 b | 1.04 b | 0.14 a | nd | 0.02 | nd | 0.21 | 0.002 | 0.106 | 0.114 |
2-butanol | 0.01 a | 0.13 b | 0.05 a | nd | 0.02 | nd | 0.03 | 0.026 | 0.050 | 0.198 |
Ethylacetate | 0.12 b | 0.08 b | 0.02 a | nd | 0.01 | nd | 0.01 | <0.001 | 0.020 | 0.021 |
Propylacetate | 0.03 b | 0.02 b | nd a | nd | nd | nd | 0.01 | 0.002 | 0.079 | 0.086 |
Free amino acids | ||||||||||
Alanine | 6.05 a | 7.79 b | 5.32 a | 4.04 a | 7.34 b | 5.28 a | 0.412 | 0.029 | <0.001 | 0.077 |
Proline | 0.28 a | 1.01 b | 0.42 a | 0.16 a | 0.65 b | 0.32 a,b | 0.121 | 0.079 | <0.001 | 0.516 |
Isoleucine | 0.62 a | 0.82 b | 0.57 a | 0.12 a | 0.44 b | 0.23 a | 0.049 | <0.001 | <0.001 | 0.239 |
Leucine | 1.25 a | 1.77 b | 1.08 a | 0.17 a | 0.77 b | 0.44 a | 0.101 | <0.001 | <0.001 | 0.122 |
Valine | 1.42 b | 2.07 c | 1.09 a | 0.22 a | 1.02 b | 0.51 a | 0.102 | <0.001 | <0.001 | 0.019 |
Phenylalanine | 0.40 a | 0.79 b | 0.47 a | 0.07 a | 0.36 b | 0.25 a,b | 0.089 | <0.001 | 0.009 | 0.560 |
Unwilted | Pre-Wilted | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | CON | WAS | WASFAC | CON | WAS | WASFAC | SEM | Pre-Wilting | Silage Type | Pre-Wilting × Silage Type |
Dry matter (DM; g/kg fresh matter) | 161 | 136 | 134 | 405 a | 459 b | 390 a | 12.2 | <0.001 | 0.040 | 0.020 |
Effluent measures 2 | ||||||||||
Free juice | 8.1 b | 3.7 a | 20.7 c | nd 4 | nd | nd | 0.69 | <0.001 | <0.001 | <0.001 |
Particles and particle bound juice | 91.9 b | 96.3 c | 79.3 a | 100 | 100 | 100 | 0.69 | <0.001 | <0.001 | <0.001 |
Parameters in silage extracts 3 | ||||||||||
pH | 4.87 b | 5.11 b | 3.73 a | 6.23 c | 5.84 b | 3.52 a | 0.12 | <0.001 | <0.001 | <0.001 |
NH3-N | 0.63 b | 0.29 a | 0.28 a | 0.25 c | 0.07 a | 0.16 b | 0.016 | <0.001 | <0.001 | <0.001 |
Glucose | 78.8 c | 47.5 b | 14.9 a | 40.4 b | 46.3 b | 6.22 a | 5.051 | 0.002 | <0.001 | 0.008 |
DL-lactate | 8.48 b | 7.98 b | 0.23 a | 0.22 | 0.13 | nd | 1.109 | <0.001 | 0.004 | 0.005 |
L-lactate | 0.25 a,b | 1.34 b | 0.06 a | 0.47 | 0.33 | 0.42 | 0.401 | 0.673 | 0.327 | 0.215 |
Acetate 4 | 18.3 b | 5.20 a | 5.36 a | 5.35 | 3.13 | 1.89 | 3.241 | 0.038 | 0.046 | 0.229 |
Butyrate | 2.06 b | nd a | nd a | nd | nd | nd | 0.060 | <0.001 | <0.001 | <0.001 |
Ethanol | 1.99 | 1.27 | 0.85 | 0.07 | 2.14 | 0.05 | 0.582 | 0.220 | 0.142 | 0.094 |
Propanol | nd | nd | nd | 0.004 | nd | 0.002 | 0.0018 | 0.195 | 0.586 | 0.586 |
2-Butanol | 0.003 a | 0.008 b | 0.001 a | 0.001 | nd | nd | 0.0012 | 0.002 | 0.003 | 0.019 |
Ethylacetate | 0.018 | 0.001 a | 0.002 a | 0.001 | 0.001 | 0.002 | 0.0035 | 0.060 | 0.059 | 0.042 |
Free amino acids | ||||||||||
Alanine | 2.39 c | 1.69 b | 1.34 a | 2.35 b | 0.69 a | 0.64 a | 0.049 | <0.001 | <0.001 | <0.001 |
Proline | 0.23 c | nd a | 0.07 b | 0.27 b | 0.11 a | 0.07 a | 0.021 | 0.019 | <0.001 | 0.079 |
Isoleucine | 0.25 b | nd a | nd a | 0.15 b | nd a | nd a | 0.012 | <0.001 | <0.001 | <0.001 |
Leucine | 0.29 b | nd a | nd a | 0.17 b | nd a | nd a | 0.011 | <0.001 | <0.001 | <0.001 |
Valine | 0.31 c | 0.13 b | nd a | 0.22 b | 0.02 a | nd a | 0.030 | 0.017 | <0.001 | 0.185 |
Phenylalanine | 0.19 c | 0.11 b | nd a | 0.12 b | nd a | 0.02 a | 0.022 | 0.019 | <0.001 | 0.053 |
Unwilted | Pre-Wilted | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | CON | WAS | WASFAC | CON | WAS | WASFAC | SEM | Pre-Wilting | Silage Type | Pre-Wilting × Silage Type |
Chemical composition2 | ||||||||||
Ash (g/kg DM) | 253 b | 119 a | 111 a | 224 b | 131 a | 138 a | 10.0 | 0.698 | <0.001 | 0.043 |
N (g/kg DM) | 35.0 b | 33.6 a | 34.1 a | 31.8 a | 36.0 b | 36.4 b | 0.462 | 0.224 | 0.004 | <0.001 |
Acid detergent insoluble N (g/100 g total N) | 1.33 | 1.69 | 1.96 | 0.25 a | 2.92 b | 3.04 b | 0.237 | 0.101 | <0.001 | 0.002 |
Neutral detergent fiber (g/kg DM) | 184 b | 129 a | 156 a,b | 455 c | 324 b | 234 a | 18.2 | <0.001 | <0.001 | <0.001 |
Acid detergent fiber (g/kg DM) | 37.4 a | 41.6 a | 51.9 b | 20.5 a | 55.2 b | 58.9 b | 4.5 | 0.954 | <0.001 | 0.013 |
Gas production parameters 3 | ||||||||||
PGP (mL/g DM) | 89.1 a | 87.8 a | 95.7 b | 88.8a | 85.7 a | 98.4 b | 1.59 | 0.266 | <0.001 | 0.610 |
c (%/h) | 1.59 a | 2.07 b | 2.14 b | 1.80 a | 2.05 b | 2.41 c | 0.072 | 0.006 | <0.001 | 0.093 |
Lag (h) | 0.01 | 0.05 | 0 | 0 | 0 | 0 | 0.022 | 0.274 | 0.409 | 0.409 |
AGPR (mL/h) | 1.00 a | 1.24 b | 1.46 c | 1.15 a | 1.26 b | 1.70 c | 0.043 | <0.001 | <0.001 | 0.018 |
DMED (g/kg) | 279 a | 331 b | 325 b | 298 a | 319 b | 356 c | 6.7 | 0.022 | <0.001 | 0.008 |
Potential DM degradability (g/kg) | 817 | 816 | 789 | 808 | 789 | 805 | 9.3 | 0.380 | 0.288 | 0.110 |
Unwilted | Pre-Wilted | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | CON | WAS | WASFAC | CON | WAS | WASFAC | SEM | Pre-Wilting | Silage Type | Pre-Wilting × Silage Type |
Chemical composition | ||||||||||
Ash (g/kg DM) | 278 | 264 | 268 | 302 b | 252 a | 264 a | 9.6 | 0.735 | 0.017 | 0.200 |
N (g/kg DM) | 9.58 | 8.88 | 8.25 | 10.2 b | 8.34 a | 8.75 a | 0.264 | 0.036 | 0.009 | 0.014 |
Acid detergent insoluble N (g/100 g total N) | 12.9 | 12.5 | 12.9 | 12.6 | 13.1 | 13.0 | 1.37 | 0.477 | 0.726 | 0.549 |
Neutral detergent fiber (g/kg DM) | 105 | 110 | 118 | 127 | 110 | 111 | 6.0 | 0.304 | 0.570 | 0.073 |
Acid detergent fiber (g/kg DM) | 81.4 | 86.5 | 92.5 | 84.7 | 83.0 | 85.6 | 4.1 | 0.492 | 0.353 | 0.474 |
Lignin (g/kg DM) | 10.6 | 8.77 | 7.73 | 16.3 | 10.2 | 9.30 | 2.81 | 0.129 | 0.216 | 0.826 |
Gas production parameters 2 | ||||||||||
PGP (mL/g DM) | 191 | 195 | 196 | 185 a | 206 b | 203 b | 2.4 | 0.054 | <0.001 | 0.002 |
c (%/h) | 3.36 a | 3.71 b | 3.59 ab | 3.73 a | 4.03 b | 3.64 a | 0.102 | 0.003 | 0.003 | 0.192 |
Lag (h) | 1.32 a | 2.90 b | 1.43 a | 2.66 b | 3.66 c | 1.01 a | 0.301 | 0.026 | <0.001 | 0.015 |
AGPR (mL/h) | 4.36 a | 4.47 ab | 4.72 b | 4.34 a | 4.89 b | 5.04 b | 0.103 | 0.006 | <0.001 | 0.088 |
DMED (g/kg) | 453 a | 450 a | 483 b | 439 a | 430 a | 486 b | 5.5 | 0.029 | <0.001 | 0.092 |
Potential DM degradability (g/kg) | 898 a | 914 b | 934 c | 878 a | 880 a | 925 b | 4.3 | <0.001 | <0.001 | 0.041 |
Pre-Wilted Perennial Ryegrass Silage | ||
---|---|---|
Item | Early First Cut | Late First Cut |
Chemical composition 1 | ||
DM (g/kg fresh matter) | 350 | 350 |
Ash (g/kg DM) | 77.1 | 62.9 |
N (g/kg DM) | 18.0 | 14.5 |
ADIN (g/100 g total N) | 0.0 | 1.10 |
NDF (g/kg DM) | 389 | 438 |
ADF (g/kg DM) | 186 | 227 |
Lignin (g/kg DM) | 5.80 | 6.14 |
Gas production parameters 2 | ||
PGP (mL/g DM) | 271 | 274 |
c (per h) | 5.70 | 4.81 |
Lag (h) | 1.79 | 1.54 |
AGPR (mL/h) | 9.67 | 8.56 |
DMED (g/kg) | 548 | 513 |
DMPD (g/kg) | 930 | 899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoa-Garrido, M.; Marcos, C.N.; Travieso, M.D.C.; Alcaide, E.M.; Larsen, M.; Weisbjerg, M.R. Preserving Porphyra umbilicalis and Saccharina latissima as Silages for Ruminant Feeding. Animals 2020, 10, 1957. https://doi.org/10.3390/ani10111957
Novoa-Garrido M, Marcos CN, Travieso MDC, Alcaide EM, Larsen M, Weisbjerg MR. Preserving Porphyra umbilicalis and Saccharina latissima as Silages for Ruminant Feeding. Animals. 2020; 10(11):1957. https://doi.org/10.3390/ani10111957
Chicago/Turabian StyleNovoa-Garrido, Margarita, Carlos Navarro Marcos, María Dolores Carro Travieso, Eduarda Molina Alcaide, Mogens Larsen, and Martin Riis Weisbjerg. 2020. "Preserving Porphyra umbilicalis and Saccharina latissima as Silages for Ruminant Feeding" Animals 10, no. 11: 1957. https://doi.org/10.3390/ani10111957
APA StyleNovoa-Garrido, M., Marcos, C. N., Travieso, M. D. C., Alcaide, E. M., Larsen, M., & Weisbjerg, M. R. (2020). Preserving Porphyra umbilicalis and Saccharina latissima as Silages for Ruminant Feeding. Animals, 10(11), 1957. https://doi.org/10.3390/ani10111957