Effect of Free-Range and Low-Protein Concentrated Diets on Growth Performance, Carcass Traits, and Meat Composition of Iberian Pig
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Handling, Slaughtering, and Carcass Traits
2.3. Meat Quality Traits and Fatty-Acid Profile of Samples
2.4. Statistical Analysis
3. Results
3.1. Diets
3.2. Pig Performance and Carcass Traits
3.3. Meat Composition
4. Discussion
4.1. Experimental Diets
4.2. Pig Performance and Carcass Quality Traits
4.3. Meat Quality
4.4. Fatty-Acid Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lopez-Bote, C.J. Sustained utilization of the Iberian pig breed. Meat Sci. 1998, 49, S17–S27. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Bonilla, F.; García, C. Effect of crossbreeding and rearing system on sensory characteristics of Iberian ham. Meat Sci. 2003, 65, 623–629. [Google Scholar] [CrossRef]
- García-Valverde, R.; Nieto, R.; Lachica, M.; Aguilera, J.F. Effects of herbage ingestion on the digestion site and nitrogen balance in heavy Iberian pigs fed on an acorn-based diet. Livest. Sci. 2007, 112, 63–77. [Google Scholar] [CrossRef]
- García, C.; Ventanas, J.; Antequera, T.; Ruiz, J.; Cava, R.; Alvarez, P. Measuring sensorial quality of Iberian Ham by Rasch model. J. Food Qual. 1996, 19, 397–412. [Google Scholar] [CrossRef]
- García-Valverde, R.; Barea, R.; Lara, L.; Nieto, R.; Aguilera, J.F. The effects of feeding level upon protein and fat deposition in Iberian heavy pigs. Livest. Sci. 2008, 114, 263–273. [Google Scholar] [CrossRef]
- Wood, J.D.; Lambe, N.R.; Walling, G.A.; Whitney, H.; Jagger, S.; Fullarton, P.J.; Bayntun, J.; Hallett, K.; Bünger, L. Effects of low protein diets on pigs with a lean genotype. 1. Carcass composition measured by dissection and muscle fatty acid composition. Meat Sci. 2013, 95, 123–128. [Google Scholar] [CrossRef]
- Dourmad, J.Y. Concept and application of ideal protein for pigs. J. Anim. Sci. Biotechnol. 2015, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Nieto, R.; Rivera, M.; Garcıa, M.A.; Aguilera, J.F. Amino acid availability and energy value of acorn in the Iberian pig. Livest. Prod. Sci. 2002, 77, 227–239. [Google Scholar] [CrossRef]
- Barea, R.; Nieto, R.; Aguilera, J.F. Effects of the dietary protein content and the feeding level on protein and energy metabolism in Iberian pigs growing from 50 to 100 kg body weight. Animal 2007, 1, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Pomar, C.; Pomar, J.; Dubeau, F.; Joannopoulos, E.; Dussault, J.P. The impact of daily multiphase feeding on animal performance, body composition, nitrogen and phosphorus excretions, and feed costs in growing-finishing pigs. Animal 2014, 8, 704–713. [Google Scholar] [CrossRef] [Green Version]
- Andretta, I.; Pomar, C.; Rivest, J.; Pomar, J.; Lovatto, P.A.; Radünz Neto, J. The impact of feeding growing–finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition1. J. Anim. Sci. 2014, 92, 3925–3936. [Google Scholar] [CrossRef] [PubMed]
- Ventanas, S.; Ventanas, J.; Ruiz, J.; Estévez, M. Iberian pigs for the development of high-quality cured products. Recent Res. Devel. Agric. Food Chem 2005, 6, 1–27. [Google Scholar]
- Ventanas, S.; Tejeda, J.F.; Estévez, M. Chemical composition and oxidative status of tissues from Iberian pigs as affected by diets: Extensive feeding v. oleic acid- and tocopherol-enriched mixed diets. Animal 2008, 2, 621–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejerina, D.; García-Torres, S.; Cabeza De Vaca, M.; Vázquez, F.M.; Cava, R. Effect of production system on physical-chemical, antioxidant and fatty acids composition of Longissimus dorsi and Serratus ventralis muscles from Iberian pig. Food Chem. 2012, 133, 293–299. [Google Scholar] [CrossRef] [PubMed]
- FEDNA. FEDNA Tables of Composition and Nutritive Value of Feeds for Feed Compounding, 2nd ed.; De Blas, C., Mateos, G.G., Rebollar, P.G., Eds.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2003; pp. 1–423. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Animal Feed, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000; pp. 69–90. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Sandler, S.R.; Karo, W. Sourcebook of Advanced Organic Laboratory Preparations; Academic Press Harcourt Brace Jovanovich: New York, NY, USA, 1992; ISBN 0126185069. [Google Scholar]
- Nieto, R.; Lara, L.; Barea, R.; García-Valverde, R.; Aguinaga, M.A.; Conde-Aguilera, J.A.; Aguilera, J.F. Response analysis of the iberian pig growing from birth to 150 kg body weight to changes in protein and energy supply. J. Anim. Sci. 2012, 90, 3809–3820. [Google Scholar] [CrossRef]
- Rodríguez-Estévez, V.; Sánchez-Rodríguez, M.; García, A.; Gómez-Castro, A.G. Feed conversion rate and estimated energy balance of free grazing Iberian pigs. Livest. Sci. 2010, 132, 152–156. [Google Scholar] [CrossRef]
- Cassens, R.; Demeyer, D.; Eikelemboom, G.; Honikel, K.; Johansson, G.; Nielsen, T.; Renerre, M.; Richardson, I.; Sakata, R. Recommendation of Reference methods for meat color. In Proceedings of the 41th ICoMST, San Antonio, TX, USA, 20–25 August 1995; pp. 410–411. [Google Scholar]
- De Pedro, E.; Casillas, M.; Miranda, C.M. Microwave oven application in the extraction of fat from the subcutaneous tissue of Iberian pig ham. Meat Sci. 1997, 45, 45–51. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Gandemer, G.; Antequera, T.; Viau, M.; García, C. Lipid traits of muscles as related to genotype and fattening diet in Iberian pigs: Total intramuscular lipids and triacylglycerols. Meat Sci. 2002, 60, 357–363. [Google Scholar] [CrossRef]
- Rodríguez-Estévez, V.; García, A.; Peña, F.; Gómez, A.G. Foraging of Iberian fattening pigs grazing natural pasture in the dehesa. Livest. Sci. 2009, 120, 135–143. [Google Scholar] [CrossRef]
- Dunker, A.; Rey, A.I.; López-Bote, C.J.; Daza, A. Effect of the feeding level during the fattening phase on the productive parameters, carcass characteristics and quality of fat in heavy pigs. J. Anim. Feed Sci. 2007, 16, 621–635. [Google Scholar] [CrossRef] [Green Version]
- Daza, A.; Menoyo, D.; López Bote, C.J. Carcass traits and fatty acid composition of subcutaneous, intramuscular and liver fat from iberian pigs fed in confinement only with acorns or a formulated diet. Food Sci. Technol. Int. 2009, 15, 563–569. [Google Scholar] [CrossRef]
- Daza, A.; Lopez-Bote, C.J.; Olivares, A.; Menoyo, D.; Ruiz, J. Age at the beginning of the fattening period of Iberian pigs under free-range conditions affects growth, carcass characteristics and the fatty acid profile of lipids. Anim. Feed Sci. Technol. 2007, 139, 81–91. [Google Scholar] [CrossRef]
- Rodríguez-Estévez, V.; Sánchez-Rodríguez, M.; García, A.R.; Gómez-Castro, A.G. Average daily weight gain of Iberian fattening pigs when grazing natural resources. Livest. Sci. 2011, 137, 292–295. [Google Scholar] [CrossRef]
- Lachica, M.; Aguilera, J.F. Estimation of the energy costs of locomotion in the Iberian pig (Sus mediterraneus). Br. J. Nutr. 2000, 83, 35–41. [Google Scholar] [CrossRef] [Green Version]
- López-Bote, C.J.; Rey, A.; Isabel, B. Alimentación del cerdo Ibérico en la dehesa. In Porcino Ibérico: Aspectos Claves; Buxadé, C., Daza, A., Eds.; Ediciones Mundi Prensa: Madrid, Spain, 2000; pp. 215–246. [Google Scholar]
- Madeira, M.S.; Costa, P.; Alfaia, C.M.; Lopes, P.A.; Bessa, R.J.B.; Lemos, J.P.C.; Prates, J.A.M. The increased intramuscular fat promoted by dietary lysine restriction in lean but not in fatty pig genotypes improves pork sensory attributes. J. Anim. Sci. 2013, 91, 3177–3187. [Google Scholar] [CrossRef] [Green Version]
- Galassi, G.; Colombini, S.; Malagutti, L.; Crovetto, G.M.; Rapetti, L. Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Anim. Feed Sci. Technol. 2010, 161, 140–148. [Google Scholar] [CrossRef]
- Gallo, L.; Dalla Montà, G.; Carraro, L.; Cecchinato, A.; Carnier, P.; Schiavon, S. Growth performance of heavy pigs fed restrictively diets with decreasing crude protein and indispensable amino acids content. Livest. Sci. 2014, 161, 130–138. [Google Scholar] [CrossRef]
- Monteiro, A.N.T.R.; Bertol, T.M.; De Oliveira, P.A.V.; Dourmad, J.; Coldebella, A. The impact of feeding growing- fi nishing pigs with reduced dietary protein levels on performance, carcass traits, meat quality and environmental impacts. Livest. Sci. 2017, 198, 162–169. [Google Scholar] [CrossRef]
- Aquilani, C.; Sirtori, F.; Franci, O.; Acciaioli, A.; Bozzi, R.; Pezzati, A.; Pugliese, C. Effects of protein restriction on performances and meat quality of cinta senese pig reared in an organic system. Animals 2019, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ascacíbar, I.; Stoll, P.; Kreuzer, M.; Boillat, V.; Spring, P.; Bee, G. Impact of amino acid and CP restriction from 20 to 140 kg BW on performance and dynamics in empty body protein and lipid deposition of entire male, castrated and female pigs. Animal 2017, 11, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H.; Li, F.N.; Duan, Y.H.; Guo, Q.P.; Wen, C.Y.; Wang, W.L.; Huang, X.G.; Yin, Y.L. Low-protein diet improves meat quality of growing and finishing pigs through changing lipid metabolism, fiber characteristics, and free amino acid profile of the muscle. J. Anim. Sci. 2018, 96, 3221–3232. [Google Scholar] [CrossRef]
- Presto Åkerfeldt, M.; Lindberg, J.E.; Göransson, L.; Andersson, K. Effects of reducing dietary content of crude protein and indispensable amino acids on performance and carcass traits of single-phase- and 2-phase-fed growing-finishing pigs. Livest. Sci. 2019, 224, 96–101. [Google Scholar] [CrossRef]
- Rey, A.I.; Daza, A.; López-Carrasco, C.; López-Bote, C.J. Feeding Iberian pigs with acorns and grass in either free-range or confinement affects the carcass characteristics and fatty acids and tocopherols accumulation in Longissimus dorsi muscle and backfat. Meat Sci. 2006, 73, 66–74. [Google Scholar] [CrossRef]
- Roskosz, T.; Kobrynczuk, F.; Brundnicki, W. The type of feed and the length of intestine in wild pig, Sus scrofa (L.). Ann. Warsaw Univ. Live Sci. SGGW 1990, 16, 13–17. [Google Scholar]
- Dourmad, J.Y.; Jondreville, C. Impact of nutrition on nitrogen, phosphorus, Cu and Zn in pig manure, and on emissions of ammonia and odours. Livest. Sci. 2007, 112, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Ruusunen, M.; Partanen, K.; Pösö, R.; Puolanne, E. The effect of dietary protein supply on carcass composition, size of organs, muscle properties and meat quality of pigs. Livest. Sci. 2007, 107, 170–181. [Google Scholar] [CrossRef]
- Andrés, A.I.; Cava, R.; Mayoral, A.I.; Tejeda, J.F.; Morcuende, D.; Ruiz, J. Oxidative stability and fatty acid composition of pig muscles as affected by rearing system, crossbreeding and metabolic type of muscle fibre. Meat Sci. 2001, 59, 39–47. [Google Scholar] [CrossRef]
- Doran, O.; Moule, S.K.; Teye, G.A.; Whittington, F.M.; Hallett, K.G.; Wood, J.D. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: Relationship with intramuscular lipid formation. Br. J. Nutr. 2006, 95, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Gómez, R.S.; Lewis, A.J.; Miller, P.S.; Chen, H.Y.; Diedrichsen, R.M. Body composition and tissue accretion rates of barrows fed corn-soybean meal diets or low-protein, amino acid-supplemented diets at different feeding levels. J. Anim. Sci. 2002, 80, 654–662. [Google Scholar] [CrossRef]
- Schiavon, S.; Carraro, L.; Dalla Bona, M.; Cesaro, G.; Carnier, P.; Tagliapietra, F.; Sturaro, E.; Galassi, G.; Malagutti, L.; Trevisi, E.; et al. Growth performance, and carcass and raw ham quality of crossbred heavy pigs from four genetic groups fed low protein diets for dry-cured ham production. Anim. Feed Sci. Technol. 2015, 208, 170–181. [Google Scholar] [CrossRef]
- López-Bote, C.J.; Toldrá, F.; Daza, A.; Ferrer, J.M.; Menoyo, D.; Silió, L.; Rodríguez, M.C. Effect of exercise on skeletal muscle proteolytic enzyme activity and meat quality characteristics in Iberian pigs. Meat Sci. 2008, 79, 71–76. [Google Scholar] [CrossRef]
- Enser, M.; Richardson, R.I.; Wood, J.D.; Gill, B.P.; Sheard, P.R. Feeding linseed to increase the n-3 PUFA of pork: Fatty acid composition of muscle, adipose tissue, liver and sausages. Meat Sci. 2000, 55, 201–212. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Ruiz, J.; Tejeda, J.F.; Antequera, T. Subcutaneous and intramuscular lipid traits as tools for classifying Iberian pigs as a function of their feeding background. Meat Sci. 2009, 81, 632–640. [Google Scholar] [CrossRef]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Antequera, T.; López-Bote, C.J.; Córdoba, J.J.; García, C.; Asensio, M.A.; Ventanas, J.; García-Regueiro, J.A.; Díaz, I. Lipid oxidative changes in the processing of Iberian pig hams. Food Chem. 1992, 45, 105–110. [Google Scholar] [CrossRef]
- Ruiz-Carrascal, J.; Ventanas, J.; Cava, R.; Andrés, A.I.; García, C. Texture and appearance of dry cured ham as affected by fat content and fatty acid composition. Food Res. Int. 2000, 33, 91–95. [Google Scholar] [CrossRef]
Items | Diets | |||
---|---|---|---|---|
Chemical Composition | LP diet | SP Diet | Acorn | Grass |
Dry matter (DM) | 91.6 | 91.3 | 60.5 | 19.4 |
Crude protein | 6.6 | 12.8 | 5.2 | 19.1 |
Crude fat | 8.3 | 8.0 | 7.9 | 4.6 |
Crude fibre | 4.0 | 4.7 | 2.3 | 22.0 |
Ash | 5.0 | 5.2 | 1.6 | 11.6 |
Free-nitrogen extractives | 75.9 | 68.6 | 83.0 | 42.7 |
Lysine | 0.2 | 0.7 | ||
Fatty acids 1 | ||||
Palmitic acid (C16:0) | 7.3 | 7.0 | 13.5 | 26.1 |
Stearic acid (C18:0) | 2.9 | 2.7 | 3.3 | 6.1 |
Oleic acid (C18:1n-9) | 72.5 | 71.9 | 64.0 | 13.2 |
Linoleic acid (C18:2n-6) | 14.6 | 15.9 | 16.7 | 12.6 |
Linolenic acid (C18:3n-3) | 0.6 | 0.9 | 1.0 | 37.5 |
Productive and Carcass Traits | FR | LP | SP | SEM | p-Value |
---|---|---|---|---|---|
Initial weight | 115.6 | 116.3 | 116.1 | 1.213 | 0.975 |
Final weight | 175.2 | 174.0 | 173.5 | 1.243 | 0.859 |
Weight gain | 59.6 | 57.7 | 57.4 | 0.734 | 0.445 |
Days | 56.8 a | 45.4 b | 46.3 b | 2.137 | 0.023 |
Carcass weight | 137.2 | 137.3 | 135.2 | 1.169 | 0.721 |
ADG | 1.05 a | 1.27 b | 1.24 b | 0.062 | 0.049 |
LTL weight | 1.90 a | 2.16 b | 2.41 c | 0.054 | 0.000 |
SV weight | 0.60 | 0.70 | 0.69 | 0.019 | 0.053 |
Ham weight | 14.53 | 14.71 | 14.48 | 0.170 | 0.812 |
Shoulder weight | 10.66 | 11.03 | 10.92 | 0.117 | 0.335 |
Carcass yield | 78.35 | 78.97 | 77.91 | 0.344 | 0.558 |
LTL yield | 2.82 a | 3.19 b | 3.66 c | 0.084 | 0.000 |
Ham yield | 21.15 | 21.40 | 21.44 | 0.213 | 0.894 |
Shoulder yield | 15.44 | 15.96 | 16.11 | 0.129 | 0.063 |
Items | Musculus Longissimus Lumborum | Musculus Serratus Ventralis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FR | LP | SP | SEM | p-Value | FR | LP | SP | SEM | p-Value | |
Moisture | 69.56 | 70.15 | 71.39 | 0.362 | 0.104 | 71.17 a | 71.78 a,b | 72.77 b | 0.242 | 0.016 |
Protein | 22.44 | 21.92 | 22.16 | 0.143 | 0.350 | 19.54 | 19.15 | 19.61 | 0.129 | 0.296 |
IMF | 6.60 | 6.57 | 5.06 | 0.363 | 0.141 | 7.95 a | 7.72 a | 6.23 b | 0.298 | 0.030 |
Ash | 1.10 | 1.05 | 1.09 | 0.011 | 0.228 | 1.03 a | 1.06 a,b | 1.09 b | 0.009 | 0.037 |
pH 24 h | 5.56 | 5.69 | 5.63 | 0.036 | 0.326 | 5.73 a | 5.87 a,b | 5.99 b | 0.040 | 0.024 |
L* | 43.22 | 40.41 | 41.39 | 0.559 | 0.111 | 39.53 a | 36.71 b | 36.18 b | 0.563 | 0.025 |
a* | 8.56 | 8.97 | 8.70 | 0.243 | 0.806 | 15.20 | 14.84 | 15.29 | 0.283 | 0.807 |
b* | 6.86 | 6.84 | 6.83 | 0.190 | 0.999 | 9.61 | 8.89 | 9.22 | 0.209 | 0.388 |
Items | Subcutaneous Fat | ||||
---|---|---|---|---|---|
FR | LP | SP | SEM | p-Value | |
C14:0 | 1.24 | 1.20 | 1.19 | 0.016 | 0.504 |
C16:0 | 19.60 a | 20.77 b | 20.51 b | 0.163 | 0.004 |
C16:1 | 2.19 | 2.17 | 2.31 | 0.075 | 0.728 |
C17:0 | 0.30 | 0.26 | 0.29 | 0.010 | 0.227 |
C17:1 | 0.35 | 0.31 | 0.34 | 0.011 | 0.353 |
C18:0 | 8.58 a | 10.36 b | 9.94 a,b | 0.264 | 0.009 |
C18:1 n-9 | 53.99 a | 52.59 b | 52.55 b | 0.235 | 0.010 |
C18:2 n-6 | 9.95 a | 8.43 b | 8.93 b | 0.195 | 0.002 |
C18:3 n-3 | 0.75 a | 0.64 b | 0.66 b | 0.018 | 0.014 |
C20:0 | 0.16 a | 0.20 b | 0.20 b | 0.006 | 0.019 |
C20:1 n-9 | 1.69 | 1.91 | 1.87 | 0.045 | 0.080 |
C20:2 n-9 | 0.70 | 0.68 | 0.72 | 0.015 | 0.543 |
C20:4 n-6 | 0.14 a | 0.12 b | 0.13 a,b | 0.003 | 0.025 |
C20:3 n-3 | 0.27 | 0.26 | 0.27 | 0.008 | 0.896 |
SFA | 29.89 a | 32.79 b | 32.13 b | 0.404 | 0.004 |
MUFA | 58.21 | 56.98 | 57.07 | 0.257 | 0.088 |
PUFA | 11.90 a | 10.22 b | 10.80 b | 0.219 | 0.002 |
Items | Musculus Longissimus Lumborum | Musculus Serratus Ventralis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FR | LP | SP | SEM | p-Value | FR | LP | SP | SEM | p-Value | |
C14:0 | 1.31 | 1.30 | 1.40 | 0.037 | 0.492 | 1.27 | 1.17 | 1.22 | 0.018 | 0.105 |
C16:0 | 24.19 | 24.48 | 23.46 | 0.386 | 0.562 | 23.47 | 24.25 | 23.24 | 0.262 | 0.266 |
C16:1 | 4.66 | 4.15 | 4.89 | 0.133 | 0.058 | 4.04 | 3.51 | 4.08 | 0.139 | 0.182 |
C17:0 | 0.14 a | 0.12 b | 0.16 a | 0.007 | 0.044 | 0.19 a | 0.15 b | 0.19 a | 0.006 | 0.011 |
C17:1 | 0.20 | 0.16 | 0.21 | 0.010 | 0.119 | 0.25 a | 0.19 b | 0.24 a | 0.010 | 0.034 |
C18:0 | 10.22 | 11.41 | 10.38 | 0.271 | 0.152 | 10.24 | 12.21 | 10.40 | 0.376 | 0.053 |
C18:1 n-9 | 51.39 | 50.81 | 51.47 | 0.428 | 0.802 | 49.74 | 49.23 | 50.09 | 0.400 | 0.699 |
C18:2 n-6 | 5.41 | 4.96 | 5.33 | 0.179 | 0.576 | 7.88 a | 6.39 b | 7.52 a | 0.210 | 0.006 |
C18:3 n-3 | 0.37 a,b | 0.35 a | 0.41 b | 0.009 | 0.035 | 0.48 a | 0.35 b | 0.46 a | 0.018 | 0.003 |
C20:0 | 0.17 | 0.18 | 0.17 | 0.005 | 0.529 | 0.17 | 0.20 | 0.17 | 0.008 | 0.094 |
C20:1 n-9 | 0.87 | 0.91 | 0.85 | 0.026 | 0.596 | 0.96 | 1.14 | 1.05 | 0.035 | 0.118 |
C20:2 n-9 | 0.21 | 0.19 | 0.22 | 0.007 | 0.364 | 0.30 a | 0.25 b | 0.31 a | 0.008 | 0.002 |
C20:3 n-6 | 0.10 | 0.11 | 0.13 | 0.006 | 0.181 | 0.13 | 0.12 | 0.14 | 0.005 | 0.258 |
C20:4 n-6 | 0.67 | 0.78 | 0.82 | 0.046 | 0.400 | 0.79 | 0.72 | 0.76 | 0.032 | 0.708 |
C20:3 n-3 | 0.09 | 0.09 | 0.10 | 0.004 | 0.425 | 0.12 a | 0.09 b | 0.12 a | 0.005 | 0.017 |
SFA | 36.02 | 37.49 | 35.58 | 0.649 | 0.473 | 35.33 | 37.99 | 35.22 | 0.619 | 0.116 |
MUFA | 57.13 | 56.03 | 57.42 | 0.521 | 0.538 | 54.98 | 54.08 | 55.47 | 0.507 | 0.546 |
PUFA | 6.85 | 6.48 | 7.00 | 0.237 | 0.673 | 9.68 a | 7.93 b | 9.31 a | 0.258 | 0.007 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejeda, J.F.; Hernández-Matamoros, A.; Paniagua, M.; González, E. Effect of Free-Range and Low-Protein Concentrated Diets on Growth Performance, Carcass Traits, and Meat Composition of Iberian Pig. Animals 2020, 10, 273. https://doi.org/10.3390/ani10020273
Tejeda JF, Hernández-Matamoros A, Paniagua M, González E. Effect of Free-Range and Low-Protein Concentrated Diets on Growth Performance, Carcass Traits, and Meat Composition of Iberian Pig. Animals. 2020; 10(2):273. https://doi.org/10.3390/ani10020273
Chicago/Turabian StyleTejeda, Juan F., Alejandro Hernández-Matamoros, Mercedes Paniagua, and Elena González. 2020. "Effect of Free-Range and Low-Protein Concentrated Diets on Growth Performance, Carcass Traits, and Meat Composition of Iberian Pig" Animals 10, no. 2: 273. https://doi.org/10.3390/ani10020273
APA StyleTejeda, J. F., Hernández-Matamoros, A., Paniagua, M., & González, E. (2020). Effect of Free-Range and Low-Protein Concentrated Diets on Growth Performance, Carcass Traits, and Meat Composition of Iberian Pig. Animals, 10(2), 273. https://doi.org/10.3390/ani10020273