Prevalence and Genomic Characterization of Brucella canis Strains Isolated from Kennels, Household, and Stray Dogs in Chile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Serological Samples Processing
2.3. Whole Blood Samples Processing
2.4. Molecular Identification of B. canis
2.5. WGS of B. canis Strains
2.5.1. Library Preparation and Sequencing
2.5.2. Filtering, Assembly, Annotation, and Comparison of Bacterial Genomes
2.6. Statistical Analyses
3. Results
3.1. Detection of Infection in Sampled Animals
3.2. Detection of B. canis by qPCR in Whole Blood
3.3. Whole-Genome Sequencing of Isolated B. canis Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Holst, B.S.; Löfqvist, K.; Ernholm, L.; Eld, K.; Cedersmyg, M.; Hallgren, G. The first case of Brucella canis in Sweden: Background, case report and recommendations from a northern European perspective. Acta Vet. Scand. 2012, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mor, S.M.; Wiethoelter, A.K.; Lee, A.; Moloney, B.; James, D.R.; Malik, R. Emergence of Brucella suis in dogs in New South Wales, Australia: Clinical findings and implications for zoonotic transmission. BMC Vet. Res. 2016, 12, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosford, K.L. Brucella canis: An update on research and clinical management. Can. Vet. J. 2018, 59, 74–81. [Google Scholar] [PubMed]
- Shin, S.; Carmichael, L.E. Canine brucellosis caused by Brucella canis. In Recent Advances in Canine Infectious Diseases; Carmichael, L., Ed.; IVIS: Ithaca, NY, USA, 1999. [Google Scholar]
- Carmichael, L.E.; Kenney, R.M. Canine abortion caused by Brucella canis. J. Am. Vet. Assoc. 1968, 152, 605–616. [Google Scholar]
- Buhmann, G.; Paul, F.; Herbst, W.; Melzer, F.; Wolf, G.; Hartmann, K.; Fischer, A. Canine brucellosis: Insights into the epidemiologic situation in Europe. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Hensel, M.E.; Negron, M.; Arenas-Gamboa, A.M. Brucellosis in dogs and public health risk. Emerg. Infect. Dis. 2018, 24, 1401–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuemmers, C.; Lüders, C.; Rojas, C.; Serri, M.; Castillo, C.; Espinoza, R. Detección de Brucella canis por método de inmunocromatografía en perros vagos capturados en la ciudad de Temuco, Chile, 2011. Rev. Chil. Infectol. 2013, 30, 395–401. [Google Scholar] [CrossRef]
- Abalos, P.; Sánchez, F.; Saadi, K.; Meza, M.; Retamal, P. Seroprevalencia de Brucelosis canina en perros con dueño, en una gran metrópoli. In Proceedings of the II Congreso Internacional de Zoonosis. IX Congreso Argentino de Zoonosis, Buenos Aires, Argentina, 5–7 June 2018. [Google Scholar]
- Lucero, N.E.; Maldonado, P.L.; Kaufman, S.; Escobar, G.I.; Boeri, E.; Jacob, N.R. Brucella canis causing infection in an HIV-infected patient. Vector-Borne Zoonotic Dis. 2010, 10, 527–529. [Google Scholar] [CrossRef]
- Lawaczeck, E.; Toporek, J.; Cwikla, J.; Mathison, B.A. Brucella canis in a HIV-Infected Patient. Zoonoses Public Health 2011, 58, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Manias, V.; Nagel, A.; Mollerach, A.; Mendosa, M.A.; Freyre, H.; Gómez, A.; Ferrara, E.; Vay, C.; Méndez, E.D.L.A. Endocarditis por Brucella canis: Primer caso documentado en un paciente adulto en Argentina. Rev. Argent. Microbiol. 2013, 45, 50–53. [Google Scholar]
- Lucero, N.E.; Corazza, R.; Almuzara, M.N.; Reynes, E.; Escobar, G.I.; Boeri, E.; Ayala, S.M. Human Brucella canis outbreak linked to infection in dogs. Epidemiol. Infect. 2010, 138, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dentinger, C.M.; Jacob, K.; Lee, L.V.; Mendez, H.A.; Chotikanatis, K.; McDonough, P.L.; Chico, D.M.; De, K.B.; Traxeler, R.M.; Campagnolo, E.R.; et al. Human Brucella canis infection and subsequent laboratory exposures associated with a puppy, New York City, 2012. Zoonoses Public Health 2015, 62, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Marzetti, S.; Carranza, C.; Roncallo, M.; Escobar, G.I.; Lucero, N.E. Recent trends in human Brucella canis infection. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 55–61. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommended Strategies for the Prevention and Control of Communicable Diseases; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- World Organization for Animal Health (OIE). OIE-Listed Diseases, Infections and Infestationsin Force in 2020. Available online: https://www.oie.int/es/sanidad-animal-en-el-mundo/enfermedades-de-la-lista-de-la-oie-2020/ (accessed on 21 September 2020).
- Gomez, G.; Adams, L.G.; Ficht, A.R.; Ficht, T.A. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front. Cell. Infect. Microbiol. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Pujol, M.; Castillo, F.; Alvarez, C.; Rojas, C.; Borie, C.; Ferreira, A.; Vernal, R. Variability in the response of canine and human dendritic cells stimulated with Brucella canis. Vet. Res. 2017, 48, 72. [Google Scholar] [CrossRef] [Green Version]
- Pujol, M.; Borie, C.; Montoya, M.; Ferreira, A.; Vernal, R. Brucella canis induces canine CD4+ T cells multi-cytokine Th1/Th17 production via dendritic cell activation. Comp. Immunol. Microbiol. Infect. Dis. 2019, 62, 68–75. [Google Scholar] [CrossRef]
- Martín-Martín, A.I.; Caro-Hernández, P.; Sancho, P.; Tejedor, C.; Cloeckaert, A.; Fernández-Lago, L.; Vizcaíno, N. Analysis of the occurrence and distribution of the Omp25/Omp31 family of surface proteins in the six classical Brucella species. Vet. Microbiol. 2009, 137, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Głowacka, P.; Żakowska, D.; Naylor, K.; Niemcewicz, M.; Bielawska-Drózd, A. Brucella–virulence factors, pathogenesis and treatment. Pol. J. Microbiol. 2018, 67, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Scholz, H.C.; Vergnaud, G. Molecular characterisation of Brucella species. Rev. Sci. Tech. 2013, 32, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Di, D.; Cui, B.; Wang, H.; Zhao, H.; Piao, D.; Tian, L.; Tian, G.; Kang, J.; Mao, X.; Zhang, X.; et al. Genetic polymorphism characteristics of Brucella canis isolated in China. PLoS ONE 2014, 9, e84862. [Google Scholar] [CrossRef]
- Piao, D.; Wang, H.; Di, D.; Tian, G.; Luo, J.; Gao, W.; Zhao, H.; Xu, W.; Fan, W.; Jiang, H. MlVa and lPs characteristics of Brucella canis isolated from humans and dogs in Zhejiang, China. Front. Vet. Sci. 2017, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.G.; Wang, H.; Wang, M.; Li, Z.J. Investigation of the molecular epizootiological characteristics and tracking of the geographical origins of Brucella canis strains in China. Transbound. Emerg. Dis. 2020, 67, 834–843. [Google Scholar] [CrossRef]
- Vicente, A.F.; Girault, G.; Corde, Y.; Mioni, M.S.R.; Keid, L.B.; Jay, M.; Megid, J.; Mick, V. New insights into phylogeography of worldwide Brucella canis isolates by comparative genomics-based approaches: Focus on Brazil. BMC Genom. 2018, 19. [Google Scholar] [CrossRef]
- Arboleda, J.L.V.; Roman, L.F.O.; Angel, M.O. Caracterización de la variabilidad genética de cepas de campo de Brucella canis aisladas en Antioquia. Rev. Argent. Microbiol. 2018, 50, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Poulsen, E.; Ransburgh, R.; Liu, X.; An, B.; Lu, N.; Anderson, G.; Wang, C.; Bai, J. Genotyping Brucella canis isolates using a highly discriminatory multilocus variable-number tandem-repeat analysis (MLVA) assay. Sci. Rep. 2017, 7, 1067. [Google Scholar] [CrossRef]
- Wang, L.; Cui, J.; Misner, M.B.; Zhang, Y. Sequencing and phylogenetic characterization of Brucella canis isolates, Ohio, 2016. Transbound. Emerg. Dis. 2018, 65, 944–948. [Google Scholar] [CrossRef]
- Subsecretaría de Desarrollo Regional y Administrativo (SUBDERE). Available online: http://www.tenenciaresponsablemascotas.cl/ (accessed on 21 September 2020).
- Gómez, V.H. Seroprevalencia de Brucelosis Canina por B. canis en Clínicas Veterinarias del Gran Santiago 2002–2003. Bachelor’s Thesis, Universidad de Chile, Santiago, Chile, 2007. [Google Scholar]
- Borie, C.; Cepeda, R.; Villarroel, M.; De los Reyes, M. Descripción de características reproductivas en tres perros seropositivos a Brucella canis. Arch. Med. Vet. 2002, 34, 111–116. [Google Scholar] [CrossRef]
- Sotomayor, M. Diagnóstico de brucelosis canina: Utilización de un antígeno proteico citosólico de Brucella abortus cepa RB51 en perros infectados experimentalmente. Bachelor’s Thesis, Universidad de Chile, Santiago, Chile, 2001. [Google Scholar]
- Alton, G.G.; Jones, L.M.; Pietz, D.E. Las Técnicas de Laboratorios en la Brucelosis, 2nd ed.; World Health Organization: Ginebra, Suiza, 1976. [Google Scholar]
- Keid, L.B.; Soares, R.M.; Vasconcellos, S.A.; Megid, J.; Salgado, V.R.; Richtzenhain, L.J. Comparison of agar gel immunodiffusion test, rapid slide agglutination test, microbiological culture and PCR for the diagnosis of canine brucellosis. Res. Vet. Sci. 2009, 86, 22–26. [Google Scholar] [CrossRef]
- Lorca, V.C.; Borie, C.F.; Navarro, C.O. Differential detection of Brucella canis by means a conventional polymerase chain reaction. Vet. Sci. Med. 2018, 1, 1–5. [Google Scholar]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Bosi, E.; Donati, B.; Galardini, M.; Brunetti, S.; Sagot, M.F.; Lió, P.; Crescenzi, P.; Fani, R.; Fondi, M. MeDuSa: A multi-draft based scaffolder. Bioinformatics 2015, 31, 2443–2451. [Google Scholar] [CrossRef] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Snippy: Fast Bacterial Variant Calling from NGS Reads. Available online: https://github.com/tseemann/snippy (accessed on 15 August 2020).
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Jiménez, M.M.; Isaza, J.P.; Alzate, J.F.; Olivera-Angel, M. Comparison of Brucella canis genomes isolated from different countries shows multiple variable regions. Genomics 2015, 106, 43–51. [Google Scholar] [CrossRef]
- Borie, C.; Bravo, C.; Dettleff, P.; Galarce, N.; Dorner, J.; Martínez, V. First genome sequence of Chilean Brucella canis SCL strain gave insights of the epidemiology and virulence factors explaining differences between geographical origins. Electron. J. Biotechnol. 2020, in press. [Google Scholar]
- Troncoso, I.; Rojas, R.; Fischer, C.; Núñez, C.; Arrué, K. Brucelosis en criaderos caninos: Seroprevalencia de 33 casos. Hosp. Vet. 2013, 5, 50–55. [Google Scholar]
- Keid, L.B.; Diniz, J.A.; Oliveira, T.M.F.S.; Ferreira, H.L.; Soares, R.M. Evaluation of an immunochromatographic test to the diagnosis of canine brucellosis caused by Brucella canis. Reprod. Domest. Anim. 2015, 50, 939–944. [Google Scholar] [CrossRef]
- Boeri, E.J.; Wanke, M.M.; Madariaga, M.J.; Teijeiro, M.L.; Elena, S.A.; Trangoni, M.D. Comparison of four polymerase chain reaction assays for the detection of Brucella spp. in clinical samples from dogs. Vet. World 2018, 11, 201–208. [Google Scholar] [CrossRef]
- Kauffman, L.K.; Petersen, C.A. Canine brucellosis: Old foe and reemerging scourge. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 763–779. [Google Scholar] [CrossRef]
- Kauffman, L.K.; Bjork, J.K.; Gallup, J.M.; Boggiatto, P.M.; Bellaire, B.H.; Petersen, C.A. Early detection of Brucella canis via quantitative polymerase chain reaction analysis. Zoonoses Public Health 2014, 61, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A.; Carter, T.D.; Dunn, J.R.; Baer, S.R.; Schalow, M.M.; Bellay, Y.M.; Guerra, M.A.; Frank, N.A. Investigation and characterization of Brucella canis infections in pet-quality dogs and associated human exposures during a 2007–2016 outbreak in Michigan. J. Am. Vet. Med. Assoc. 2018, 253, 322–336. [Google Scholar] [CrossRef] [Green Version]
- Gyuranecz, M.; Szeredi, L.; Rónai, Z.; Dénes, B.; Dencso, L.; Dán, A.; Pálmai, N.; Hauser, Z.; Lami, E.; Makrai, L.; et al. Detection of Brucella canis–induced reproductive diseases in a kennel. J. Vet. Diagn. Investig. 2011, 23, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Castrillón-Salazar, L.; Giraldo-Echeverri, C.A.; Sánchez-Jiménez, M.M.; Olivera-Angel, M. Factores asociados con la seropositividad a Brucella canis en criaderos caninos de dos regiones de Antioquia, Colombia. Cad. Saúde Pública 2013, 29, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
- Keid, L.B.; Chiebao, D.P.; Batinga, M.C.A.; Faita, T.; Diniz, J.A.; Oliveira, T.D.S.; Ferreira, R.; Soares, R.M. Brucella canis infection in dogs from commercial breeding kennels in Brazil. Transbound. Emerg. Dis. 2017, 64, 691–697. [Google Scholar] [CrossRef]
- Whitten, T.V.; Brayshaw, G.; Patnayak, D.; Alvarez, J.; Larson, C.M.; Kustritz, M.R.; Holzbauer, S.M.; Torrison, J.; Scheftel, J.M. Seroprevalence of Brucella canis antibodies in dogs entering a Minnesota humane society, Minnesota, 2016–2017. Prev. Vet. Med. 2019, 168, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Pinochet, L.; Mora, L.; Sánchez, M.L.; Contreras, C. Investigación serológica canina en criaderos del área Metropolitana. In II Congreso Nacional de Medicina Veterinaria; Facultad de Ciencias Veterinarias, Universidad Austral de Chile: Valdivia, Chile, 1979; p. 37. [Google Scholar]
- Briseño González, H.; Flores Castro, R.; Páramo Ramírez, R.M.; Suárez Güemes, F. Problemas reproductivos en perros machos infectados con Brucella canis. Vet. Méx. 2004, 35, 121–128. [Google Scholar]
- Giraldo Echeverri, C.A.; Ruiz Cortés, Z.T.; Olivera Ángel, M. Brucella canis in Medellín (Colombia), a current problem. Rev. UDCA Actual. Divulg. Cient. 2009, 12, 51–57. [Google Scholar] [CrossRef]
- Fernandes, A.R.F.; Azevedo, S.S.D.; Piatti, R.M.; Pinheiro, E.S.; Genovez, M.É.; Azevedo, A.S.D.; Batista, C.S.A.; Alves, C.J. Brucella canis infection in dogs attended in veterinary clinics from Patos, Paraíba state, Brazil. Braz. J. Microbiol. 2011, 42, 1405–1408. [Google Scholar] [CrossRef] [Green Version]
- Colman, G.; Abente, A.; Cristaldo, L.; Martínez, B. Seroprevalence of canine brucellosis (Brucella canis) in Concepción city-Paraguay. Compend. Cienc. Vet. 2017, 7, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Prochazka, M.A.; Bonzo, E.; Miceli, G.; Mortola, E. Relevamiento serológico de brucelosis en caninos que acudieron a consulta en la ciudad de Bahía Blanca. Rev. Med. Vet. (B. Aires) 2017, 98, 05–08. [Google Scholar]
- Carmichael, L.E.; Joubert, J.C. Transmission of Brucella canis by contact exposure. Cornell Vet. 1988, 78, 63–73. [Google Scholar]
- Myers, D.M.; Varela-Diaz, V.M. Serological and bacteriological detection of Brucella canis infection of stray dogs in Moreno, Argentina. Cornell Vet. 1980, 70, 258–265. [Google Scholar]
- Flores-Castro, R.; Suarez, F.; Ramirez-Pfeiffer, C.; Carmichael, L.E. Canine brucellosis: Bacteriological and serological investigation of naturally infected dogs in Mexico City. J. Clin. Microbiol. 1977, 6, 591–597. [Google Scholar]
- Öncel, T.; Akan, M.; Sareyyüpoğlu, B.; Tel, O.Y.; Çiftci, A. Seroprevalence of Brucella canis infection of dogs in two provinces in Turkey. Turk. J. Vet. Anim. Sci. 2005, 29, 779–783. [Google Scholar]
- Ruíz, J.D.; Giraldo, C.A.; López, L.V.; Chica, J.F. Brucella canis seroprevalence in stray dogs from Centro de Bienestar Animal “La Perla”, Medellín (Colombia), 2008. Rev. Colomb. Cienc. Pecu. 2010, 23, 166–172. [Google Scholar]
- Hubbard, K.; Wang, M.; Smith, D.R. Seroprevalence of brucellosis in Mississippi shelter dogs. Prev. Vet. Med. 2018, 159, 82–86. [Google Scholar] [CrossRef]
- Alshehabat, M.; Obaidat, M.; Hayajneh, W. Seroprevalence of Brucella canis in dogs and at-risk humans in Jordan. Vet. Med. 2019, 64, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Mol, J.; Guedes, A.; Eckstein, C.; Quintal, A.; Souza, T.; Mathias, L.; Haddad, J.P.; Paixao, T.; Santos, R.L. Diagnosis of canine brucellosis: Comparison of various serologic tests and PCR. J. Vet. Diagn. Investig. 2019, 32, 77–86. [Google Scholar] [CrossRef]
- Ministerio de Salud de Chile (MINSAL). Ley 21020 Sobre Tenencia Responsable de Mascotas y Animales de Compañía. Available online: http://bcn.cl/21jtr (accessed on 17 August 2020).
- Holland, I.B.; Blight, M.A. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 1999, 293, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bie, P.; Cheng, J.; Lu, L.; Cui, B.; Wu, Q. The ABC transporter YejABEF is required for resistance to antimicrobial peptides and the virulence of Brucella melitensis. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Truong, Q.L.; Cho, Y.; Park, S.; Park, B.K.; Hahn, T.W. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice. Microb. Pathog. 2016, 95, 175–185. [Google Scholar] [CrossRef]
- Tian, M.; Bao, Y.; Li, P.; Hu, H.; Ding, C.; Wang, S.; Li, T.; Wang, X.; Yu, S. The putative amino acid ABC transporter substrate-binding protein AapJ2 is necessary for Brucella virulence at the early stage of infection in a mouse model. Vet. Res. 2018, 49. [Google Scholar] [CrossRef] [Green Version]
- Riquelme-Neira, R.; Retamal-Díaz, A.; Acuña, F.; Riquelme, P.; Rivera, A.; Sáez, D.; Oñate, A. Protective effect of a DNA vaccine containing an open reading frame with homology to an ABC-type transporter present in the genomic island 3 of Brucella abortus in BALB/c mice. Vaccine 2013, 31, 3663–3667. [Google Scholar] [CrossRef]
- Palomares-Resendiz, G.; Arellano, B.; Hernandez, R.; Tenorio, V.; Salas, E.; Suarez, F.; Diaz, E. Immunogenic response of Brucella canis virB10 and virB11 mutants in a murine model. Front. Cell. Infect. Microbiol. 2012, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Clausse, M.; Díaz, A.G.; Ibañez, A.E.; Cassataro, J.; Giambartolomei, G.H.; Estein, S.M. Evaluation of the efficacy of outer membrane protein 31 vaccine formulations for protection against Brucella canis in BALB/c mice. Clin. Vaccine Immunol. 2014, 21, 1689–1694. [Google Scholar] [CrossRef]
- Pollak, C.N.; Wanke, M.M.; Estein, S.M.; Delpino, M.V.; Monachesi, N.E.; Comercio, E.A.; Fossati, C.A.; Baldi, P.C. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs. Clin. Vaccine Immunol. 2015, 22, 274–281. [Google Scholar] [CrossRef] [Green Version]
- de la Cuesta-Zuluaga, J.J.; Sánchez-Jiménez, M.M.; Martínez-Garro, J.; Olivera-Angel, M. Identification of the virB operon genes encoding the type IV secretion system, in Colombian Brucella canis isolates. Vet. Microbiol. 2013, 163, 196–199. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, Y.; Li, W.; Chen, Z. Type IV secretion system of Brucella spp. and its effectors. Front. Cell. Infect. Microbiol. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Carpio, J.M.C.; Mingala, C.N. Outer membrane proteins: Its role in Brucella virulence and immunogenicity. Int. J. Vet. Sci. 2018, 7, 33–37. [Google Scholar]
Dog Number | Origin | Age (Years) | Sex | Reproductive Status | Clinical Signs | Serology |
---|---|---|---|---|---|---|
45 | Household | 5 | Female | Gonadectomized | None | + |
119-1 | Household | 1 | Female | Entire | Abortion | + |
119-2 | Household | 1 | Female | Entire | None | + |
124 | Household | 7 | Female | Entire | Abortion | − |
128 | Household | 2 | Male | Entire | Discospondylitis | + |
301 | Household | 4 | Female | Entire | Discospondylitis | + |
6 | Stray | 2 | Female | Gonadectomized | None | + |
9 | Stray | 7 | Male | Gonadectomized | None | − |
18 | Stray | 1 | Male | Gonadectomized | None | − |
29 | Stray | 3 | Male | Gonadectomized | None | + |
Statistics | 9 | 45 | 119-1 | 119-2 | 124 | 128 | 301 | SCL |
---|---|---|---|---|---|---|---|---|
Genome size (bp) | 3,254,281 | 3,250,735 | 3,307,435 | 3,253,352 | 3,296,208 | 3,284,800 | 3,292,366 | 3,284,845 |
GC Content (%) | 57.3 | 57.3 | 56.8 | 57.3 | 57.2 | 57.3 | 57.2 | 57.3 |
N50 | 124,708 | 104,649 | 8754 | 145,362 | 196,611 | 87,181 | 180,729 | 134,581 |
# of Contigs | 2 | 2 | 144 | 3 | 14 | 4 | 12 | 53 |
# of Coding Sequences | 3281 | 3282 | 3879 | 3297 | 3356 | 3320 | 3347 | 3313 |
# of RNAs | 52 | 50 | 62 | 49 | 52 | 51 | 50 | 49 |
Strain Number | |||||||
---|---|---|---|---|---|---|---|
9 | 45 | 119-1 | 119-2 | 124 | 128 | 301 | |
# of SNPs with SCL strain | 2 | 2 | 0 | 0 | 2 | 1 | 0 |
metN | ureG | virB4 | Hypothetical Protein BKD02 | |||||
---|---|---|---|---|---|---|---|---|
Strain | Genotype | Position | Genotype | Position | Genotype | Position | Genotype | Position |
SCL | A | 18861 | G | 6120 | G | 9679 | C | 117032 |
9 | G | 18861 | G | 6120 | G | 9679 | T | 117032 |
45 | G | 18861 | G | 6120 | T | 9679 | C | 117032 |
119-1 | A | 18861 | G | 6120 | G | 9679 | C | 117032 |
119-2 | A | 18861 | G | 6120 | G | 9679 | C | 117032 |
124 | G | 18861 | A | 6120 | G | 9679 | C | 117032 |
128 | A | 18861 | A | 6120 | G | 9679 | C | 117032 |
301 | A | 18861 | G | 6120 | G | 9679 | C | 117032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galarce, N.; Escobar, B.; Martínez, E.; Alvarado, N.; Peralta, G.; Dettleff, P.; Dorner, J.; Martínez, V.; Borie, C. Prevalence and Genomic Characterization of Brucella canis Strains Isolated from Kennels, Household, and Stray Dogs in Chile. Animals 2020, 10, 2073. https://doi.org/10.3390/ani10112073
Galarce N, Escobar B, Martínez E, Alvarado N, Peralta G, Dettleff P, Dorner J, Martínez V, Borie C. Prevalence and Genomic Characterization of Brucella canis Strains Isolated from Kennels, Household, and Stray Dogs in Chile. Animals. 2020; 10(11):2073. https://doi.org/10.3390/ani10112073
Chicago/Turabian StyleGalarce, Nicolás, Beatriz Escobar, Eduard Martínez, Natalia Alvarado, Gabriela Peralta, Phillip Dettleff, Jessica Dorner, Víctor Martínez, and Consuelo Borie. 2020. "Prevalence and Genomic Characterization of Brucella canis Strains Isolated from Kennels, Household, and Stray Dogs in Chile" Animals 10, no. 11: 2073. https://doi.org/10.3390/ani10112073
APA StyleGalarce, N., Escobar, B., Martínez, E., Alvarado, N., Peralta, G., Dettleff, P., Dorner, J., Martínez, V., & Borie, C. (2020). Prevalence and Genomic Characterization of Brucella canis Strains Isolated from Kennels, Household, and Stray Dogs in Chile. Animals, 10(11), 2073. https://doi.org/10.3390/ani10112073