Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Editing and Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Non-Genetic Factors Affecting Milk TAA
3.3. Genetic Parameters of Milk TAA
3.4. Correlations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharabi, S.; Okun, Z.; Shpigelman, A. Changes in the shelf life stability of riboflavin, vitamin C and antioxidant properties of milk after (ultra) high pressure homogenization: Direct and indirect effects. Innov. Food Sci. Emerg. Technol. 2018, 47, 161–169. [Google Scholar] [CrossRef]
- Van Aardt, M.; Duncan, S.; Marcy, J.; Long, T.; O’Keefe, S.; Nielsen-Sims, S. Effect of Antioxidant (α-Tocopherol and Ascorbic Acid) Fortification on Light-Induced Flavor of Milk. J. Dairy Sci. 2005, 88, 872–880. [Google Scholar] [CrossRef]
- Huma, N.; Rafiq, S.; Sameen, A.; Pasha, I.; Khan, M.I. Antioxidant potential of buffalo and cow milk Cheddar cheeses to tackle human colon adenocarcinoma (Caco-2) cells. Asian-Australas. J. Anim. Sci. 2018, 31, 287–292. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.; Fausto, N.; Aster, J. Robbins and Cotran Pathologic Basis of Disease, 8th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2010. [Google Scholar]
- Grażyna, C.; Hanna, C.; Adam, A.; Magdalena, B.M. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol. 2017, 70, 165–178. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niero, G.; De Marchi, M.; Masi, A.; Penasa, M.; Cassandro, M. Short communication: Characterization of soluble thiols in bovine milk. J. Dairy Sci. 2015, 98, 6014–6017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pihlanto, A. Antioxidative peptides derived from milk proteins. Int. Dairy J. 2006, 16, 1306–1314. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Effect of genetic type and casein haplotype on antioxidant activity of yogurts during storage. J. Dairy Sci. 2013, 96, 3435–3441. [Google Scholar] [CrossRef] [Green Version]
- Revilla, I.; González-Martín, M.; Vivar-Quintana, A.; Blanco-López, M.; Lobos-Ortega, I.; Hernández-Hierro, J. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy. J. Dairy Sci. 2016, 99, 5074–5082. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lindmark-Månsson, H.; Gorton, L.; Åkesson, B. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 2003, 13, 927–935. [Google Scholar] [CrossRef]
- Niero, G.; Penasa, M.; Costa, A.; Currò, S.; Visentin, G.; Cassandro, M.; De Marchi, M. Total antioxidant activity of bovine milk: Phenotypic variation and predictive ability of mid-infrared spectroscopy. Int. Dairy J. 2019, 89, 105–110. [Google Scholar] [CrossRef]
- Niero, G.; Penasa, M.; Gottardo, P.; Cassandro, M.; De Marchi, M. Short communication: Selecting the most informative mid-infrared spectra wavenumbers to improve the accuracy of prediction models for detailed milk protein content. J. Dairy Sci. 2016, 99, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bovenhuis, H. Validation strategy can result in an overoptimistic view of the ability of milk infrared spectra to predict methane emission of dairy cattle. J. Dairy Sci. 2019, 102, 6288–6295. [Google Scholar] [CrossRef] [PubMed]
- Benedet, A.; Costa, A.; De Marchi, M.; Penasa, M. Heritability estimates of predicted blood β-hydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows. J. Dairy Sci. 2020, 103, 6354–6363. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Welham, S.J.; Thompson, R. ASReml User Guide; VSN International Ltd.: Hemel Hempstead, UK, 2015. [Google Scholar]
- Tiplady, K.M.; Lopdell, T.J.; Littlejohn, M.D.; Garrick, D.J. The evolving role of Fourier-transform mid-infrared spectroscopy in genetic improvement of dairy cattle. J. Anim. Sci. Biotechnol. 2020, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Niero, G.; Penasa, M.; Currò, S.; Masi, A.; Trentin, A.; Cassandro, M.; De Marchi, M. Development and validation of a near infrared spectrophotometric method to determine total antioxidant activity of milk. Food Chem. 2017, 220, 371–376. [Google Scholar] [CrossRef]
- Niero, G.; Currò, S.; Costa, A.; Penasa, M.; Cassandro, M.; Boselli, C.; Giangolini, G.; De Marchi, M. Short communication: Phenotypic characterization of total antioxidant activity of buffalo, goat, and sheep milk. J. Dairy Sci. 2018, 101, 4864–4868. [Google Scholar] [CrossRef]
- Franzoi, M.; Niero, G.; Visentin, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Variation of Detailed Protein Composition of Cow Milk Predicted from a Large Database of Mid-Infrared Spectra. Animal 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Gottardo, P.; Penasa, M.; Righi, F.; López-Villalobos, N.; Cassandro, M.; De Marchi, M. Fatty acid composition of milk from Holstein-Friesian, Brown Swiss, Simmental and Alpine Grey cows predicted by mid-infrared spectroscopy. Ital. J. Anim. Sci. 2017, 16, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Interbull. National Genetic Evaluation. Available online: https://interbull.org/ib/geforms (accessed on 1 April 2020).
- Costa, A.; Lopez-Villalobos, N.; Visentin, G.; De Marchi, M.; Cassandro, M.; Penasa, M. Heritability and repeatability of milk lactose and its relationships with traditional milk traits, somatic cell score and freezing point in Holstein cows. Animal 2019, 13, 909–916. [Google Scholar] [CrossRef]
- Costa, A.; Visentin, G.; De Marchi, M.; Cassandro, M.; Penasa, M. Genetic relationships of lactose and freezing point with minerals and coagulation traits predicted from milk mid-infrared spectra in Holstein cows. J. Dairy Sci. 2019, 102, 7217–7225. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, N.A.; Buitenhuis, A.; Larsen, L. Phenotypic and genetic associations of milk traits with milk coagulation properties. J. Dairy Sci. 2015, 98, 2079–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miglior, F.; Sewalem, A.; Jamrozik, J.; Bohmanova, J.; Lefebvre, D.; Moore, R. Genetic Analysis of Milk Urea Nitrogen and Lactose and Their Relationships with Other Production Traits in Canadian Holstein Cattle. J. Dairy Sci. 2007, 90, 2468–2479. [Google Scholar] [CrossRef]
- Calderón, F.; Chauveau-Duriot, B.; Martin, B.; Graulet, B.; Doreau, M.; Nozière, P. Variations in Carotenoids, Vitamins A and E, and Color in Cow’s Plasma and Milk During Late Pregnancy and the First Three Months of Lactation. J. Dairy Sci. 2007, 90, 2335–2346. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Wander, R.; Leonard, S.; German, B.; Traber, M.G. Removal of fat from cow’s milk decreases the vitamin E contents of the resulting dairy products. Lipids 2001, 36, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Atakisi, O.; Oral, H.; Atakisi, E.; Merhan, O.; Pancarci, S.M.; Ozcan, A.; Marasli, S.; Polat, B.; Colak, A.; Kaya, S. Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Res. Veter-Sci. 2010, 89, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Conner, E.M.; Grisham, M.B. Inflammation, free radicals, and antioxidants. Nutrition 1996, 12, 274–277. [Google Scholar] [CrossRef]
- Bae, H.; Jeong, C.H.; Cheng, W.N.; Hong, K.; Park, C.; Han, S.G. Oxidative stress-induced inflammatory responses and effects of N-acetylcysteine in bovine mammary alveolar cells. J. Dairy Res. 2017, 84, 418–425. [Google Scholar] [CrossRef]
- Costa, A.; Egger-Danner, C.; Mészáros, G.; Fuerst, C.; Penasa, M.; Sölkner, J.; Fuerst-Waltl, B. Genetic associations of lactose and its ratios to other milk solids with health traits in Austrian Fleckvieh cows. J. Dairy Sci. 2019, 102, 4238–4248. [Google Scholar] [CrossRef]
- Zanon, T.; Costa, A.; De Marchi, M.; Penasa, M.; König, S.; Gauly, M. Milk yield and quality of original brown cattle reared in Italian alpine region. Ital. J. Anim. Sci. 2020, 19, 1158–1170. [Google Scholar] [CrossRef]
- Visentin, G.; Niero, G.; Berry, D.P.; Costa, A.; Cassandro, M.; De Marchi, M.; Penasa, M. Genetic (co)variances between milk mineral concentration and chemical composition in lactating Holstein-Friesian dairy cows. Animal 2019, 13, 477–486. [Google Scholar] [CrossRef]
Trait | n | Mean | CV (%) | Minimum | Maximum |
---|---|---|---|---|---|
pTAA (mmol/L of Trolox Equivalent) | 111,653 | 7.16 | 7.51 | 5.46 | 8.76 |
Yield (kg/day) | |||||
Milk | 111,653 | 30.05 | 24.19 | 5.70 | 52.70 |
Fat | 110,754 | 1.17 | 24.89 | 0.26 | 2.10 |
Crude protein | 111,331 | 0.98 | 21.98 | 0.33 | 1.63 |
Milk composition (%) | |||||
Fat | 111,653 | 3.95 | 15.20 | 1.76 | 6.16 |
Crude protein | 111,650 | 3.29 | 9.87 | 2.18 | 4.40 |
Casein | 111,649 | 2.59 | 9.72 | 1.72 | 3.47 |
Lactose | 111,653 | 4.79 | 3.30 | 4.13 | 5.37 |
Somatic cell score (units) | 111,653 | 2.55 | 72.61 | −3.64 | 9.62 |
Protein fractions (% of crude protein) | |||||
α-casein | 111,043 | 44.24 | 7.23 | 26.84 | 59.63 |
β-casein | 109,500 | 28.66 | 14.32 | 13.80 | 53.85 |
κ-casein | 108,712 | 16.84 | 20.18 | 7.46 | 33.29 |
α-lactalbumin | 111,137 | 2.32 | 11.17 | 1.42 | 3.50 |
β-lactoglobulin | 106,896 | 8.84 | 35.51 | 1.42 | 24.42 |
Parameter | Estimate | SE |
---|---|---|
0.030 | 0.001 | |
0.008 | 0.001 | |
0.401 | 0.015 | |
0.500 | 0.006 |
Trait | rp | ra |
---|---|---|
Yield (kg/day) | ||
Milk | −0.184 (0.007) | −0.381 (0.045) |
Fat | 0.129 (0.006) | 0.366 (0.049) |
Crude protein | 0.092 (0.007) | 0.238 (0.052) |
Milk composition (%) | ||
Fat | 0.407 (0.006) | 0.616 (0.022) |
Crude protein | 0.610 (0.005) | 0.754 (0.015) |
Casein | 0.589 (0.005) | 0.733 (0.016) |
Lactose | −0.039 (0.009) | 0.040 (0.030) |
Somatic cell score (units) | 0.086 (0.006) | 0.109 (0.057) |
Protein fractions (% of crude protein) | ||
α-casein | 0.232 (0.007) | 0.191 (0.032) |
β-casein | 0.153 (0.007) | 0.243 (0.016) |
κ-casein | 0.078 (0.007) | 0.173 (0.016) |
α-lactalbumin | 0.000 (0.000) | 0.000 (0.000) |
β-lactoglobulin | 0.006 (0.001) | 0.000 (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niero, G.; Costa, A.; Franzoi, M.; Visentin, G.; Cassandro, M.; De Marchi, M.; Penasa, M. Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows. Animals 2020, 10, 2372. https://doi.org/10.3390/ani10122372
Niero G, Costa A, Franzoi M, Visentin G, Cassandro M, De Marchi M, Penasa M. Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows. Animals. 2020; 10(12):2372. https://doi.org/10.3390/ani10122372
Chicago/Turabian StyleNiero, Giovanni, Angela Costa, Marco Franzoi, Giulio Visentin, Martino Cassandro, Massimo De Marchi, and Mauro Penasa. 2020. "Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows" Animals 10, no. 12: 2372. https://doi.org/10.3390/ani10122372
APA StyleNiero, G., Costa, A., Franzoi, M., Visentin, G., Cassandro, M., De Marchi, M., & Penasa, M. (2020). Genetic and Non-Genetic Variation of Milk Total Antioxidant Activity Predicted from Mid-Infrared Spectra in Holstein Cows. Animals, 10(12), 2372. https://doi.org/10.3390/ani10122372