Geographic Origin and Genetic Characteristics of Japanese Indigenous Chickens Inferred from Mitochondrial D-Loop Region and Microsatellite DNA Markers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sample Collection and Genomic DNA Extraction
2.3. Sequencing of the mtDNA D-Loop Region and Genotyping of Microsatellite Markers
2.4. Phylogenetic Analysis of mtDNA D-Loop Sequences
2.5. Estimation of Haplogroup Frequencies Worldwide
2.6. Analysis of Genetic Diversity and Genetic Structures Based on mtDNA D-Loop Sequences
2.7. Polymorphisms in Microsatellite DNA Markers
2.8. Genetic Diversity of 46 Chicken Breeds Based on Microsatellite Markers
3. Results
3.1. D-Loop Haplotypes of Japanese Indigenous Chicken Breeds
3.2. Genetic Diversity of mtDNA D-Loop Sequences of Japanese Indigenous Chickens
3.3. Distribution of D-Loop Haplogroups Worldwide
3.4. Genetic Characteristics of Indigenous Chicken Breeds Estimated Using 27 Microsatellite DNA Markers
3.5. Genetic Relationships among Japanese Indigenous Chicken Breeds and Indigenous Chicken Breeds from Other Countries
4. Discussion
4.1. Genetic Relationships of Japanese Indigenous Chickens with Chickens Worldwide
4.2. Genetic Diversity among Japanese Indigenous Chickens
4.3. Genetic Relationships among Japanese Indigenous Chickens
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darwin, C.R. The Variation of Animals and Plants under Domestication; John Murray: London, UK, 1868. [Google Scholar]
- Zeuner, F.E. A History of Domesticated Animals; Hutchinson: London, UK, 1963. [Google Scholar]
- West, B.; Zhou, B.X. Did chickens go North? New evidence for domestication. J. Archaeol. Sci. 1989, 15, 515–533. [Google Scholar] [CrossRef]
- Crawford, R.D. Poultry Breeding and Genetics; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- West, B.; Zhou, B.X. Did chicken go north-New evidencefor domestication. World Poult. Sci. J. 1988, 45, 205–218. [Google Scholar] [CrossRef]
- Xiang, H.; Gao, J.; Yu, B.; Zhou, H.; Cai, D.; Zhang, Y.; Chen, X.; Wang, X.; Hofreiter, M.; Zhao, X. Early Holocene chicken domestication in northern China. Proc. Natl. Acad. Sci. USA 2014, 111, 17564–17569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eda, M.; Lu, P.; Kikuchi, H.; Li, Z.; Li, F.; Yuan, J. Reevaluation of early Holocene chicken domestication in northern China. J. Archaeol. Sci 2016, 67, 25–31. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, Y.; Xiao, K.; Jiang, F.; Wang, H.; Tang, D.; Liu, H. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 2018, 6, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fumihito, A.; Miyake, T.; Takada, M.; Shingu, R.; Endo, T.; Gojobori, T.; Kondo, N.; Ohno, S. Monophyletic origin and unique dispersal patterns of domestic fowls. Proc. Natl. Acad. Sci. USA 1996, 93, 6792–6795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.P.; Wu, G.S.; Yao, Y.G.; Miao, Y.W.; Luikart, G.; Baig, M.; Beja-Pereira, A.; Ding, Z.L.; Palanichamy, M.G.; Zhang, Y.P. Multiple maternal origins of chickens: Out of the Asian jungles. Mol. Phylogenet. Evol. 2006, 38, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.W.; Peng, M.S.; Wu, G.S.; Ouyang, Y.N.; Yang, Z.Y.; Yu, N.; Liang, J.P.; Pianchou, G.; Beja-Pereira, A.; Mitra, B.; et al. Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity 2013, 110, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Berthouly-Salazar, C.; Rognon, X.; Van, T.; Gély, M.; Chi, C.V.; Tixier-Boichard, M.; Bed’Hom, B.; Bruneau, N.; Verrier, E.; Maillard, J.C.; et al. Vietnamese chickens: A gate towards Asian genetic diversity. BMC Genet. 2010, 11, 53. [Google Scholar] [CrossRef]
- Kawabe, K.; Worawut, R.; Taura, S.; Shimogiri, T.; Nishida, T.; Okamoto, S. Genetic diversity of mtDNA D-loop polymorphisms in Laotian native fowl populations. Asian. Australas. J. Anim. Sci. 2014, 27, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Dancause, K.N.; Vilar, M.G.; Steffy, R.; Lum, J.K. Characterizing genetic diversity of contemporary pacific chickens using mitochondrial DNA analyses. PLoS ONE 2011, 6, e16843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwacharo, J.M.; Bjørnstad, G.; Mobegi, V.; Nomura, K.; Hanada, H.; Amano, T.; Jianlin, H.; Hanotte, O. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Mol. Phylogenet. Evol. 2011, 58, 374–382. [Google Scholar] [CrossRef]
- Al-Jumaili, A.S.; Boudali, S.F.; Kebede, A.; Al-Bayatti, S.A.; Essa, A.A.; Ahbara, A.; Naqvi, A.N. The maternal origin of indigenous domestic chicken from the Middle East, the north and the horn of Africa. BMC Genet. 2020, 21, 30. [Google Scholar] [CrossRef] [Green Version]
- Osman, S.A.M.; Yonezawa, T.; Nishibori, M. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poul. Sci. 2016, 95, 1248–1256. [Google Scholar] [CrossRef]
- Cuc, N.T.K.; Weigend, S.; Tieu, H.V.; Simianer, H. Conservation priorities and optimum allocation of conservation funds for Vietnamese local chicken breeds. J. Anim. Breed. Genet. 2011, 128, 284–294. [Google Scholar] [CrossRef]
- Teinlek, P.; Siripattarapravat, K.; Tirawattanawanich, C. Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian Australas J. Anim. Sci. 2018, 31, 804–811. [Google Scholar] [CrossRef]
- Hata, A.; Nunome, M.; Suwanasopee, T.; Duengkae, P.; Chaiwatana, S.; Chamchumroon, W.; Suzuki, T.; Koonawootrittriron, S.; Matsuda, Y.; Srikulnath, K. Origin and evolutionary history of domestic chickens inferred from a large population study of red junglefowls and indigenous chickens in Thailand. 2020; submitted. [Google Scholar]
- Tsuzduki, M. Japanese Native Chickens. In The Relationship between Indigenous Animals and Humans in APEC Region; The Chinese Society of Animal Science: Taiwan, China, 2003. [Google Scholar]
- Oana, H. Nihonkei no Rekishi (History of Japanese Native Chickens); Nihonkei kenkyusya: Tokyo, Japan, 1951. (In Japanese) [Google Scholar]
- Komiyama, T.; Ikeo, K.; Gojobori, T. Where is the origin of the Japanese gamecocks? Gene 2003, 317, 195–202. [Google Scholar] [CrossRef]
- Tanabe, Y.; Mizutani, M. Studies of the phylogenetic relationships of the Japanese native fowl breeds. Jpn. Poult. Sci. 1980, 17, 116–121. (In Japanese) [Google Scholar] [CrossRef]
- Okada, I.; Toyokawa, K.; Takayasu, I. Genetic relationships of some native chicken breeds in the northern Tohoku district of Japan. J. Poult. Sci. 1980, 17, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Okada, I.; Yamamoto, Y.; Hashiguchi, T.; Ito, S.I. Phylogenetic studies on the Japanese native breeds of chickens. J. Poult. Sci. 1984, 21, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Okada, I.; Yamamoto, Y.; Shinjo, A.; Kimura, S.; Hiraoka, H. Studies of genetic differentiation within breeds of Japanese indigenous chickens. J. Poult. Sci. 1989, 26, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, Y.; Iida, T.; Yoshino, H.; Shinjo, A.; Muramatsu, S. Studies on the phylogenetic relationships of the Japanese native fowl breeds. 5. The comparisons among native fowl breeds in Japan and its adjacent areas and European and American fowl breeds. J. Poult. Sci. 1991, 28, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Okabayashi, H.; Kamiya, S.; Tanabe, Y. Phylogenetic relationships among Japanese native chicken breeds based on blood protein polymorphisms. J. Poult. Sci. 1998, 35, 173–181. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Nozawa, K.; Nishida, T. The origins of domestic animals in Japan and neighboring regions. Kagaku 1970, 40, 29–35. (In Japanese) [Google Scholar]
- Fujio, Y. The introduction routes of Japanese indigenous chickens inferred from the blood group system. Rep. Res. Group Nativ. Farm Anim. East. Asia 1972, 5, 5–12. (In Japanese) [Google Scholar]
- Komiyama, T.; Ikeo, K.; Gojobori, T. The evolutionary origin of long-crowing chicken: Its evolutionary relationship with fighting cocks disclosed by the mtDNA sequence analysis. Gene 2004, 333, 91–99. [Google Scholar] [CrossRef]
- Oka, T.; Ino, Y.; Nomura, K.; Kawashima, S.; Kuwayama, T.; Hanada, H.; Amano, T.; Takada, M.; Takahata, N.; Hayashi, Y.; et al. Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Anim. Genet. 2007, 38, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Osman, S.A.M.; Sekino, M.; Nishibori, M.; Kawamoto, Y.; Kinoshita, K.; Yamamoto, Y.; Tsudzuki, M. The genetic variability and relationships of Japanese and foreign chickens assessed by microsatellite DNA profiling. Asian. Australas. J. Anim. Sci. 2006, 19, 1369–1378. [Google Scholar] [CrossRef]
- Tadano, R.; Sekino, M.; Nishibori, M.; Tsudzuki, M. Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds. Poult. Sci. 2007, 86, 460–469. [Google Scholar] [CrossRef]
- Tadano, R.; Nishibori, M.; Imamura, Y.; Matsuzaki, M.; Kinoshita, K.; Mizutani, M.; Namikawa, T.; Tsudzuki, M. High genetic divergence in miniature breeds of Japanese native chickens compared to Red Junglefowl, as revealed by microsatellite analysis. Anim. Genet. 2008, 39, 71–78. [Google Scholar] [CrossRef]
- Collias, N.E.; Collias, E.C. A field study of the red jungle fowl in north-central India. Condor 1967, 69, 360–386. [Google Scholar] [CrossRef]
- Storey, A.A.; Ramírez, J.M.; Quiroz, D.; Burley, D.V.; Addison, D.J.; Walter, R.; Anderson, A.J.; Hunt, T.L.; Athens, J.S.; Huynen, L.; et al. Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. Proc. Natl. Acad. Sci. USA 2007, 104, 10335–10339. [Google Scholar] [CrossRef] [Green Version]
- Gongora, J.; Rawlence, N.J.; Mobegi, V.A.; Jianlin, H.; Alcalde, J.A.; Matus, J.T.; Hanotte, O.; Moran, C.; Austin, J.J.; Ulm, S.; et al. Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proc. Natl. Acad. Sci. USA 2008, 105, 10308–10313. [Google Scholar] [CrossRef] [Green Version]
- Storey, A.A.; Athens, J.S.; Bryant, D.; Carson, M.; Emery, K.; de France, S.; Higham, C.; Huynen, L.; Intoh, M.; Jones, S.; et al. Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS ONE 2012, 7, e39171. [Google Scholar] [CrossRef] [Green Version]
- Nishibori, M.; Hayashi, T.; Tsudzuki, M.; Yamamoto, Y.; Yasue, H. Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 2001, 32, 380–385. [Google Scholar] [CrossRef]
- Kusukawa, N.; Uemori, T.; Asada, K.; Kato, I. Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction. Biotechniques 1990, 9, 66–68. [Google Scholar]
- Embley, T.M. The linear PCR reaction: A simple and robust method for sequencing amplified rRNA genes. Lett. Appl. Microbiol. 1991, 13, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Molecular genetic characterization of animal genetic resources. In FAO Animal Production and Health Guidelines No. 9; Food and Agriculture Organization: Rome, Italy, 2011. [Google Scholar]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.S.; Fan, L.; Shi, N.N.; Ning, T.; Yao, Y.G.; Murphy, R.W.; Wang, W.Z.; Zhang, Y.P. DomeTree: A canonical toolkit for mitochondrial DNA analyses in domesticated animals. Mol. Ecol. Resour. 2015, 15, 1238–1242. [Google Scholar] [CrossRef]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Watterson, G.A. Models for the logarithmic species abundance distributions. Theor. Popul. Biol. 1974, 6, 217–250. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [PubMed]
- Dieringer, D.; Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 2003, 3, 167–169. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Marshall, T.C.; Slate, J.; Kruuk, L.E.B.; Pemberton, J.M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Chapuis, M.-P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Porras-Hurtado, L.; Ruiz, Y.; Santos, C.; Phillips, C.; Carracedo, A.; Lareu, M.V. An overview of structure: Applications, parameter settings, and supporting software. Front. Genet. 2013, 4, 98. [Google Scholar] [CrossRef] [Green Version]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; von Holdt, B.M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Chang, C.S.; Chen, C.F.; Berthouly-Salazar, C.; Chazara, O.; Lee, Y.P.; Chang, C.M.; Chang, K.H.; Bed’Hom, B.; Tixier-Boichard, M. A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Anim. Genet. 2012, 43, 172–182. [Google Scholar] [CrossRef]
- Wada, Y.; Yamada, Y.; Nishibori, M.; Yasue, H. Complete nucleotide sequence of mitochondrial genome in Silkie fowl (Gallus gallus var. domesticus). J. Poult. Sci. 2004, 41, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Oka, T.; Fujihara, M.; Fukushima, M.; Bungo, T.; Tsudzuki, M. Genetic diversity and structure of the ryujin-jidori, a critically endangered native japanese chicken breed, based on microsatellite DNA analysis. J. Poult. Sci. 2014, 51, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Tadano, R.; Nakamura, A.; Kino, K. Analysis of genetic divergence between closely related lines of chickens. Poult. Sci. 2012, 91, 327–333. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 1977, 39, 1–38. [Google Scholar]
Category | Breeds | Breed ID | No. of Individuals | Source of Samples † | D-Loop | Microsatellite |
---|---|---|---|---|---|---|
Japanese indigenous chicken | Aidu-Jidori | AJI | 3 | FPLES | 3 | 3 |
Chabo | CHB | 64 | Fukushima1-3, Kanagawa1-3, Mie1, Hiroshima1-3, Yamaguchi, IPLES, AZES, Shimane1-2 | 64 | 25 | |
Chahn | CHN | 24 | Okinawa, Osaka | 21 | 24 | |
EchigoNankin | ENK | 1 | Hiroshima University | 1 | 1 | |
Gifu-Jidori | GJI | 13 | IPLES, GPLRI, Hiroshima University, Fukuoka1 | 9 | 13 | |
Hinai | HNI | 39 | Fukushima4, APLES, TUA, Yamaguchi, AZES, Hiroshima University | 30 | 39 | |
Iwate-Jidori | IJI | 5 | IPAHES | 4 | 5 | |
Jitokko | JTK | 37 | Hiroshima1-2, Hiroshima University, Osaka, Miyazaki, Kagoshima, Yamaguchi | 15 | 37 | |
Kawachi-Yakko | KWC | 16 | Osaka, Mie2-3, TUA, Hiroshima2, IPLES | 16 | 11 | |
Kinpa | KNP | 4 | Fukushima4 | 4 | 4 | |
Koeyoshi | KYS | 16 | Osaka, Aomori, TUA, Yamaguchi | 15 | 11 | |
Ko-Shamo | KSM | 20 | Hiroshima university | 19 | 20 | |
Kumamoto | KMM | 20 | KLES | 13 | 20 | |
Kureko-dori | KRK | 23 | Kumamoto | 22 | 19 | |
Kurokashiwa | KKS | 25 | Hyogo1, Hiroshima1, Mie3, YPLES, Shimane1-5 | 14 | 25 | |
Mie-Jidori | MJI | 10 | Mie2-4, Hiroshima2 | 6 | 10 | |
Minohiki-dori | MNH | 29 | IPLES, Shizuoka1 | 29 | 26 | |
Nagoya | NGY | 22 | Hiroshima Univerisity | 20 | 20 | |
Ohiki | OHK | 31 | Kochi, Shimane1-2, Kochi1-2 | 26 | 31 | |
Oh-Shamo | OSM | 59 | Fukushima1, KPLES, Hiroshima University, Kagoshima2, Ehime | 59 | 53 | |
Onaga-dori | ONG | 39 | Kochi3-9 | 29 | 11 | |
Ryujin-Jidori | RJI | 9 | Wakayama1-4, Nara1 | 9 | 9 | |
Sadohige-Jidori | SJI | 10 | Hiroshima University | 7 | 10 | |
Satsuma-dori | STM | 23 | Osaka, Nara2, TUA, Yamaguchi, Hiroshima2 | 18 | 23 | |
Shokoku | SHK | 33 | Osaka, Hyogo2, Hiroshima University, Mie2-5, Hiroshima2, TUA, Yamaguchi | 25 | 21 | |
Tokudi-Jidori | TKJ | 6 | Yamaguchi | 6 | 6 | |
Tomaru | TMR | 14 | Shizuoka2, TUA, NAHES, IPLES | 14 | 8 | |
Tosa-Jidori | TSJ | 35 | Osaka, Fukushima4, Kochi1-2, Kochi10-11, KPLES | 16 | 35 | |
Tosa-Kukin | TSK | 1 | Osaka | 1 | 1 | |
Totenko | TTK | 51 | Kochi12, Osaka, Fukushima5, Mie3, Mie5, Hiroshima1-2, Ymaguchi, Kochi10 | 36 | 51 | |
Ukokkei | UKK | 29 | Aichi1, Fukushima4, Hiroshima1-2, Mie3, IPLES, AZES, MLRD, APLRC | 29 | 25 | |
Uzurao | UZR | 16 | Kochi1-2, Kochi13-14 | 16 | 11 | |
Yakido | YKD | 3 | Mie4, Fukushima4 | 3 | 1 | |
Yamato Gunkei | YMG | 2 | Yamaguchi | 2 | 0 | |
Cochin | CCN | 20 | Fukushima6 | 18 | 20 | |
Ingie | ING | 20 | Fukuoka2, Hiroshima University, Yamaguchi | 19 | 20 | |
Rhoad Island Red | RIR | 20 | Aichi2 | 16 | 20 | |
Barred Plymouth Rock | BPR | 20 | Hiroshima University | 15 | 20 | |
Indigenous chicken overseas | Araucana | ARC | 20 | Aichi2 | 20 | 20 |
Black Minorca | BMN | 20 | Nagoya university, Fukushima7 | 5 | 20 | |
Brahma | BRM | 20 | Hiroshima University | 18 | 20 | |
Lite Saussex | LSX | 20 | Aichi2 | 14 | 20 | |
Belgian Mille Fleur bantam | MIL | 2 | Hiroshima University | 0 | 2 | |
White Leghorn-LA | WLL | 20 | Aichi1 | 0 | 20 | |
White Leghorn-MK | WLM | 20 | Aichi, Fukushima4, Hiroshima1-2, Mie1, IPLES, AZES, MLRD | 0 | 20 | |
Wild ancestor | Red junglefowl | RJF | 20 | Nagoya university | 0 | 20 |
Total | 955 | 726 | 831 |
Haplotype | Classification * | Total Breeds | Total individuals | Japanese Indigenous Chicken | Indigenous Chicken Overseas | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AJI | CHB | CHN | ENK | GJI | HNI | IJI | JTK | KWC | KNP | KYS | KSM | KMM | KRK | KKS | MJI | MNH | NGY | OHK | OSM | ONG | RJI | SJI | STM | SHK | TKJ | TMR | TSJ | TSK | TTK | UKK | UZR | YKD | YMG | CCN | ING | RIR | BPR | ARC | BMN | BRM | LSX | |||||
Hap_1 | A02 | A | 5 | 22 | 3 | 1 | 13 | 2 | 3 | |||||||||||||||||||||||||||||||||||||
Hap_2 | E01 | E | 15 | 91 | 4 | 8 | 4 | 3 | 2 | 1 | 2 | 12 | 1 | 1 | 18 | 9 | 16 | 2 | 8 | |||||||||||||||||||||||||||
Hap_3 | C06 | C | 7 | 38 | 26 | 1 | 5 | 1 | 1 | 3 | 1 | |||||||||||||||||||||||||||||||||||
Hap_4 | A01 | A | 16 | 100 | 17 | 3 | 8 | 13 | 11 | 1 | 14 | 2 | 2 | 6 | 1 | 6 | 2 | 1 | 2 | 11 | 1 | 18 | 1 | |||||||||||||||||||||||
Hap_5 | D22 | D | 1 | 3 | 3 | |||||||||||||||||||||||||||||||||||||||||
Hap_6 | A05 | A | 12 | 107 | 1 | 12 | 3 | 25 | 3 | 19 | 6 | 25 | 5 | 1 | 4 | 3 | 2 | |||||||||||||||||||||||||||||
Hap_7 | D13 | D | 8 | 30 | 4 | 3 | 3 | 2 | 5 | 9 | 1 | 3 | 5 | |||||||||||||||||||||||||||||||||
Hap_8 | E12 | E | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_9 | C01 | C | 11 | 65 | 4 | 2 | 1 | 3 | 3 | 22 | 9 | 9 | 1 | 10 | 1 | |||||||||||||||||||||||||||||||
Hap_10 | C07 | C | 9 | 27 | 2 | 3 | 1 | 3 | 3 | 1 | 6 | 4 | 4 | |||||||||||||||||||||||||||||||||
Hap_11 | B01 | B | 8 | 51 | 1 | 3 | 3 | 10 | 7 | 5 | 3 | 19 | ||||||||||||||||||||||||||||||||||
Hap_12 | D06 | D | 5 | 17 | 1 | 6 | 3 | 5 | 2 | |||||||||||||||||||||||||||||||||||||
Hap_13 | D04 | D | 3 | 19 | 16 | 2 | 1 | |||||||||||||||||||||||||||||||||||||||
Hap_14 | E09 | E | 5 | 11 | 2 | 1 | 1 | 6 | 1 | |||||||||||||||||||||||||||||||||||||
Hap_15 | E07 | E | 3 | 10 | 6 | 2 | 2 | |||||||||||||||||||||||||||||||||||||||
Hap_16 | E11 | E | 1 | 12 | 12 | |||||||||||||||||||||||||||||||||||||||||
Hap_17 | E03 | E | 7 | 22 | 3 | 4 | 5 | 2 | 4 | 1 | 3 | 8 | ||||||||||||||||||||||||||||||||||
Hap_18 | C09 | C | 2 | 5 | 4 | 1 | ||||||||||||||||||||||||||||||||||||||||
Hap_19 | E06 | E | 2 | 3 | 2 | 1 | 15 | |||||||||||||||||||||||||||||||||||||||
Hap_20 | E08 | E | 1 | 6 | 6 | |||||||||||||||||||||||||||||||||||||||||
Hap_21 | A03 | A | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_22 | E06_2 † | E | 1 | 1 | 1 | 2 | ||||||||||||||||||||||||||||||||||||||||
Hap_23 | A05_2 † | A | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_24 | E04_2 † | E | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_25 | D10 | D | 1 | 2 | 2 | |||||||||||||||||||||||||||||||||||||||||
Hap_26 | C11_2 † | C | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_27 | C11 | C | 1 | 2 | 2 | |||||||||||||||||||||||||||||||||||||||||
Hap_28 | C01_2 † | C | 1 | 2 | 2 | |||||||||||||||||||||||||||||||||||||||||
Hap_29 | E35 | E | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_30 | E06_2 † | E | 1 | 2 | 2 | |||||||||||||||||||||||||||||||||||||||||
Hap_31 | D13_2 † | D | 1 | 3 | 3 | |||||||||||||||||||||||||||||||||||||||||
Hap_32 | D27 | D | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_33 | C37 | C | 1 | 6 | 6 | |||||||||||||||||||||||||||||||||||||||||
Hap_34 | C02 | C | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_35 | E01_2 † | E | 1 | 3 | 3 | |||||||||||||||||||||||||||||||||||||||||
Hap_36 | E01_3 † | E | 1 | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||
Hap_37 | E06_3 † | E | 1 | 5 | 5 |
D-Loop | Microsatellite DNA Marker | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | Breeds | n | h | Theta-w | Pi | Tajima’s D | Breeds | n | AR | Na | Ne | Ho | He | F |
Japanese indigenous chicken | AJI | 3 | 1 | 0.000 | 0.000 | 0.000 | AJI | 3 | 1.543 | 2.185 | 1.897 | 0.549 | 0.427 | −0.289 |
CHB | 64 | 11 | 4.441 | 0.012 | 1.021 | CHB | 25 | 1.623 | 4.444 | 2.893 | 0.433 | 0.604 | 0.327 | |
CHN | 21 | 3 | 2.224 | 0.004 | −0.149 | CHN | 24 | 1.503 | 3.815 | 2.183 | 0.458 | 0.460 | 0.004 | |
ENK | 1 | 1 | N.A. | N.A. | N.A. | ENK | 1 | 1.481 | 1.333 | 1.333 | 0.481 | 0.241 | −1.000 | |
GJI | 9 | 2 | 2.943 | 0.008 | 1.629 | GJI | 13 | 1.511 | 3.111 | 2.269 | 0.332 | 0.468 | 0.305 | |
HNI | 30 | 7 | 4.291 | 0.008 | −0.173 | HNI | 39 | 1.509 | 4.148 | 2.242 | 0.379 | 0.478 | 0.197 | |
IJI | 4 | 1 | 0.000 | 0.000 | 0.000 | IJI | 5 | 1.506 | 2.407 | 1.856 | 0.363 | 0.369 | 0.059 | |
JTK | 15 | 4 | 5.228 | 0.012 | 0.758 | JTK | 37 | 1.577 | 4.741 | 2.788 | 0.496 | 0.555 | 0.100 | |
KWC | 16 | 2 | 1.507 | 0.003 | 0.258 | KWC | 11 | 1.525 | 3.000 | 2.041 | 0.392 | 0.445 | 0.169 | |
KNP | 4 | 1 | 0.000 | 0.000 | N.A. | KNP | 4 | 1.463 | 1.815 | 1.522 | 0.380 | 0.331 | −0.159 | |
KYS | 15 | 4 | 0.923 | 0.002 | 0.649 | KYS | 11 | 1.505 | 3.148 | 2.081 | 0.386 | 0.441 | 0.118 | |
KSM | 19 | 3 | 3.147 | 0.011 | 2.484 | KSM | 20 | 1.424 | 3.185 | 1.983 | 0.380 | 0.414 | 0.151 | |
KMM | 13 | 1 | 0.000 | 0.000 | N.A. | KMM | 20 | 1.517 | 3.000 | 2.235 | 0.565 | 0.504 | −0.118 | |
KRK | 22 | 5 | 4.663 | 0.011 | 0.848 | KRK | 19 | 1.479 | 3.259 | 2.043 | 0.416 | 0.450 | 0.101 | |
KKS | 14 | 5 | 5.346 | 0.014 | 1.192 | KKS | 25 | 1.478 | 3.630 | 1.979 | 0.338 | 0.435 | 0.279 | |
MJI | 6 | 3 | 5.693 | 0.013 | 0.830 | MJI | 10 | 1.284 | 2.222 | 1.529 | 0.254 | 0.268 | 0.007 | |
MNH | 29 | 3 | 2.801 | 0.004 | −0.642 | MNH | 26 | 1.459 | 2.889 | 1.931 | 0.413 | 0.431 | 0.063 | |
NGY | 20 | 5 | 5.074 | 0.005 | −1.90 * | NGY | 20 | 1.419 | 2.778 | 1.963 | 0.457 | 0.408 | −0.109 | |
OHK | 26 | 4 | 3.669 | 0.007 | −0.122 | OHK | 31 | 1.552 | 3.741 | 2.504 | 0.516 | 0.516 | 0.013 | |
OSM | 59 | 11 | 5.165 | 0.013 | 0.867 | OSM | 53 | 1.633 | 6.222 | 3.054 | 0.537 | 0.593 | 0.091 | |
ONG | 29 | 4 | 2.037 | 0.001 | −2.048 * | ONG | 11 | 1.512 | 2.630 | 1.799 | 0.421 | 0.406 | −0.030 | |
RJI | 9 | 1 | 0.000 | 0.000 | N.A. | RJI | 9 | 1.263 | 1.593 | 1.386 | 0.184 | 0.195 | 0.087 | |
SJI | 7 | 2 | 3.673 | 0.005 | −1.594 | SJI | 10 | 1.317 | 2.481 | 1.793 | 0.278 | 0.289 | 0.154 | |
SHK | 25 | 5 | 4.502 | 0.012 | 1.272 | SHK | 23 | 1.440 | 3.037 | 2.094 | 0.399 | 0.428 | 0.060 | |
STM | 18 | 4 | 4.070 | 0.012 | 2.001 * | STM | 21 | 1.580 | 4.074 | 2.540 | 0.457 | 0.546 | 0.195 | |
TKJ | 6 | 2 | 4.380 | 0.007 | −1.435 | TKJ | 6 | 1.473 | 2.444 | 1.840 | 0.373 | 0.389 | 0.086 | |
TMR | 14 | 5 | 3.459 | 0.009 | 1.443 | TMR | 8 | 1.513 | 2.889 | 2.048 | 0.352 | 0.428 | 0.200 | |
TSJ | 16 | 4 | 4.520 | 0.010 | 0.567 | TSJ | 35 | 1.479 | 3.963 | 2.353 | 0.358 | 0.464 | 0.233 | |
TSK | 1 | 1 | N.A. | N.A. | N.A. | TSK | 1 | 1.333 | 1.074 | 1.074 | 0.333 | 0.167 | −1.000 | |
TTK | 36 | 6 | 3.376 | 0.009 | 0.937 | TTK | 51 | 1.511 | 4.074 | 2.287 | 0.439 | 0.476 | 0.085 | |
UKK | 29 | 9 | 4.583 | 0.012 | 1.053 | UKK | 25 | 1.646 | 5.296 | 3.081 | 0.552 | 0.619 | 0.113 | |
UZR | 16 | 4 | 4.219 | 0.008 | −0.018 | UZR | 11 | 1.536 | 3.185 | 2.216 | 0.462 | 0.470 | 0.034 | |
YKD | 3 | 2 | 6.000 | 0.012 | N.A. | YKD | 1 | 1.296 | 1.037 | 1.037 | 0.296 | 0.148 | −1.000 | |
YMG | 2 | 2 | 2.000 | 0.004 | N.A. | YMG | 0 | − | − | − | − | − | − | |
CCN | 18 | 2 | 2.617 | 0.004 | −0.994 | CCN | 20 | 1.422 | 3.296 | 1.977 | 0.463 | 0.411 | −0.097 | |
ING | 19 | 1 | 0.000 | 0.000 | N.A. | ING | 20 | 1.351 | 2.296 | 1.730 | 0.291 | 0.342 | 0.142 | |
RIR | 16 | 3 | 2.712 | 0.008 | 1.732 | RIR | 20 | 1.481 | 2.926 | 2.192 | 0.456 | 0.469 | 0.045 | |
BPR | 15 | 4 | 3.075 | 0.007 | 0.106 | BPR | 20 | 1.464 | 3.074 | 2.312 | 0.463 | 0.452 | 0.004 | |
Indigenous chicken overseas | ARC | 20 | 4 | 3.382 | 0.002 | −0.423 | ARC | 20 | 1.326 | 2.000 | 1.691 | 0.348 | 0.318 | −0.100 |
BMN | 5 | 1 | 0.000 | 0.000 | 0.000 | BMN | 20 | 1.297 | 2.148 | 1.585 | 0.148 | 0.289 | 0.543 | |
BRM | 18 | 2 | 0.291 | 0.000 | −1.165 | BRM | 20 | 1.260 | 2.407 | 1.736 | 0.391 | 0.376 | −0.039 | |
LSX | 14 | 3 | 3.145 | 0.005 | −0.737 | LSX | 20 | 1.385 | 1.667 | 1.465 | 0.324 | 0.254 | −0.256 | |
MIL | 2 | 1.352 | 1.630 | 1.519 | 0.370 | 0.241 | −0.538 | |||||||
WLL | 20 | 1.417 | 2.778 | 1.931 | 0.402 | 0.406 | 0.047 | |||||||
WLM | 20 | 1.410 | 2.593 | 1.870 | 0.396 | 0.400 | 0.013 | |||||||
Wild ancestor | RJF | 20 | 1.484 | 2.704 | 2.017 | 0.513 | 0.472 | −0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hata, A.; Takenouchi, A.; Kinoshita, K.; Hirokawa, M.; Igawa, T.; Nunome, M.; Suzuki, T.; Tsudzuki, M. Geographic Origin and Genetic Characteristics of Japanese Indigenous Chickens Inferred from Mitochondrial D-Loop Region and Microsatellite DNA Markers. Animals 2020, 10, 2074. https://doi.org/10.3390/ani10112074
Hata A, Takenouchi A, Kinoshita K, Hirokawa M, Igawa T, Nunome M, Suzuki T, Tsudzuki M. Geographic Origin and Genetic Characteristics of Japanese Indigenous Chickens Inferred from Mitochondrial D-Loop Region and Microsatellite DNA Markers. Animals. 2020; 10(11):2074. https://doi.org/10.3390/ani10112074
Chicago/Turabian StyleHata, Ayano, Atsushi Takenouchi, Keiji Kinoshita, Momomi Hirokawa, Takeshi Igawa, Mitsuo Nunome, Takayuki Suzuki, and Masaoki Tsudzuki. 2020. "Geographic Origin and Genetic Characteristics of Japanese Indigenous Chickens Inferred from Mitochondrial D-Loop Region and Microsatellite DNA Markers" Animals 10, no. 11: 2074. https://doi.org/10.3390/ani10112074
APA StyleHata, A., Takenouchi, A., Kinoshita, K., Hirokawa, M., Igawa, T., Nunome, M., Suzuki, T., & Tsudzuki, M. (2020). Geographic Origin and Genetic Characteristics of Japanese Indigenous Chickens Inferred from Mitochondrial D-Loop Region and Microsatellite DNA Markers. Animals, 10(11), 2074. https://doi.org/10.3390/ani10112074