Host-Parasite Interaction in Sarcoptes scabiei Infestation in Porcine Model with a Preliminary Note on Its Genetic Lineage from India
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Area and the Animals
2.3. Collection and Processing of Clinical Samples for Microscopic Analysis
2.4. DNA Extraction
2.5. Amplification and Sequencing of Cytochrome C Oxidase Subunit 1 (COX1) and Voltage Sensitive Sodium Channel (VSSC) Gene Segments
2.6. Sequence Analysis
2.7. Estimation of Biochemical Parameters
2.8. Estimation of Oxidative Stress Parameters
2.9. Estimation of HSPs in Serum
2.10. Measurement of Cortisol in Serum
2.11. Lipid Profile Analysis
2.12. Estimation of Serum Immune Parameters
2.13. Estimation of Apoptotic Markers
2.14. Histopathology
2.15. Statistical Analysis
3. Results
3.1. Clinical Signs of the Infested Animals
3.2. Microscopic Examination
3.3. Molecular Identification and Characterization of S. scabiei
3.4. Serum Biochemical Parameters in Crusted Scabies
3.5. Crusted Scabies Leads to Dyslipidemia in Pigs
3.6. Crusted Scabies Induces Oxidative Stress
3.7. Crusted Scabies Is Associated with Stress
3.8. Crusted Scabies Up-Regulates Serum Levels of Apoptotic Markers
3.9. Crusted Scabies Alters Immune Response
3.10. Histopathology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heukelbach, J.; Wilcke, T.; Winter, B.; Feldmeier, H. Epidemiology and morbidity of scabies and pediculosis capitis in resource-poor communities in Brazil. Br. J. Dermatol. 2005, 153, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Alasaad, S.; Rossi, L.; Heukelbach, J.; Pérez, J.M.; Hamarsheh, O.; Otiende, M.; Zhu, X.Q. The neglected navigating web of the incomprehensibly emerging and re-emerging Sarcoptes mite. Infect. Genet. Evol. 2013, 17, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornstein, S.; Morner, T.; Samuel, W.M. Sarcoptesscabiei and sarcoptic mange. In Parasitic Diseases of Wild Mammals, 2nd ed.; Samuel, W.M., Pybus, M.J., Kocan, A.A., Eds.; Manson Publishing: London, UK, 2001; pp. 107–119. [Google Scholar]
- Walton, S.F.; Currie, B.J. Problems in diagnosing scabies, a global disease in human and animal populations. Clin. Microbiol. Rev. 2007, 20, 268–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagleish, M.P.; Ali, Q.; Powell, R.K.; Butz, D.; Woodford, M.H. Fatal Sarcoptesscabiei infection of blue sheep (Pseudoisnayaur) in Pakistan. J. Wildl. Dis. 2007, 43, 512–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, S.A.; Mounsey, K.E.; Liu, X.; Walton, S.F. Host immune responses to the itch mite, Sarcoptesscabiei, in humans. Parasites Vectors 2017, 10, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hengge, U.R.; Currie, B.J.; Jäger, G.; Lupi, O.; Schwartz, R.A. Scabies: A ubiquitous neglected skin disease. Lancet Infect. Dis. 2006, 6, 769–779. [Google Scholar] [CrossRef]
- Terry, B.C.; Kanjah, F.; Sahr, F.; Kortequee, S.; Dukulay, I.; Gbakima, A.A. Sarcoptesscabiei infestation among children in a displacement camp in Sierra Leone. Public Health 2001, 115, 208–211. [Google Scholar] [CrossRef]
- Carapetis, J.R.; Connors, C.; Yarmirr, D.; Krause, V.; Currie, B.J. Success of a scabies control program in an Australian aboriginal community. Pediatr. Infect. Dis. J. 1997, 16, 494–499. [Google Scholar] [CrossRef]
- Andrews, R.M.; McCarthy, J.; Carapetis, J.R.; Currie, B.J. Skin disorders, including pyoderma, scabies, and tinea infections. Pediatr. Clin. N. Am. 2009, 56, 1421–1440. [Google Scholar] [CrossRef]
- Currie, B.J.; McCarthy, J.S. Permethrin and ivermectin for scabies. N. Engl. J. Med. 2010, 362, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Soulsby, E.J.L. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th ed.; Bailliere Tindall: London, UK, 1982. [Google Scholar]
- Walton, S.F.; Dougall, A.; Pizzutto, S.; Holt, D.; Taplin, D.; Arlian, L.G.; Morgan, M.; Currie, B.J.; Kemp, D.J. Genetic epidemiology of Sarcoptesscabiei (Acari: Sarcoptidae) in northern Australia. Int. J. Parasitol. 2004, 34, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Alasaad, S.; Oleaga, Á.; Casais, R.; Rossi, L.; Min, A.M.; Soriguer, R.C.; Gortázar, C. Temporal stability in the genetic structure of Sarcoptesscabiei under the host-taxon law: Empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain. Parasites Vectors 2011, 4, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrilli, F.; D’Amelio, S.; Rossi, L. Ribosomal and mitochondrial DNA sequence variation in Sarcoptes mites from different hosts and geographical regions. Parasitol. Res. 2002, 88, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Menzano, A.; Rambozzi, L.; Rossi, L. Outbreak of scabies in human beings, acquired from chamois (Rupicaprarupicapra). Vet. Rec. 2004, 155, 568. [Google Scholar] [CrossRef]
- Wallgren, P.; Bornstein, S. The spread of porcine sarcoptic mange during the fattening period revealed by development of antibodies to Sarcoptesscabiei. Vet. Parasitol. 1997, 73, 315–324. [Google Scholar] [CrossRef]
- Fain, A. Epidemiological problems of scabies. Int. J. Dermatol. 1978, 17, 20–30. [Google Scholar] [CrossRef]
- Alasaad, S.; Soglia, D.; Spalenza, V.; Maione, S.; Soriguer, R.C.; Pérez, J.M.; Rasero, R.; Degiorgis, M.P.; Nimmervoll, H.; Zhu, X.Q.; et al. Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas? Vet. Parasitol. 2009, 159, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Arlian, L.G.; Morgan, M.S.; Arends, J.J. Immunologic cross-reactivity among various strains of Sarcoptesscabiei. J. Parasitol. 1996, 82, 66–72. [Google Scholar] [CrossRef]
- Garcia, R.; Piche, C.; Davies, P.; Gross, S. Prevalence of sarcoptic mange mites and dermatitis in slaughter pigs in North America and Western Europe. In Proceedings of the 13th Conference of the International Pig Veterinary Society, Bangkok, Thailand, 26–30 June 1994; p. 250. Available online: https://agris.fao.org/agris-search/search.do?recordID=TH2000001208 (accessed on 5 October 2020).
- Jensen, J.C.; Nielsen, L.H.; Arnason, T.; Cracknell, V. Elimination of mange mites Sarcoptesscabiei var. suis from two naturally infested Danish sow herds using a single injection regime with doramectin. Acta Vet. Scand. 2002, 43, 75–84. [Google Scholar] [CrossRef]
- Davies, P.R. Sarcoptic mange and production performance of swine: A review of the literature and studies of associations between mite infestation, growth rate and measures of mange severity in growing pigs. Vet. Parasitol. 1995, 60, 249–264. [Google Scholar] [CrossRef]
- Arends, J.J.; Stanislaw, C.M.; Gerdon, D. Effects of sarcoptic mange on lactating swine and growing pigs. J. Anim. Sci. 1990, 68, 1495–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henken, A.M.; Verstegen, M.W.A.; Van Der Hel, W.; Boon, J.H.A. Pilot study of parasite worry and restlessness caused by sarcoptic mange in swine. In Proceedings of the 10th Conference of the International Pig Veterinary Society, Rio de Janerio, Brazil, 14–17 August 1988. [Google Scholar]
- Grahofer, A.; Bannoehr, J.; Nathues, H.; Roosje, P. Sarcoptes infestation in two miniature pigs with zoonotic transmission—A case report. BMC Vet. Res. 2018, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, T.V.; Lange, A.B. Parazito-khoziainnaiaspetsifichnost’ chesotochnogozudnia Sarcoptesscabiei (Acariformes: Sarcoptidae) chelovekaizhivotnykh (obzorliteratury) [The parasite-host specificity of the itch mite Sarcoptesscabiei (Acariformes: Sarcoptidae) in man and animals (a review of the literature)]. Parazitologiia 1992, 26, 97–104. [Google Scholar]
- Chakrabarti, A. Pig handler’s itch. Int. J. Dermatol. 1990, 29, 205–206. [Google Scholar] [CrossRef]
- Laha, R. Sarcoptic mange infestation in pigs: An overview. J. Parasit. Dis. 2015, 39, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.S.; Arlian, L.G.; Markey, M.P. Sarcoptesscabiei mites modulate gene expression in human skin equivalents. PLoS ONE 2013, 8, e71143. [Google Scholar] [CrossRef]
- Mullins, J.S.; Arlian, L.G.; Morgan, M.S. Extracts of Sarcoptesscabiei De Geer down-modulate secretion of IL-8 by skin keratinocytes and fibroblasts and of GM-CSF by fibroblasts in the presence of proinflammatory cytokines. J. Med. Entomol. 2009, 46, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Cote, N.M.; Jaworski, D.C.; Wasala, N.B.; Morgan, M.S.; Arlian, L.G. Identification and expression of macrophage migration inhibitory factor in Sarcoptesscabiei. Exp. Parasitol. 2013, 135, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Erster, O.; Roth, A.; Pozzi, P.S.; Bouznach, A.; Shkap, V. First detection of Sarcoptesscabiei from domesticated pig (Sus scrofa) and genetic characterization of S. scabiei from pet, farm and wild hosts in Israel. Exp. Appl. Acarol. 2015, 66, 605–612. [Google Scholar] [CrossRef]
- Morgan, M.S.; Arlian, L.G. Response of human skin equivalents to Sarcoptesscabiei. J. Med. Entomol. 2010, 47, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalli, P.N.; Morgan, M.S.; Arlian, L.G. Skewed Th1/Th2 immune response to Sarcoptesscabiei. J. Parasitol. 2004, 90, 711–714. [Google Scholar] [CrossRef] [PubMed]
- De, U.K.; Dey, S. Evaluation of organ function and oxidant/antioxidant status in goats with sarcoptic mange. Trop. Anim. Health Prod. 2010, 42, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Beigh, S.A.; Soodan, J.S.; Bhat, A.M. Sarcoptic mange in dogs: Its effect on liver, oxidative stress, trace minerals and vitamins. Vet. Parasitol. 2016, 227, 30–34. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Yu, I.T.; Ju, C.C.; Lin, J.; Wu, H.L.; Yen, H.T. Effects of probiotics and selenium combination on the immune and blood cholesterol concentration of pigs. J. Anim. Feed Sci. 2004, 13, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Marbut, M.M.; Majeed, B.M.; Rahim, S.M.; Yuusif, M.Y. Estimation of malondialdehyde as oxidative factor and glutathione as early detectors of hypertensive pregnant women. Tikrit Med. J. 2009, 15, 63–69. [Google Scholar]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steer, A. Scabies Joins the List of WHO Neglected Tropical Diseases. Lancet Global Health Blog. Global Health Blogs. 2014. Available online: http://globalhealth.thelancet.com/2014/07/07/scabies-joins-list-who-neglected-tropical-diseases (accessed on 3 October 2020).
- Mounsey, K.E.; McCarthy, J.S.; Walton, S.F. Scratching the itch: New tools to advance understanding of scabies. Trends Parasitol. 2013, 29, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Fraser, T.A.; Shao, R.; Fountain-Jones, N.M.; Charleston, M.; Martin, A.; Whiteley, P.; Holme, R.; Carver, S.; Polkinghorne, A. Mitochondrial genome sequencing reveals potential origins of the scabies mite Sarcoptesscabiei infesting two iconic Australian marsupials. BMC Evol. Biol. 2017, 17, 233. [Google Scholar] [CrossRef] [Green Version]
- Alexander, K.A.; Carlson, C.J.; Lewis, B.L.; Getz, W.M.; Marathe, M.V.; Eubank, S.G.; Sanderson, C.E.; Blackburn, J.K. The Ecology of pathogen spillover and disease emergence at the human-wildlife-environment interface. In The Connections between Ecology and Infectious Disease; Advances in Environmental Microbiology; Hurst, C., Ed.; Springer: Cham, Switzerland, 2018; Volume 5, pp. 267–298. [Google Scholar]
- Mandal, S.D.; Chhakchhuak, L.; Gurusubramanian, G.; Kumar, N.S. Mitochondrial markers for identification and phylogenetic studies in insects—A Review. DNA Barcodes 2014, 2, 1–9. [Google Scholar] [CrossRef]
- Pentinsaari, M.; Salmela, H.; Mutanen, M.; Roslin, T. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci. Rep. 2016, 6, 35275. [Google Scholar] [CrossRef] [PubMed]
- Ondrejicka, D.A.; Locke, S.A.; Morey, K.; Borisenko, A.V.; Hanner, R.H. Status and prospects of DNA barcoding in medically important parasites and vectors. Trends Parasitol. 2014, 30, 582–591. [Google Scholar] [CrossRef]
- Andriantsoanirina, V.; Ariey, F.; Izri, A.; Bernigaud, C.; Fang, F.; Charrel, R.; Foulet, F.; Botterel, F.; Guillot, J.; Chosidow, O.; et al. Sarcoptesscabiei mites in humans are distributed into three genetically distinct clades. Clin. Microbiol. Infect. 2015, 21, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Zahler, M.; Essig, A.; Gothe, R.; Rinder, H. Molecular analyses suggest monospecificity of the genus Sarcoptes (Acari: Sarcoptidae). Int. J. Parasitol. 1999, 29, 759–766. [Google Scholar] [CrossRef]
- Gu, X.B.; Yang, G.Y. A study on the genetic relationship of mites in the genus Sarcoptes (Acari: Sarcoptidae) in China. Int. J. Acarol. 2008, 34, 183–190. [Google Scholar] [CrossRef]
- Christie, J.R.; Beekman, M. Selective sweeps of mitochondrial DNA can drive the evolution of uniparental inheritance. Evolution 2017, 71, 2090–2099. [Google Scholar] [CrossRef]
- Gandon, S. Local adaptation and the geometry of host–parasite coevolution. Ecol. Lett. 2002, 5, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Appelgren, A.S.C.; Saladin, V.; Richner, H.; Doligez, B.; McCoy, K.D. Gene flow and adaptive potential in a generalist ectoparasite. BMC Evol. Biol. 2018, 18, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlian, L.G.; Morgan, M.S. A review of Sarcoptesscabiei: Past, present and future. Parasites Vectors 2017, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.M.; Fraser, T.A.; Lesku, J.A.; Simpson, K.; Roberts, G.L.; Garvey, J.; Polkinghorne, A.; Burridge, C.P.; Carver, S. The cascading pathogenic consequences of Sarcoptesscabiei infection that manifest in host disease. R. Soc. Open Sci. 2018, 5, 180018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prather, R.S.; Walters, E.M.; Wells, K.D. Swine in Biomedical Research 2014. Lab Anim. 2014, 44, 9. [Google Scholar] [CrossRef]
- Monticello, T.M.; Haschek, W.M. Swine in translational research and drug development. Toxicol. Pathol. 2016, 44, 297–298. [Google Scholar] [CrossRef] [Green Version]
- Mounsey, K.; Ho, M.F.; Kelly, A.; Willis, C.; Pasay, C.; Kemp, D.J.; McCarthy, J.S.; Fischer, K. A tractable experimental model for study of human and animal scabies. PLoS Negl. Trop. Dis. 2010, 4, e756. [Google Scholar] [CrossRef] [Green Version]
- Rampton, M.; Walton, S.F.; Holt, D.C.; Pasay, C.; Kelly, A.; Currie, B.J.; McCarthy, J.S.; Mounsey, K.E. Antibody responses to Sarcoptesscabiei apolipoprotein in a porcine model: Relevance to immunodiagnosis of recent infection. PLoS ONE 2013, 8, e65354. [Google Scholar] [CrossRef] [Green Version]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Quinn, M.T.; Parthasarathy, S.; Fong, L.G.; Steinberg, D. Oxidatively modified low density lipoproteins: A potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc. Natl. Acad. Sci. USA 1987, 84, 2995–2998. [Google Scholar] [CrossRef] [Green Version]
- Ogura, S.; Shimosawa, T. Oxidative stress and organ damages. Curr. Hypertens Rep. 2014, 16, 452. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.; Lao, L.; Wong, C.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Valle, V.; Chávez-Tapia, N.C.; Uribe, M.; Méndez-Sánchez, N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr. Med. Chem. 2012, 19, 4850–4860. [Google Scholar] [CrossRef] [PubMed]
- Ogura, S.; Kakino, A.; Sato, Y.; Fujita, Y.; Iwamoto, S.; Otsui, K.; Yoshimoto, R.; Sawamura, T. Lox-1: The multifunctional receptor underlying cardiovascular dysfunction. Circ. J. 2009, 73, 1993–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Soodan, J.S.; Sharma, N. Haemato-biochemical alterations in canine dermatitis. Indian Vet. J. 2011, 88, 56–58. [Google Scholar]
- Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogihara, T.; Asano, T.; Katagiri, H.; Sakoda, H.; Anai, M.; Shojima, N.; Ono, H.; Fujishiro, M.; Kushiyama, A.; Fukushima, Y.; et al. Oxidative stress induces insulin resistance by activating the nuclear factor-kappa B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia 2004, 47, 794–805. [Google Scholar] [CrossRef]
- Fridlyand, L.E.; Philipson, L.H. Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes. Metab. 2006, 8, 136–145. [Google Scholar] [CrossRef]
- Misra, A.; Luthra, K.; Vikram, N.K. Dyslipidemia in Asian Indians: Determinants and significance. J. Assoc. Physicians India 2004, 52, 137–142. [Google Scholar]
- Shenoy, C.; Shenoy, M.M.; Rao, G.K. Dyslipidemia in dermatological disorders. N. Am. J. Med. Sci. 2015, 7, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Hahn, B.H.; Grossman, J.; Chen, W.; McMahon, M. The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: Roles of inflammation and dyslipidemia. J. Autoimmun. 2007, 28, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, J.A.; Kasiske, B.L. Hyperlipidemia in solid organ transplantation. Transplantation 1997, 63, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Derfler, K.; Hayde, M.; Heinz, G.; Hirschl, M.M.; Steger, G.; Hauser, A.C.; Balcke, P.; Widhalm, K. Decreased postheparin lipolytic activity in renal transplant recipients with cyclosporin A. Kidney Int. 1991, 40, 720–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, M.A.; Wand, G. Stress and the HPA axis: Role of glucocorticoids in alcohol dependence. Alcohol Res. 2012, 34, 468–483. [Google Scholar]
- Li, L.A.; Yang, J.J.; Li, Y.; Lv, L.; Xie, J.J.; Du, G.M.; Jin, T.M.; Qin, S.Y.; Jiao, X.L. Effect of weaning age on cortisol release in piglets. Genet. Mol. Res. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- Pockley, A.G.; Henderson, B. Extracellular cell stress (heat shock) proteins-immune responses and disease: An overview. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160522. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.M.; Scanes, C.G. Endocrine peptides ‘moonlighting’ as immune modulators: Roles for somatostatin and GH-releasing factor. J. Endocrinol. 1995, 147, 383–396. [Google Scholar] [CrossRef]
- Bolhassani, A.; Agi, E. Heat shock proteins in infection. Clin. Chim. Acta 2019, 498, 90–100. [Google Scholar] [CrossRef]
- Pockley, A.G.; Bulmer, J.; Hanks, B.M.; Wright, B.H. Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 1999, 4, 29–35. [Google Scholar] [CrossRef]
- Kalmar, B.; Greensmith, L. Induction of heat shock proteins for protection against oxidative stress. Adv. Drug Deliv. Rev. 2009, 61, 310–318. [Google Scholar] [CrossRef]
- Arrigo, A.P. The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv. Exp. Med. Biol. 2007, 594, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Murrell, G.A.; Trickett, A.; Wang, M.X. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. Biochim. Biophys. Acta 2003, 1641, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Annunziato, L.; Amoroso, S.; Pannaccione, A.; Cataldi, M.; Pignataro, G.; D’Alessio, A.; Sirabella, R.; Secondo, A.; Sibaud, L.; Di Renzo, G.F. Apoptosis induced in neuronal cells by oxidative stress: Role played by caspases and intracellular calcium ions. Toxicol. Lett. 2003, 139, 125–133. [Google Scholar] [CrossRef]
- Ellah, M.R.A. Involvement of free radicals in parasitic infestations. J. Appl. Anim. Res. 2013, 41, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [Green Version]
- Griendling, K.K.; FitzGerald, G.A. Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003, 108, 1912–1916. [Google Scholar] [CrossRef] [Green Version]
- Beigh, S.A.; Soodan, J.S.; Nazki, S.; Khan, A.M. Oxidative stress, hematobiochemical parameters, trace elements and vitamins in dogs with zinc responsive dermatosis. VeterinarskiArhiv 2014, 84, 591–600. [Google Scholar]
- Beigh, S.A.; Soodan, J.S.; Singh, R.; Khan, A.M.; Dar, M.A. Evaluation of trace elements, oxidant/antioxidative status, vitamin C and β-carotene in dogs with dermatophytosis. Mycoses 2014, 57, 358–365. [Google Scholar] [CrossRef]
- Dimri, U.; Sharma, M.C.; Swarup, D.; Ranjan, R.; Kataria, M. Alterations in hepatic lipid peroxides and antioxidant profile in Indian water buffaloes suffering from sarcoptic mange. Res. Vet. Sci. 2008, 85, 101105. [Google Scholar] [CrossRef] [PubMed]
- Dimri, U.; Sharma, M.C.; Yamdagni, A.; Ranjan, R.; Zama, M.M.S. Psoroptic mange infestation increases oxidative stress and decreases antioxidant status in sheep. Vet. Parasitol. 2010, 68, 318322. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.; Bauer, N.G.; Hallott, A.; Goldbaum, O.; Ghebremeskel, K.; Reifen, R.; Richter-Landsberg, C. Membrane lipid modification by polyunsaturated fatty acids sensitizes oligodendroglial OLN-93 cells against oxidative stress and promotes up-regulation of heme oxygenase-1 (HSP32). J. Neurochem. 2010, 113, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, A.; Yazdanparast, R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem. 2007, 104, 21–29. [Google Scholar] [CrossRef]
- DelRio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Nwufoh, O.C.; Sadiq, N.A.; Emikpe, B.O.; Omobowale, T. Assessment of cutaneous and serum oxidative stress changes in dogs infested with Sarcoptesscabiei var. Canis. Acta Vet. Eurasia 2020, 46, 1–6. [Google Scholar] [CrossRef]
- Luo, Q.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Liu, J.; Deng, Y. Intestinal IgA+ cell numbers as well as IgA, IgG, and IgM contents correlate with mucosal humoral immunity of broilers during supplementation with high fluorine in the diets. Biol. Trace Elem. Res. 2013, 154, 62–72. [Google Scholar] [CrossRef]
- Morgan, M.S.; Arlian, L.G. Serum antibody profiles of Sarcoptesscabiei infested or immunized rabbits. Folia Parasitol. 1994, 41, 223–227. [Google Scholar]
- Roberts, L.J.; Huffam, S.E.; Walton, S.F.; Currie, B.J. Crusted scabies: Clinical and immunological findings in seventy-eight patients and a review of the literature. J. Inf. Secur. 2005, 50, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Jankovic, D.; Sher, A.; Yap, G. Th1/Th2 effector choice in parasitic infection: Decision making by committee. Curr. Opin. Immunol. 2001, 13, 403–409. [Google Scholar] [CrossRef]
- Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 2000, 85, 9–21. [Google Scholar] [CrossRef]
- Kaiko, G.E.; Horvat, J.C.; Beagley, K.W.; Hansbro, P.M. Immunological decision-making: How does the immune system decide to mount a helper T-cell response? Immunology 2008, 123, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Cicchese, J.M.; Evans, S.; Hult, C.; Joslyn, L.R.; Wessler, T.; Millar, J.A.; Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol. Rev. 2018, 285, 147–167. [Google Scholar] [CrossRef]
- Spellberg, B.; Edwards, J.E., Jr. Type 1/Type 2 immunity in infectious diseases. Clin. Infect. Dis. 2001, 32, 76–102. [Google Scholar] [CrossRef]
- Pence, D.B.; Ueckermann, E. Sarcoptic mange in wildlife. Rev. Sci. Tech. Off. Int. Epizoot. 2002, 21, 385–398. [Google Scholar] [CrossRef]
- Nimmervoll, H.; Hoby, S.; Robert, N.; Lommano, E.; Welle, M.; Ryser-Degiorgis, M.P. Pathology of sarcoptic mange in red foxes (Vulpes vulpes): Macroscopic and histologic characterization of three disease stages. J. Wildl. Dis. 2013, 49, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, H.; Ogata, M. Sarcoptic mange in free-ranging raccoon dogs (Nyctereutesprocyonoides) in Japan. Vet. Dermatol. 2005, 16, 177–182. [Google Scholar] [CrossRef]
- Ryser-Degiorgis, M.P.; Ryser, A.; Bacciarini, L.N.; Angst, C.; Gottstein, B.; Janovsky, M.; Breitenmoser, U. Notoedric and sarcoptic mange in free-ranging lynx from Switzerland. J. Wildl. Dis. 2002, 38, 228–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa, J.; Ráez-Bravo, A.; López-Olvera, J.R.; Pérez, J.M.; Lavín, S.; Tvarijonaviciute, A.; Cano-Manue, F.J.; Fandos, P.; Soriguer, R.C.; Granados, J.E.; et al. Histopathology, microbiology and the inflammatory process associated with Sarcoptesscabiei infection in the Iberian ibex, Capra pyrenaica. Parasites Vectors 2017, 10, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De, A.K.; Sawhney, S.; Mondal, S.; Ponraj, P.; Ravi, S.K.; Sarkar, G.; Banik, S.; Malakar, D.; Muniswamy, K.; Kumar, A.; et al. Host-Parasite Interaction in Sarcoptes scabiei Infestation in Porcine Model with a Preliminary Note on Its Genetic Lineage from India. Animals 2020, 10, 2312. https://doi.org/10.3390/ani10122312
De AK, Sawhney S, Mondal S, Ponraj P, Ravi SK, Sarkar G, Banik S, Malakar D, Muniswamy K, Kumar A, et al. Host-Parasite Interaction in Sarcoptes scabiei Infestation in Porcine Model with a Preliminary Note on Its Genetic Lineage from India. Animals. 2020; 10(12):2312. https://doi.org/10.3390/ani10122312
Chicago/Turabian StyleDe, Arun Kumar, Sneha Sawhney, Samiran Mondal, Perumal Ponraj, Sanjay Kumar Ravi, Gopal Sarkar, Santanu Banik, Dhruba Malakar, Kangayan Muniswamy, Ashish Kumar, and et al. 2020. "Host-Parasite Interaction in Sarcoptes scabiei Infestation in Porcine Model with a Preliminary Note on Its Genetic Lineage from India" Animals 10, no. 12: 2312. https://doi.org/10.3390/ani10122312
APA StyleDe, A. K., Sawhney, S., Mondal, S., Ponraj, P., Ravi, S. K., Sarkar, G., Banik, S., Malakar, D., Muniswamy, K., Kumar, A., Tripathi, A. K., Bera, A. K., & Bhattacharya, D. (2020). Host-Parasite Interaction in Sarcoptes scabiei Infestation in Porcine Model with a Preliminary Note on Its Genetic Lineage from India. Animals, 10(12), 2312. https://doi.org/10.3390/ani10122312