Ancylostoma ceylanicum: The Neglected Zoonotic Parasite of Community Dogs in Thailand and Its Genetic Diversity among Asian Countries
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Size
2.2. Sample Collection and Examination
2.2.1. Fecal and Soil Sample Collection
2.2.2. Microscopic Examinations of Fecal and Soil Samples
2.3. DNA Extraction
2.4. Molecular Analyses
2.4.1. Identification of Hookworm Species Using a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Assay Based on ITS Region
2.4.2. PCR Assay and Nucleotide Analysis Based on A. ceylanicum and A. caninum cox1 Gene
2.5. Data Analyses
2.5.1. Prevalence of Hookworm Infection/Contamination
2.5.2. Phylogenetic Analysis
2.5.3. Population Genetic Analysis
3. Results
3.1. Prevalence and Distribution of Hookworm Infection
3.2. Hookworm Species Confirmation and Genetic Characteristics of the A. ceylanicum Mitochondrial cox1 Gene
3.3. Population Analyses of the A. ceylanicum Mitochondrial cox1 Gene among Asian Countries
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Shen, Y.; Zhang, T. Survey of the relationship between hookworm disease and socioeconomic factors. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 1999, 17, 399. [Google Scholar] [PubMed]
- Bethony, J.; Brooker, S.; Albonico, M.; Geiger, S.M.; Loukas, A.; Diemert, D.; Hotez, P.J. Soil-transmitted helminth infections: Ascariasis, trichuriasis, and hookworm. Lancet 2006, 367, 1521–1532. [Google Scholar] [CrossRef]
- Merino-Tejedor, A.; Nejsum, P.; Mkupasi, E.M.; Johansen, M.V.; Olsen, A. Molecular identification of zoonotic hookworm species in dog faeces from Tanzania. J. Helminthol. 2019, 93, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.A.; Kurscheid, J.; Jones, M.K.; Gray, D.J.; McManus, D.P. Soil-transmitted helminths in tropical Australia and Asia. Trop. Med. Infect. Dis. 2017, 4, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, S.; Levecke, B.; Kattula, D.; Velusamy, V.; Roy, S.; Geldhof, P.; Sarkar, R.; Kang, G. Molecular identification of hookworm isolates in humans, dogs and soil in a tribal area in Tamil Nadu, India. PLoS Negl. Trop. Dis. 2016, 10, e0004891. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.D.; Montgomery, S.P.; Zajac, A.M.; Eberhard, M.L.; Kazacos, K.R. Hookworms of dogs and cats as agents of cutaneous larva migrans. Trends Parasitol. 2010, 26, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Zheng, G.C.; Zhang, P.; Alsarakibi, M.; Zhang, X.H.; Li, Y.W.; Liu, T.; Ren, S.N.; Chen, Z.X.; Liu, Y.L.; et al. Molecular identification of hookworms in stray and shelter dogs from Guangzhou city, China using ITS sequences. J. Helminthol. 2015, 89, 196–202. [Google Scholar] [CrossRef]
- Smout, F.A.; Skerratt, L.F.; Butler, J.R.A.; Johnson, C.N.; Congdon, B.C.; Thompson, R.C.A. The hookworm Ancylostoma ceylanicum: An emerging public health risk in Australian tropical rainforests and Indigenous communities. One Health 2017, 3, 66–69. [Google Scholar] [CrossRef]
- Zibaei, M.; Nosrati, M.R.C.; Shadnoosh, F.; Houshmand, E.; Karami, M.F.; Rafsanjani, M.K.; Majidiani, H.; Ghaffarifar, F.; Cortes, H.C.E.; Dalvand, S.; et al. Insights into hookworm prevalence in Asia: A systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 141–154. [Google Scholar] [CrossRef]
- Palmer, C.S.; Traub, R.J.; Robertson, I.D.; Hobbs, R.P.; Elliot, A.; While, L.; Rees, R.; Thompson, R.C. The veterinary and public health significance of hookworm in dogs and cats in Australia and the status of A. ceylanicum. Vet. Parasitol. 2007, 145, 304–313. [Google Scholar] [CrossRef] [Green Version]
- Traub, R.J. Ancylostoma ceylanicum, a re-emerging but neglected parasitic zoonosis. Int. J. Parasitol. 2013, 43, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Schar, F.; Inpankaew, T.; Traub, R.J.; Khieu, V.; Dalsgaard, A.; Chimnoi, W.; Chhoun, C.; Sok, D.; Marti, H.; Muth, S.; et al. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village. Parasitol. Int. 2014, 63, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Kaya, D.; Yoshikawa, M.; Nakatani, T.; Tomo-Oka, F.; Fujimoto, Y.; Ishida, K.; Fujinaga, Y.; Aihara, Y.; Nagamatsu, S.; Matsuo, E.; et al. Ancylostoma ceylanicum hookworm infection in Japanese traveler who presented chronic diarrhea after return from Lao People’s Democratic Republic. Parasitol. Int. 2016, 65, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Ouji, Y.; Hirai, N.; Nakamura-Uchiyama, F.; Yamada, M.; Arizono, N.; Akamatsu, N.; Yoh, T.; Kaya, D.; Nakatani, T.; et al. Ancylostoma ceylanicum, novel etiological agent for traveler’s diarrhea-report of four Japanese patients who returned from southeast Asia and Papua New Guinea. Trop. Med. Health 2018, 46, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngui, R.; Ching, L.S.; Kai, T.T.; Roslan, M.A.; Lim, Y.A. Molecular identification of human hookworm infections in economically disadvantaged communities in Peninsular Malaysia. Am. J. Trop. Med. Hyg. 2012, 86, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Traub, R.J.; Robertson, I.D.; Irwin, P.; Mencke, N.; Thompson, R.C. Application of a species-specific PCR-RFLP to identify Ancylostoma eggs directly from canine faeces. Vet. Parasitol. 2004, 123, 245–255. [Google Scholar] [CrossRef]
- Romstad, A.; Gasser, R.B.; Nansen, P.; Polderman, A.M.; Chilton, N.B. Necator americanus (Nematoda: Ancylostomatidae) from Africa and Malaysia have different ITS-2 rDNA sequences. Int. J. Parasitol. 1998, 28, 611–615. [Google Scholar] [CrossRef]
- Gasser, R.B.; Stewart, L.E.; Speare, R. Genetic markers in ribosomal DNA for hookworm identification. Acta Trop. 1996, 62, 15–21. [Google Scholar] [CrossRef]
- Blouin, M.S. Molecular prospecting for cryptic species of nematodes: Mitochondrial DNA versus internal transcribed spacer. Int. J. Parasitol. 2002, 32, 527–531. [Google Scholar] [CrossRef]
- Hu, M.; Chilton, N.B.; Gasser, R.B. The mitochondrial genomics of parasitic nematodes of socio-economic importance: Recent progress, and implications for population genetics and systematics. Adv. Parasitol. 2004, 56, 133–212. [Google Scholar] [CrossRef]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; Reeb, C.A.; Saunders, N.C. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Pumidonming, W.; Salman, D.; Gronsang, D.; Abdelbaset, A.E.; Sangkaeo, K.; Kawazu, S.I.; Igarashi, M. Prevalence of gastrointestinal helminth parasites of zoonotic significance in dogs and cats in lower Northern Thailand. J. Vet. Med. Sci. 2017, 78, 1779–1784. [Google Scholar] [CrossRef] [Green Version]
- Tangtrongsup, S.; Scorza, A.V.; Reif, J.S.; Ballweber, L.R.; Lappin, M.R.; Salman, M.D. Seasonal distributions and other risk factors for Giardia duodenalis and Cryptosporidium spp. infections in dogs and cats in Chiang Mai, Thailand. Prev. Vet. Med. 2020, 174, 104820. [Google Scholar] [CrossRef] [PubMed]
- Piangjai, S.; Sukontason, K.; Sukontason, K.L. Intestinal parasitic infections in hill-tribe schoolchildren in Chiang Mai, northern Thailand. Southeast Asian J. Trop. Med. Public Health 2003, 34 (Suppl. 2), 90–93. [Google Scholar]
- Yanola, J.; Nachaiwieng, W.; Duangmano, S.; Prasannarong, M.; Somboon, P.; Pornprasert, S. Current prevalence of intestinal parasitic infections and their impact on hematological and nutritional status among Karen hill tribe children in Omkoi District, Chiang Mai Province, Thailand. Acta Trop. 2018, 180, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Energy Policy and Plannning Office, Ministry of Energy. The Provinces and Administrative Areas of Thailand. Available online: http://www.e-report.energy.go.th/area.html (accessed on 31 May 2019).
- Royal Thai Government Gazette, The Secretariat of the Cabinet. Thailand Population. 2018. Available online: http://www.ratchakitcha.soc.go.th/DATA/PDF/2562/E/036/T_0032.PDF (accessed on 31 May 2019).
- Thrusfield, M.; Ortega, C.; de Blas, I.; Noordhuizen, J.P.; Frankena, K. WIN EPISCOPE 2.0: Improved epidemiological software for veterinary medicine. Vet. Rec. 2001, 148, 567–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwananthagorn, S.; Chiang Mai University, Chiang Mai, Thailand. Unpublished Work. 2018.
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development. Dog Population in Thailand. 2016. Available online: http://dcontrol.dld.go.th/webnew/index.php/th/news-menu/2018-07-04-04-12-47/rabies/360-dogpop2016 (accessed on 31 May 2019).
- Moxham, G. The WALTHAM faeces scoring system—A tool for veterinarians and pet owners: How does your pet rate? Walth. Focus 2001, 11, 24–25. [Google Scholar]
- Gibbons, L.M.; Jones, A.; Khalil, L.F. Manual for the 8th International Training Course on Identification of Helminth Parasites of Economic Importance; CABI Institue of Parasitology, Wallingford: Oxon, UK, 1996. [Google Scholar]
- Inpankaew, T.; Schar, F.; Dalsgaard, A.; Khieu, V.; Chimnoi, W.; Chhoun, C.; Sok, D.; Marti, H.; Muth, S.; Odermatt, P.; et al. High prevalence of Ancylostoma ceylanicum hookworm infections in humans, Cambodia, 2012. Emerg. Infect. Dis. 2014, 20, 976–982. [Google Scholar] [CrossRef]
- Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp. Ser. 1996, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.J.; Forster, P.; Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, M.A.; Lim, Y.A.; Ngui, R.; Siti Fatimah, M.R.; Choy, S.H.; Yap, N.J.; Al-Mekhlafi, H.M.; Ibrahim, J.; Surin, J. Prevalence and zoonotic potential of canine hookworms in Malaysia. Parasit Vectors 2012, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Conlan, J.V.; Khamlome, B.; Vongxay, K.; Elliot, A.; Pallant, L.; Sripa, B.; Blacksell, S.D.; Fenwick, S.; Thompson, R.C. Soil-transmitted helminthiasis in Laos: A community-wide cross-sectional study of humans and dogs in a mass drug administration environment. Am. J. Trop. Med. Hyg. 2012, 86, 624–634. [Google Scholar] [CrossRef]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef]
- Ngui, R.; Mahdy, M.A.; Chua, K.H.; Traub, R.; Lim, Y.A. Genetic characterization of the partial mitochondrial cytochrome oxidase c subunit I (cox1) gene of the zoonotic parasitic nematode, Ancylostoma ceylanicum from humans, dogs and cats. Acta Trop. 2013, 128, 154–157. [Google Scholar] [CrossRef]
- Marques, J.P.; Guimaraes Cde, R.; Boas, A.V.; Carnauba, P.U.; Moraes, J. Contamination of public parks and squares from Guarulhos (Sao Paulo State, Brazil ) by Toxocara spp. and Ancylostoma spp. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Tun, S.; Ithoi, I.; Mahmud, R.; Samsudin, N.I.; Kek Heng, C.; Ling, L.Y. Detection of helminth eggs and identification of hookworm species in stray cats, dogs and soil from Klang Valley, Malaysia. PLoS ONE 2015, 10, e0142231. [Google Scholar] [CrossRef]
- Ferreira, A.; Alho, A.M.; Otero, D.; Gomes, L.; Nijsse, R.; Overgaauw, P.A.M.; Madeira de Carvalho, L. Urban dog parks as sources of canine parasites: Contamination rates and pet owner behaviours in Lisbon, Portugal. J. Env. Public Health 2017, 2017, 5984086. [Google Scholar] [CrossRef] [Green Version]
- Paller, V.G.V.; Babia-Abion, S. Soil-transmitted helminth (STH) eggs contaminating soils in selected organic and conventional farms in the Philippines. Parasite Epidemiol. Control. 2019, 7, e00119. [Google Scholar] [CrossRef]
- Traub, R.J.; Inpankaew, T.; Sutthikornchai, C.; Sukthana, Y.; Thompson, R.C. PCR-based coprodiagnostic tools reveal dogs as reservoirs of zoonotic ancylostomiasis caused by Ancylostoma ceylanicum in temple communities in Bangkok. Vet. Parasitol. 2008, 155, 67–73. [Google Scholar] [CrossRef]
- Smith, L.M.; Hartmann, S.; Munteanu, A.M.; Dalla Villa, P.; Quinnell, R.J.; Collins, L.M. The effectiveness of dog population management: A systematic review. Animals 2019, 9, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada, D.; Crandall, K.A. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol. Evol. 2001, 16, 37–45. [Google Scholar] [CrossRef]
- Guo, L.; Sun, B.; Sang, F.; Wang, W.; Lu, Z. Haplotype distribution and evolutionary pattern of miR-17 and miR-124 families based on population analysis. PLoS ONE 2009, 4, e7944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.D.; Zhai, W.; Yang, H.C.; Wang, L.; Zhong, L.; Liu, Y.H.; Fan, R.X.; Yin, T.T.; Zhu, C.L.; Poyarkov, A.D.; et al. Out of southern East Asia: The natural history of domestic dogs across the world. Cell Res. 2016, 26, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Witt, K.E.; Judd, K.; Kitchen, A.; Grier, C.; Kohler, T.A.; Ortman, S.G.; Kemp, B.M.; Malhi, R.S. DNA analysis of ancient dogs of the Americas: Identifying possible founding haplotypes and reconstructing population histories. J. Hum. Evol. 2015, 79, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Loeurng, V.; Ichikawa-Seki, M.; Wannasan, A.; Sothyra, T.; Chaisowwong, W.; Tiwananthagorn, S. Genetic characterization of cambodian Fasciola gigantica and dispersal direction of the species in Asia. Vet. Parasitol. 2019, 273, 45–51. [Google Scholar] [CrossRef]
- Biocca, E.; Chabaud, A. Redescription of Seuratum mucronatum (Nematoda-Cucullanidae). Ann. Parasitol. Hum. Comp. 1951, 26, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Smout, F.A.; Thompson, R.C.; Skerratt, L.F. First report of Ancylostoma ceylanicum in wild canids. Int. J. Parasitol. Parasites Wildl. 2013, 2, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Taweethavonsawat, P.; Chungpivat, S.; Satranarakun, P.; Traub, R.J.; Schaper, R. Efficacy of a combination product containing pyrantel, febantel and praziquantel (Drontal® Plus Flavour, Bayer Animal Health) against experimental infection with the hookworm Ancylostoma ceylanicum in dogs. Parasitol. Res. 2010, 106, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Taweethavonsawat, P.; Chungpivat, S.; Satranarakun, P.; Traub, R.J.; Schaper, R. Experimental infection with Ancylostoma ceylanicum in dogs and efficacy of a spot on combination containing imidacloprid 10% and moxidectin 2.5% (Advocate®/Advantage Multi, Bayer Animal Health). Parasitol. Res. 2010, 106, 1499–1502. [Google Scholar] [CrossRef] [PubMed]
- Tielemans, E.; Lebon, W.; Dumont, P.; Taweethavonsawat, P.; Larsen, D.; Rehbein, S. Efficacy of afoxolaner plus milbemycin oxime chewable tablets (NexGard Spectra®, Merial) against adult Ancylostoma ceylanicum hookworm, in dogs. Vet. Parasitol. 2017, 238, 87–89. [Google Scholar] [CrossRef] [PubMed]
Province | Fecal Samples | Soil Samples | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive Microscopic | N2 | A. ceylanicum | A. caninum | n/a | Positive Microscopic | N4 | A. ceylanicum | A. caninum | n/a | |||||||||
N1 | n | % | n | % | n | % | n | N3 | n | % | n | % | n | % | n | |||
Chiang Mai | 159 | 57 | 35.85 a | 42 | 40 | 95.24 | 2 | 4.76 | 15 | 120 | 16 | 13.33 | 3 | 3 | 100 | 0 | 0 | 13 |
Chiang Rai | 70 | 6 | 8.57 b | 5 | 5 | 100 | 0 | 0 | 1 | 48 | 1 | 2.08 | 1 | 1 | 100 | 0 | 0 | 0 |
Lampang | 20 | 9 | 45.00 a | 5 | 5 | 100 | 0 | 0 | 4 | 16 | 3 | 18.75 | 2 | 2 | 100 | 0 | 0 | 1 |
Phayao | 50 | 7 | 14.00 b | 6 | 6 | 100 | 0 | 0 | 1 | 28 | 2 | 7.14 | 2 | 2 | 100 | 0 | 0 | 0 |
Total | 299 | 79 | 26.42 | 58 | 56 | 96.55 | 2 | 3.45 | 21 | 212 | 22 | 10.38 | 8 | 8 | 100 | 0 | 0 | 14 |
Haplotype Name | Nucleotide Position on the A. ceylanicum cox1 Gene | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
48 | 72 | 87 | 88 | 90 | 105 | 147 | 150 | 198 | 199 | 219 | 264 | |
Acy-COX1-TH01 | A | C | A | G | A | A | G | A | G | G | A | G |
Acy-COX1-TH02 | G | . | . | . | . | . | A | . | . | . | . | . |
Acy-COX1-TH03 | . | T | . | . | . | . | . | . | . | . | . | . |
Acy-COX1-TH04 | . | . | . | . | . | G | . | . | A | A | . | . |
Acy-COX1-TH05 | . | . | . | C | . | . | . | . | . | . | . | . |
Acy-COX1-TH06 | . | T | G | . | G | . | A | . | . | . | G | A |
Acy-COX1-TH07 | . | . | . | . | . | . | . | T | . | . | . | . |
Acy-COX1-TH08 | . | . | G | . | . | . | . | . | . | . | . | . |
Acy-COX1-TH09 | G | . | . | . | . | . | . | . | . | . | . | . |
Populations | N | Diversity | |||
---|---|---|---|---|---|
S | h | Hd ± SD | π ± SD | ||
Thailand | 32 | 11 | 9 | 0.4435 ± 0.1105 | 0.0036 ± 0.0028 |
Cambodia | 10 | 6 | 6 | 0.9111 ± 0.0620 | 0.0088 ± 0.0059 |
Malaysia | 40 | 4 | 5 | 0.6141 ± 0.0593 | 0.0043 ± 0.0006 |
China | 12 | 17 | 9 | 0.9394 ± 0.0577 | 0.0201 ± 0.0118 |
Populations | Thailand | Cambodia | Malaysia | China |
---|---|---|---|---|
Thailand | - | |||
Cambodia | 0.2507 | - | ||
Malaysia | 0.1526 | 0.0999 | - | |
China | 0.2644 | 0.1939 | 0.3577 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kladkempetch, D.; Tangtrongsup, S.; Tiwananthagorn, S. Ancylostoma ceylanicum: The Neglected Zoonotic Parasite of Community Dogs in Thailand and Its Genetic Diversity among Asian Countries. Animals 2020, 10, 2154. https://doi.org/10.3390/ani10112154
Kladkempetch D, Tangtrongsup S, Tiwananthagorn S. Ancylostoma ceylanicum: The Neglected Zoonotic Parasite of Community Dogs in Thailand and Its Genetic Diversity among Asian Countries. Animals. 2020; 10(11):2154. https://doi.org/10.3390/ani10112154
Chicago/Turabian StyleKladkempetch, Doolyawat, Sahatchai Tangtrongsup, and Saruda Tiwananthagorn. 2020. "Ancylostoma ceylanicum: The Neglected Zoonotic Parasite of Community Dogs in Thailand and Its Genetic Diversity among Asian Countries" Animals 10, no. 11: 2154. https://doi.org/10.3390/ani10112154
APA StyleKladkempetch, D., Tangtrongsup, S., & Tiwananthagorn, S. (2020). Ancylostoma ceylanicum: The Neglected Zoonotic Parasite of Community Dogs in Thailand and Its Genetic Diversity among Asian Countries. Animals, 10(11), 2154. https://doi.org/10.3390/ani10112154