Quality of Dry-Cured Ham from Entire, Surgically and Immunocastrated Males: Case Study on Kraški Pršut
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin and Processing of Hams
2.2. Color Measurements
2.3. Chemical Analyses
2.4. Texture Profile Measurements
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Green Ham Properties and Ham Processing Weight Loss
3.2. Physical-Chemical Properties of Dry-Cured Ham Muscles
3.3. Instrumental Texture Profile of Dry-Cured Ham Muscles
3.4. Sensory Analysis of Dry-Cured Ham
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prunier, A.; Bonneau, M.; von Borell, E.H.; Cinotti, S.; Gunn, M.; Fredriksen, B.; Giersing, M.; Morton, D.B.; Tuyttens, F.A.M.; Velarde, A. A review of welfare consequences on surgical castration in piglets and the evaluation of non-surgical methods. Anim. Welf. 2006, 15, 277–289. [Google Scholar]
- European Declaration on Alternatives to Surgical Castration of Pigs. 2010. Available online: http://ec.europa.eu/food/animals/welfare/practice/farm/pigs/castration_alternatives_en (accessed on 5 November 2019).
- Boars on the Way. Available online: https://www.boarsontheway.com/ (accessed on 5 November 2019).
- Candek-Potokar, M.; Skrlep, M.; Batorek Lukac, N. Raising Entire Males or Immunocastrates—Outlook on Meat Quality. Procedia Food Sci. 2015, 5, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Bonneau, M.; Čandek-Potokar, M.; Škrlep, M.; Font-i-Furnols, M.; Aluwé, M. The Castrum Network, Fontanesi, L. Potential sensitivity of pork production situations aiming at high-quality products to the use of entire male pigs as an alternative to surgical castrates. Animal 2018, 12, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Font-i-Furnols, M. Consumer studies on sensory acceptability of boar taint: A review. Meas. Sci. 2012, 92, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Bañón, S.; Gil, M.D.; Garrido, M.D. The effects of castration on the eating quality of dry-cured ham. Meat Sci. 2003, 65, 1031–1037. [Google Scholar] [CrossRef]
- Corral, S.; Salvador, A.; Flores, M. Effect of the use of entire male fat in the production of reduced salt fermented sausages. Meat Sci. 2016, 116, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Tørngren, M.A.; Claudi-Magnussen, C.; Støier, S.; Kristensen, L. Boar taint reduction in smoked, cooked ham. In Proceedings of the 57th International Congress of Meat Science and Technology, Ghent, Belgium, 7–12 August 2011. [Google Scholar]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) No. 506/2012 of 14 June 2012 Entering a Name in the Register of Protected Designations of Origin and Protected Geographical Indications (Kraški Pršut (PGI)). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2012.154.01.0020.01.ENG&toc=OJ:L:2012:154:TOC (accessed on 2 February 2020).
- Kress, K.; Weiler, U.; Schmucker, S.; Čandek-Potokar, M.; Vrecl, M.; Fazarinc, G.; Škrlep, M.; Batorek-Lukač, N.; Stefanski, V. Influence of housing conditions on success of immunocastration and consequences for growth performance in male pigs. Animals 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Škrlep, M.; Čandek-Potokar, M.; Žlender, B.; Robert, N.; Santé-Lhoutellier, V.; Gou, P. PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams–III. Associations in Slovenian dry-cured ham Kraški pršut and their dependence on processing. Meat Sci. 2012, 92, 360–365. [Google Scholar] [CrossRef]
- Lynch, S.M.; Frei, B. Mechanisms of copper- and iron-dependant oxidative modification of human low-density-lipoprotein. J. Lipid Res. 1993, 34, 1745–1753. [Google Scholar]
- Pugliese, C.; Sirtori, F.; Škrlep, M.; Piasentier, E.; Calamai, L.; Franci, O.; Čandek-Potokar, M. The effect of ripening time on chemical, textural, volatile and sensorial traits of biceps femoris and semimembranosus muscles of the Slovenian dry-cured ham Kraški pršut. Meat Sci. 2014, 100, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.; Sidel, J.S. Descriptive analysis. In Sensory Evaluation Practices, 3rd ed.; Academic Press: San Diego, CA, USA, 2004; pp. 20–245. [Google Scholar]
- ISO 8589: 2007: Sensory Analysis—General Guidance for the Design of Test Rooms; International Organization for Standardization: Geneva, Switzerland. 2007, p. 16. Available online: https://www.iso.org/standard/36385.html (accessed on 2 February 2020).
- ISO 8586: 2012: General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; International Organization for Standardization: Geneva, Switzerland. 2007, p. 28. Available online: https://www.iso.org/standard/45352.html (accessed on 2 February 2020).
- Batorek-Lukač, N.; Čandek-Potokar, M.; Bonneau, M.; Van Milgen, J. Meta-analysis of the effect of immunocastration on production performance, reproductive organs and boar taint compounds in pigs. Animal 2012, 6, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Pauly, C.; Luginbühl, W.; Ampuero, S.; Bee, G. Expected effects on carcass and pork quality when surgical castration is omitted—Results of a meta-analysis study. Meat Sci. 2012, 92, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Čandek-Potokar, M.; Škrlep, M. Dry ham (“kraški pršut”) processing losses as affected by raw material properties and manufacturing practice. J. Food Process. Pres. 2011, 35, 96–111. [Google Scholar] [CrossRef]
- Škrlep, M.; Čandek-Potokar, M.; Batorek Lukač, N.; Prevolnik Povše, M.; Pugliese, C.; Labusièrre, E.; Flores, M. Comparison of entire male and immunocastrated pigs for dry-cured ham production under two salting regimes. Meat Sci. 2016, 111, 27–37. [Google Scholar] [CrossRef]
- Santos-Garcés, E.; Muñoz, I.; Gou, P.; Sala, X.; Fulladosa, E. Tools for studying dry-cured ham processing by using computed tomography. J. Agric. Food Chem. 2012, 60, 241–249. [Google Scholar] [CrossRef]
- Martín, L.; Cordoba, J.J.; Antequera, T.; Timón, M.L.; Ventanas, J. Effects of salt and temperature on proteolysis during ripening of Iberian ham. Meat Sci. 1998, 49, 145–153. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Sci. 2005, 70, 579–587. [Google Scholar] [CrossRef]
- Toldrá, F. Proteolysis and lipolysis in flavour development of dry-cured meat products. Meat Sci. 1998, 49, 101–110. [Google Scholar] [CrossRef]
- Škrlep, M.; Tomažin, U.; Batorek Lukač, N.; Poklukar, K.; Čandek-Potokar, M. Proteomic Profiles of the Longissimus Muscles of Entire Male and Castrated Pigs as Related to Meat Quality. Animals 2019, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Kaltnekar, T.; Škrlep, M.; Batorek Lukač, N.; Tomažin, U.; Prevolnik Povše, M.; Labussière, E.; Demšar, L.; Čandek-Potokar, M. Effects of salting duration and boar taint level on quality of dry-cured hams. Acta Agric. Slov. 2016, 5, 132–137. [Google Scholar]
- Pinna, A.; Schivazappa, C.; Virgili, R.; Parolari, G. Effects of vaccination against gonadotropin-releasing hormone (GnRH) in heavy male pigs for Italian typical dry-cured ham production. Meat Sci. 2015, 110, 153–159. [Google Scholar] [CrossRef]
- Serra, X.; Ruiz-Ramírez, J.; Arnau, J.; Gou, P. Texture parameters of dry-cured ham m. biceps femoris samples dried at different levels as a function of water activity and water content. Meat Sci. 2005, 69, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Effect of pH24, NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Sci. 2006, 72, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Pauly, C.; Spring-Staehli, P.; O’doherty, J.V.; Kragten, S.A.; Dubois, S.; Messadène, J.; Bee, G. The effects of method of castration, rearing condition and diet on sensory quality of pork assessed by a trained panel. Meat Sci. 2010, 86, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Haugen, J.E.; Brunius, C.; Zamaratskaia, G. Review of analytical methods to measure boar taint compounds in porcine adipose tissue: The need for harmonised methods. Meat Sci. 2012, 90, 9–19. [Google Scholar] [CrossRef] [PubMed]
Male Sex Group | |||||
---|---|---|---|---|---|
Trait | EM | IC | SC | RMSE | p-Value |
Ham trimmed, kg | 11.1 | 11.2 | 11.8 | 0.947 | 0.1677 |
Fat thickness, mm | 8.0 a | 9.2 a | 14.2 b | 2.619 | <0.0001 |
SM muscle pHu | 5.55 | 5.53 | 5.57 | 0.061 | 0.3246 |
GM muscle color | |||||
L* | 47.5 a | 50.1 b | 48.8 a,b | 2.181 | 0.0213 |
a* | 9.8 | 9.8 | 9.5 | 1.429 | 0.8606 |
b* | 6.1 | 6.7 | 6.4 | 0.9584 | 0.3932 |
c* | 11.5 | 11.9 | 11.5 | 1.584 | 0.8096 |
H° | 32.3 | 34.1 | 34.1 | 3.364 | 0.3260 |
GP muscle color | |||||
L* | 39.3 | 38.9 | 41.6 | 3.412 | 0.1293 |
a* | 16.2 | 18.0 | 17.3 | 2.289 | 0.1998 |
b* | 6.9 | 8.0 | 8.3 | 1.873 | 0.1792 |
c* | 17.6 | 19.7 | 19.3 | 2.764 | 0.1917 |
H° | 23.0 | 23.4 | 25.6 | 3.101 | 0.1055 |
Ham weight loss, % | |||||
First salting | 3.1 b | 2.8 a,b | 2.5 a | 0.347 | 0.0022 |
Second salting | 1.5 b | 1.5 b | 1.0 a | 0.270 | <0.0001 |
Resting | 16.8 b | 16.1 b | 14.4 a | 1.234 | 0.0002 |
Drying | 9.3 b | 9.0 b | 7.7 a | 0.724 | <0.0001 |
Ripening | 8.5 b | 7.8 b | 6.5 a | 0.723 | <0.0001 |
Total | 39.2 b | 37.2 b | 32.2 a | 2.669 | <0.0001 |
Male Sex Group | |||||
---|---|---|---|---|---|
Trait | EM | IC | SC | RMSE | p-Value |
SM muscle | |||||
Water (g/kg) | 497.1 a,b | 488.6 a | 510.3 b | 16.9 | 0.0126 |
IMF (g/kg) | 34.6 a | 40.7 a,b | 48.2 b | 8.9 | 0.0039 |
Salt (g/kg) | 53.2 b | 51.2 a,b | 45.6 a | 5.1 | 0.0037 |
Proteins (g/kg) | 399.6 a | 405.6 a | 382.1 b | 15.9 | 0.0031 |
PI, % | 17.8 | 17.6 | 18.0 | 1.2 | 0.7330 |
aw | 0.915 a | 0.917 a | 0.933 b | 0.010 | 0.0003 |
ST muscle | |||||
Water (g/kg) | 561.1 | 563.9 | 569.8 | 17.7 | 0.6600 |
IMF (g/kg) | 45.8 a | 62.2 a | 86.3 b | 20.1 | 0.0001 |
Salt (g/kg) | 58.8 a | 57.7 a | 49.3 b | 6.0 | 0.0009 |
Proteins (g/kg) | 316.6 a | 302.4 b | 282.1 c | 13.5 | <0.0001 |
PI, % | 22.1 a | 24.6 b | 26.4 b | 1.9 | <0.0001 |
aw | 0.922 a | 0.926 a | 0.944 b | 0.011 | <0.0001 |
BF muscle | |||||
Water (g/kg) | 596.7 a | 599.1 a | 617.3 b | 13.6 | 0.0014 |
IMF (g/kg) | 21.6 a | 26.7 a,b | 32.5 b | 7.6 | 0.0070 |
Salt (g/kg) | 64.5 a | 62.8 a | 55.5 b | 5.9 | 0.0017 |
Proteins (g/kg) | 300.0 a | 293.6 a | 275.1 b | 1.6 | <0.0001 |
PI, % | 23.6 a | 24.4 a | 27.7 b | 1.6 | <0.0001 |
aw | 0.917 a | 0.922 a | 0.941 b | 0.010 | <0.0001 |
TBARS (μg MDA/kg) | 4.0 | 4.5 | 4.1 | 1.5 | 0.625 |
Male Sex Group | |||||
---|---|---|---|---|---|
Trait | EM | IC | SC | RMSE | p-Value |
SM muscle | |||||
Hardness | 128 b | 112 b | 67 a | 31 | 0.0001 |
Cohesiveness | 0.54 | 0.50 | 0.53 | 0.08 | 0.5848 |
Gumminess | 68 b | 56 b | 37 a | 17 | 0.0006 |
Springiness | 4.7 b | 4.7 b | 4.1 a | 0.53 | 0.0103 |
Chewiness | 323 b | 253 b | 161 a | 89 | 0.0005 |
Adhesiveness | −0.56 b | −0.72 b | −1.26 a | 0.40 | 0.0005 |
Y90 | 0.611 a,b | 0.601 a | 0.631 b | 0.022 | 0.0081 |
ST muscle | |||||
Hardness | 34 b | 31 a,b | 21 a | 11 | 0.0140 |
Cohesiveness | 0.42 b | 0.39 a,b | 0.36 a | 0.06 | 0.0503 |
Gumminess | 15 b | 13 a,b | 7 a | 7 | 0.0282 |
Springiness | 4.3 | 4.4 | 3.7 | 0.8 | 0.0532 |
Chewiness | 70 b | 54 a,b | 28 a | 35 | 0.0226 |
Adhesiveness | −2.2 a | −2.4 a,b | −3.0 b | 0.6 | 0.0105 |
Y90 | 0.690 a | 0.690 a | 0.713 b | 0.021 | 0.0132 |
BF muscle | |||||
Hardness | 46 | 52 | 40 | 12 | 0.0557 |
Cohesiveness | 0.52 b | 0.53 b | 0.42 a | 0.70 | 0.0011 |
Gumminess | 24 a,b | 29 b | 17 a | 10 | 0.0169 |
Springiness | 4.3 b | 4.1 b | 3.5 a | 0.48 | 0.0003 |
Chewiness | 108 a,b | 127 b | 60 a | 54 | 0.0128 |
Adhesiveness | −2.7 b | −2.6 b | −3.4 a | 0.75 | 0.0026 |
Y90 | 0.694 a | 0.692 a | 0.728 b | 0.023 | 0.0009 |
Male Sex Group | |||||
---|---|---|---|---|---|
Trait | EM | IC | SC | RMSE | p-Value |
Appearance attributes | |||||
Fat visually | 3.8 | 3.7 | 3.2 | 1.3 | 0.0587 |
Meat visually | 6.3 c | 5.4 b | 4.6 a | 1.3 | <0.0001 |
Meat color uniformity | 5.8 | 5.6 | 5.7 | 1.2 | 0.3950 |
Marbling visually | 3.4 a | 3.8 a | 4.4 b | 1.5 | 0.0002 |
Odor attributes | |||||
Meat | 4.6 | 4.8 | 4.8 | 0.7 | 0.0739 |
Fatty | 3.4 | 3.4 | 3.6 | 0.8 | 0.5055 |
Smoky | 2.7 | 2.8 | 2.8 | 1.0 | 0.6830 |
Acidic | 2.0 | 2.1 | 2.0 | 0.8 | 0.4956 |
Sweet | 0.9 | 0.9 | 1.0 | 0.5 | 0.2040 |
Bouillon-like | 1.6 | 1.7 | 1.8 | 0.7 | 0.0941 |
Fermentation | 2.8 | 3.1 | 2.9 | 0.9 | 0.1856 |
Yeast | 1.4 | 1.5 | 1.5 | 0.7 | 0.8739 |
Sweat | 1.7 b | 0.4 a | 0.3 a | 0.7 | <0.0001 |
Manure | 0.7 b | 0.3 a | 0.2 a | 0.6 | <0.0001 |
Sharp | 2.4 b | 1.7 a | 1.6 a | 0.9 | <0.0001 |
Rancid | 0.9 | 0.9 | 0.8 | 0.6 | 0.2466 |
Overall odor intensity | 5.1 | 5.1 | 4.9 | 0.9 | 0.4286 |
Texture attributes | |||||
Hardness | 4.2 b | 3.8 b | 2.8 a | 1.0 | <0.0001 |
Gumminess | 4.3 b | 4.1 b | 3.3 a | 1.1 | <0.0001 |
Dryness | 4.8 b | 4.5 b | 3.7 a | 1.1 | <0.0001 |
Fibrousness | 4.1 b | 4.0 b | 3.4 a | 1.2 | <0.0001 |
Ease of fragmentation | 5.8 a | 6.3 b | 6.9 c | 1.2 | <0.0001 |
Taste and flavor attributes | |||||
Meat | 5.2 a | 5.6 b | 5.6 b | 0.7 | <0.0001 |
Fatty | 3.3 | 3.2 | 3.4 | 0.9 | 0.6251 |
Smoky | 2.8 | 3.0 | 2.9 | 1.0 | 0.4418 |
Sour | 2.2 | 2.5 | 2.3 | 0.7 | 0.0645 |
Salty | 5.0 a | 5.4 b | 5.0 a | 0.9 | 0.0159 |
Sweet | 0.8 a | 1.0 b | 1.0 b | 0.6 | 0.0027 |
Bitter | 0.6 | 0.7 | 0.6 | 0.6 | 0.7524 |
Bouillon-like | 1.7 a | 2.0 b | 1.9 a,b | 0.7 | 0.0312 |
Fermentation | 2.6 | 3.0 | 2.8 | 1.0 | 0.0868 |
Yeast | 1.4 | 1.5 | 1.3 | 0.8 | 0.3342 |
Sweat | 2.8 b | 0.3 a | 0.3 a | 0.8 | <0.0001 |
Manure | 0.9 b | 0.2 a | 0.2 a | 0.6 | <0.0001 |
Persistent | 2.7 b | 0.8 a | 0.7 a | 0.9 | <0.0001 |
Rancid | 0.7 | 0.7 | 0.6 | 0.6 | 0.4085 |
Overall sensory quality | 4.2 a | 5.9 b | 6.2 c | 0.9 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čandek-Potokar, M.; Škrlep, M.; Kostyra, E.; Żakowska-Biemans, S.; Poklukar, K.; Batorek-Lukač, N.; Kress, K.; Weiler, U.; Stefanski, V. Quality of Dry-Cured Ham from Entire, Surgically and Immunocastrated Males: Case Study on Kraški Pršut. Animals 2020, 10, 239. https://doi.org/10.3390/ani10020239
Čandek-Potokar M, Škrlep M, Kostyra E, Żakowska-Biemans S, Poklukar K, Batorek-Lukač N, Kress K, Weiler U, Stefanski V. Quality of Dry-Cured Ham from Entire, Surgically and Immunocastrated Males: Case Study on Kraški Pršut. Animals. 2020; 10(2):239. https://doi.org/10.3390/ani10020239
Chicago/Turabian StyleČandek-Potokar, Marjeta, Martin Škrlep, Eliza Kostyra, Sylwia Żakowska-Biemans, Klavdija Poklukar, Nina Batorek-Lukač, Kevin Kress, Ulrike Weiler, and Volker Stefanski. 2020. "Quality of Dry-Cured Ham from Entire, Surgically and Immunocastrated Males: Case Study on Kraški Pršut" Animals 10, no. 2: 239. https://doi.org/10.3390/ani10020239
APA StyleČandek-Potokar, M., Škrlep, M., Kostyra, E., Żakowska-Biemans, S., Poklukar, K., Batorek-Lukač, N., Kress, K., Weiler, U., & Stefanski, V. (2020). Quality of Dry-Cured Ham from Entire, Surgically and Immunocastrated Males: Case Study on Kraški Pršut. Animals, 10(2), 239. https://doi.org/10.3390/ani10020239