Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Design
2.3. Variables Analysed
2.4. Statistical Analyses
3. Results
3.1. Body Weight, Milk Yield and Composition and Plasmatic Metabolism
3.2. Milk Mineral Profile
3.3. Milk Lipid Profile
4. Discussion
4.1. Body Weight, Milk Yield and Composition and Plasmatic Metabolism
4.2. Milk Mineral Profile
4.3. Milk Lipid Profile
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hernández, F.; Pulgar, M.A.; Cid, J.M.; Moreno, R.; Ocio, E. Nutritive assessment of artichoke crop residues (Cynara scolymus L.): Sun dried leaves and whole plant silage. Arch. Zootec. 1992, 41, 257–264. [Google Scholar]
- Meneses, M.; Megías, M.D.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Olivac, J. Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Rum. Res. 2007, 70, 292–296. [Google Scholar] [CrossRef]
- Monllor, P.; Muelas, R.; Roca, A.; Sendra, E.; Romero, G.; Díaz, J.R. Nutritive and fermentative evaluation of silages made from plant of artichoke and artichoke and broccoli by-product. In Proceedings of the XLII Nationas and XVIII International Congress of Spanish Society of Sheep and Goat Husbandry (SEOC), Salamanca, Spain, 20–22 September 2017; Spanish Society of Sheep and Goat Husbandry: Sevilla, Spain, 2017; pp. 139–145. [Google Scholar]
- Marsico, G.; Ragni, M.; Vicenti, A.; Caputi Jambrenghi, A.; Tateo, A.; Giannico, F.; Vonghia, G. The quality of meat from lambs and kids reared on feeds based on artichoke (Cynara scolymus L.) bracts. Acta Hortic. 2005, 681, 489–494. [Google Scholar] [CrossRef]
- Jaramillo, D.P.; Buffa, M.N.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci. 2010, 93, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Salman, F.M.; El-Nomeary, Y.A.A.; Abedo, A.A.; Abd El-Rahman, H.H.; Mohamed, M.I.; Ahmed, S.M. Utilization of artichoke (Cynara scolymus) by-products in sheep feeding. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 624–630. [Google Scholar]
- Muelas, R.; Monllor, P.; Romero, G.; Sayas-Barberá, E.; Navarro, C.; Díaz, J.R.; Sendra, E. Milk technological properties as affected by including artichoke by-products silages in the diet of dairy goats. Foods 2017, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Guo, M. Goat milk. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Finglas, P., Toldra, F., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 2944–2949. [Google Scholar]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [Green Version]
- Turck, D. Cow’s milk and goat’s milk. World Rev. Nutr. Diet. 2003, 108, 56–62. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Available online: http://www.fao.org/faostat/en/#data (accessed on 9 December 2017).
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and functional properties of Cynara crops (globe artichoke and cardoon) and their potential applications: A review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70. [Google Scholar]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Wernli, C.; Thames, I. Utilization of fodder residue of artichoke (Cynara scolymus L.) as silage. I. Factors affecting its conservation. Avances en Producción Animal 1989, 14, 79–89. [Google Scholar]
- Fernández, C.; Sánchez-Séiquer, P.; Navarro, M.J.; Garcés, C. Modelling the voluntary dry matter intake in Murciano-Granadina dairy goats. In Sustainable Grazing, Nutritional Utilization and Quality of Sheep and Goat Products; Alcaide, M.E., Salem, B.H., Biala, K., Morand-Fehr, P., Eds.; CIHEAM: Zaragoza, Spain, 2005; pp. 395–399. [Google Scholar]
- INRA (Institut National de la Recherche Agronomique). Alimentación en Rumiantes; De Blas, J.C., Fraga, M.J., Eds.; Mundi-Prensa: Madrid, Spain, 1981. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Cunniff, P., Ed.; Association of Official Analytical Chemists: Washington, WA, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary neutral detergent fibre and nonstarch polysacacharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kim, D.O.; Seung, W.J.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Res. 1988, 23, 103–116. [Google Scholar]
- Feng-Xia, L.; Shu-Fang, F.; Xiu-Fang, B.; Fang, C.; Xiao-Jun, L.; Xiao-Song, H.; Ji-Hong, W. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar]
- Kramer, J.K.G.; Fellner, V.; Dungan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugates dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- González-Arrojo, A.; Soldado, A.; Vicente, F.; Fernández-Sánchez, M.L.; Sanz-Medel, A.; de la Roza-Delgado, B. Changes on levels of essential trace elements in selenium naturally enriched milk. J. Food Nutr. Res. 2016, 4, 303–308. [Google Scholar]
- Gravert, H.O. (Ed.) Dairy Cattle Production; Elsevier Science: New York, NY, USA, 1987; p. 234. [Google Scholar]
- Schau, E.M.; Fet, A.M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 2008, 13, 255–265. [Google Scholar] [CrossRef]
- Romeu-Nadal, M.; Morera-Pons, S.; Castellote, A.I.; López-Sabater, M.C. Comparison of two methods for the extraction of fat from human milk. Anal. Chim. Acta 2004, 513, 457–461. [Google Scholar] [CrossRef]
- Trigueros, L.; Sendra, E. Fatty acid and conjugated linoleic acid (CLA) content in fermented milks as assessed by direct methylation. LWT Food Sci. Technol. 2015, 60, 315–319. [Google Scholar] [CrossRef]
- Batista, A.L.D.; Silva, R.; Cappato, L.P.; Ferreira, M.V.S.; Nascimento, K.O.; Schmiele, M.; Esmerino, E.A.; Balthazar, C.F.; Silva, H.L.A.; Moraes, J.; et al. Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J. Funct. Foods 2017, 38, 242–250. [Google Scholar] [CrossRef]
- Lock, A.L.; Garnsworthy, P.C. Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- MAPA (Ministry of Agriculture, Fisheries and Food). Official Cattle Breeds Catalog. Available online: https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo/autoctona-fomento/caprino/murciano-granadina/datos_morfologicos.aspx (accessed on 8 January 2018).
- Scherer, R.; Gerlach, K.; Sudekum, K.H. Biogenic amines and gamma-amino butyric acid in silages: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed Sci. Technol. 2015, 210, 1–16. [Google Scholar] [CrossRef]
- Huhtanen, P.; Rinne, M.; Nousiainen, J. Evaluation of the factors affecting silage intake of dairy cows: A revision of the relative silage dry-matter index. Animal 2007, 1, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Krizsan, S.J.; Randby, A.T. The effect of fermentation quality on the voluntary intake of grass silage by growing cattle fed silage as the sole feed. J. Anim. Sci. 2014, 85, 984–996. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Morsy, T.A.; Abdo, M.M. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed Sci. Technol. 2018, 244, 66–75. [Google Scholar] [CrossRef]
- Morais, J.S.; Bezerra, L.R.; Silva, A.M.A.; Araújo, M.J.; Oliveira, R.L.; Edvan, R.L.; Torreão, J.N.C.; Lanna, P.D.P. Production, composition, fatty acid profile and sensory analysis of goat milk in goats fed buriti oil. J. Anim. Sci. 2017, 95, 395–406. [Google Scholar] [CrossRef]
- Santos e Silva, L.; Fernandes Lima Cavalcanti, J.V.; Rodrigues Magalhães, A.L.; Régis Santoro, K.; Dias Gonçalves, G.; Vasconcelos Santana, L.P.; Barbosa da Silva, J.K.; Cavalcanti deAlmeida, O. Soybean oil modulates the fatty acid synthesis in the mammary gland, improving nutritional quality of the goat milk. Small Rumin. Res. 2020, 183, 106041. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Asian J. Agric. Food Sci. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. Dairy Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef]
- Galvano, G.; Scerra, V. The use of bracts of artichoke (Cynara scolymus L.) in the feeding of cattle. World Rev. Anim. Prod. 1983, 19, 41–46. [Google Scholar]
- Cabiddu, A.; Canu, M.; Decandia, M.; Molle, G.; Pompel, R. The intake and performance of dairy ewes fed with different levels of olive cake silage in late pregnancy and suckling periods. In Nutrition and Feeding Strategies of Sheep and Goats under Harsh Climates; Ben Salem, H., Nefzaoui, A., Morand-Fehr, P., Eds.; Options Méditerranéennes: Zaragoza, Spain, 2004; pp. 197–201. [Google Scholar]
- Hadjipanayiotou, M. Feeding ensiled crude olive cake to lactating Chios ewes, Damascus goats and Friesian cows. Livest. Prod. Sci. 1999, 59, 61–66. [Google Scholar] [CrossRef]
- Volanis, M.; Zoiopoulos, P.; Tzerakis, K. Effects of feeding ensiled sliced oranges to lactating dairy sheep. Small Rum. Res. 2004, 53, 15–21. [Google Scholar] [CrossRef]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Martín-García, A.I. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
- Hyder, I.; Ramesh, K.; Sharma, S.; Uniyal, S.; Yadav, V.P.; Panda, R.P.; Maurya, V.P.; Singh, G.; Sarkar, M. Effect of different dietary energy levels on physio-biochemical, endocrine changes and mRNA expression profile of leptin in goat (Capra hircus). Livest. Sci. 2013, 152, 63–73. [Google Scholar] [CrossRef]
- Ibáñez, C.; Criscioni, P.; Arriaga, H.; Merino, P.; Espinós, F.J.; Fernández, C. Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous by-products. PLoS ONE 2016, 11, e0151215. [Google Scholar] [CrossRef]
- Frutos, P.; Hervas, G.; Giráldez, F.J.; Mantecón, A. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef] [Green Version]
- McMahon, L.; McAllister, T.; Berg, B.; Majak, W.; Acharya, S.; Popp, J. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant. Sci. 2000, 80, 469–485. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Buffa, G.; Atzori, A.S.; Cappai, M.G.; Caboni, P.; Fais, G.; Pulina, G. Small amounts of agro-industrial by-products in dairy ewes diets affects milk production traits and hematological parameters. Anim. Feed Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can agro-industrial by-products rich in polyphenols be advantageously used in feeding and nutrition of dairy small ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Mancilla-Leytón, J.M.; Martín Vicente, A.; Delgado-Pertíñez, M. Summer diet selection of dairy goats grazing in a Mediterranean shrubland and the quality of secreted fat. Small Rumin. Res. 2013, 113, 437–445. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Pilarczyk, R.; Wójcik, J.; Sablik, P.; Czerniak, P. Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S. Afr. J. Anim. Sci. 2015, 45, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
Item | Experiment 1 | Experiment 2 | ||||
---|---|---|---|---|---|---|
C | AB | AP | C | AB | AP | |
Ingredients (g/100 g DM) | ||||||
Alfalfa hay | 37.6 | 24.3 | 24.2 | 37.6 | 15.0 | 12.0 |
Barley straw | - | 0.959 | - | - | 0.632 | - |
Grains mix | 59.2 | 61.2 | 59.8 | 59.2 | 59.5 | 56.2 |
Oat | 3.16 | 1.24 | - | 3.18 | - | - |
Soybean meal 44% | - | - | 2.63 | - | - | 5.68 |
Silage | - | 12.4 | 13.4 | - | 24.6 | 25.8 |
Premix vitamins/minerals | - | - | - | - | 0.316 | 0.352 |
kg DM offered/day | 2.25 | 2.19 | 2.24 | 1.98 | 1.90 | 1.99 |
Chemical composition | ||||||
DM (g/kg FM) | 872 | 577 | 707 | 868 | 398 | 516 |
g/kg DM | ||||||
OM | 935 | 935 | 930 | 929 | 937 | 922 |
EE | 57.3 | 58.3 | 58.1 | 56.7 | 60.6 | 53.8 |
CP | 146 | 148 | 148 | 150 | 143 | 144 |
NDF | 432 | 411 | 454 | 452 | 443 | 442 |
ADF | 206 | 203 | 204 | 205 | 200 | 210 |
ADL | 44.6 | 41.1 | 54.6 | 45.2 | 42.9 | 41.0 |
PT | 1.59 | 2.84 | 2.04 | 2.88 | 4.27 | 3.55 |
IVDMD | 717 | 728 | 717 | 699 | 650 | 687 |
1 ME (Mcal/kg DM) | 2.57 | 2.53 | 2.55 | 2.46 | 2.55 | 2.48 |
VFA and fermentation products (g/kg DM) | ||||||
Lactate | n.d. | n.d. | 11.1 | n.d. | n.d. | 24.9 |
Acetate | 18.6 | 24.7 | 28.7 | 19.3 | 24.0 | 25.1 |
Propionate | n.d. | n.d. | 5.35 | n.d. | 12.2 | n.d. |
Butyrate | n.d. | n.d. | n.d. | n.d. | 4.60 | n.d. |
Ethanol | n.d. | 3.09 | n.d. | n.d. | 8.20 | n.d. |
Ammonia N (g N-NH3/kg NT) | 1.40 | 9.38 | 2.65 | 2.41 | 20.9 | 3.48 |
Fatty acids profile (g/100 g total fatty acids) | ||||||
C4:0 | 0.053 | 2.30 | 0.072 | 0.052 | 7.31 | 0.246 |
C6:0 | 0.067 | 0.547 | 0.068 | 0.047 | 1.966 | 0.151 |
C12:0 | 0.244 | 0.108 | 0.095 | 0.123 | 0.087 | 0.089 |
C14:0 | 0.429 | 0.359 | 0.349 | 0.410 | 0.358 | 0.351 |
C16:0 | 17.7 | 16.5 | 16.8 | 17.4 | 16.1 | 17.9 |
C16:1c9 | 0.266 | 0.389 | 0.290 | 0.268 | 0.297 | 0.291 |
C18:0 | 3.72 | 3.44 | 3.38 | 3.48 | 3.03 | 3.59 |
C18:1c9 | 25.5 | 25.7 | 26.1 | 24.9 | 21.3 | 24.5 |
C18:1c11 | 1.03 | 1.04 | 1.11 | 0.99 | 0.97 | 1.06 |
C18:2n6 | 44.3 | 44.3 | 46.4 | 45.5 | 41.2 | 45.5 |
C18:3n3 | 3.86 | 2.80 | 2.79 | 3.97 | 3.45 | 3.47 |
C20:0 | 0.498 | 0.422 | 0.497 | 0.472 | 0.420 | 0.486 |
C20:1n9 | 0.314 | 0.314 | 0.329 | 0.312 | 0.297 | 0.309 |
C22:0 | 0.510 | 0.184 | 0.483 | 0.462 | 0.369 | 0.411 |
C24:0 | 0.211 | 0.279 | 0.367 | 0.392 | 0.322 | 0.330 |
SFA | 24.2 | 24.9 | 22.5 | 23.3 | 32.2 | 24.1 |
MUFA | 27.3 | 27.6 | 28.0 | 26.6 | 23.0 | 26.3 |
PUFA | 48.5 | 47.6 | 49.4 | 50.1 | 44.8 | 49.6 |
Mineral profile | ||||||
Na (g/kg DM) | 2.02 | 2.24 | 4.16 | 2.57 | 2.58 | 4.56 |
Mg (g/kg DM) | 3.14 | 3.12 | 3.00 | 3.13 | 3.01 | 2.67 |
K (g/kg DM) | 13.6 | 14.7 | 15.1 | 13.9 | 15.4 | 15.5 |
Ca (g/kg DM) | 8.45 | 7.96 | 8.33 | 8.60 | 6.66 | 9.12 |
P (g/kg DM) | 2.72 | 3.33 | 3.07 | 3.17 | 3.31 | 3.19 |
S (g/kg DM) | 3.17 | 2.94 | 3.10 | 3.10 | 2.98 | 2.94 |
Se (mg/kg DM) | 0.243 | 0.188 | 0.176 | 0.375 | 0.336 | 0.350 |
Zn (mg/kg DM) | 53.3 | 54.2 | 46.3 | 59.5 | 73.0 | 61.4 |
Cu (mg/kg DM) | 6.84 | 6.68 | 6.60 | 6.16 | 6.50 | 6.09 |
Fe (mg/kg DM) | 274 | 351 | 217 | 373 | 277 | 257 |
Mn (mg/kg DM) | 45.6 | 54.4 | 44.8 | 62.7 | 61.0 | 62.5 |
Variable | Diet | Sampling Signification | Interaction Signification | ||||
---|---|---|---|---|---|---|---|
C | AB | AP | SEM | Signification | |||
Initial BW (kg) | 43.7 | 44.6 | 45.7 | 1.44 | n.s. | − | − |
Average BW (kg) | 49.8 a | 47.8 b | 48.1 a,b | 0.62 | * | *** | *** |
Milk yield (kg/day) | 2.26 | 2.24 | 2.26 | 0.076 | n.s. | *** | n.s. |
FCM (3.5%; kg/day) | 2.83 | 2.78 | 2.92 | 0.103 | n.s. | *** | * |
FPCM (kg/day) | 2.66 | 2.61 | 2.72 | 0.087 | n.s. | *** | n.s. |
Feed efficiency (Milk yield/DMI) | 1.06 | 1.07 | 1.07 | 0.060 | n.s. | *** | *** |
Feed efficiency (FPCM/DMI) | 1.23 | 1.27 | 1.28 | 0.071 | n.s. | *** | ** |
Fat (%) | 5.10 | 5.16 | 5.48 | 0.212 | n.s. | *** | *** |
UDM (%) | 9.41 | 9.28 | 9.78 | 0.255 | n.s. | *** | *** |
DM (%) | 14.1 | 14.0 | 14.4 | 0.26 | n.s. | *** | *** |
NFDM (%) | 9.60 | 9.59 | 9.56 | 0.070 | n.s. | *** | *** |
Protein (%) | 4.23 | 4.20 | 4.30 | 0.064 | n.s. | *** | *** |
True protein (%) | 3.90 | 3.90 | 3.95 | 0.056 | n.s. | *** | *** |
Casein (%) | 3.37 | 3.35 | 3.40 | 0.048 | n.s. | *** | *** |
Whey protein (%) | 0.532 | 0.518 | 0.550 | 0.016 | n.s. | *** | *** |
Lactose (%) | 4.21 | 4.23 | 4.16 | 0.029 | n.s. | *** | * |
Ash (%) | 0.469 | 0.453 | 0.478 | 0.018 | n.s. | *** | * |
LSCC (cell/mL) | 5.77 | 5.81 | 5.75 | 0.061 | n.s. | ** | * |
Glucose (mg/dL) | 59.2 | 59.9 | 60.7 | 1.16 | n.s. | n.s. | n.s. |
Cholesterol (mg/dL) | 113 | 117 | 116 | 2.4 | n.s. | * | * |
Urea (mg/dL) | 47.7 a | 43.2 b | 44.6 a,b | 1.21 | * | *** | n.s. |
BHB (mmol/L) | 0.442 | 0.400 | 0.382 | 0.022 | n.s. | n.s. | ** |
NEFA (mmol/L) | 0.463 | 0.370 | 0.444 | 0.047 | n.s. | * | * |
Haematocrit (%) | 29.6 | 28.9 | 29.3 | 0.43 | n.s. | *** | ** |
Variable | Diet | Sampling Signification | Interaction Signification | ||||
---|---|---|---|---|---|---|---|
C | AB | AP | SEM | Signification | |||
Initial BW (kg) | 50.1 | 48.6 | 50.9 | 0.92 | n.s. | − | − |
Average BW (kg) | 48.7 a | 46.4 c | 47.4 b | 0.36 | *** | *** | n.s. |
Milk yield (kg/day) | 2.01 | 1.90 | 1.82 | 0.072 | n.s. | n.s. | n.s. |
FCM (3.5%; kg/day) | 2.44 a | 2.44 a | 2.15 b | 0.086 | * | *** | n.s. |
FPCM (kg/day) | 2.31 a | 2.28 a,b | 2.05 b | 0.078 | * | *** | n.s. |
Feed efficiency (Milk yield/DMI) | 1.02 | 1.05 | 0.95 | 0.058 | n.s. | n.s. | n.s. |
Feed efficiency (FPCM/DMI) | 1.18 | 1.23 | 1.08 | 0.066 | n.s. | *** | n.s. |
Fat (%) | 4.88 b | 5.35 a | 4.73 b | 0.149 | ** | *** | n.s. |
UDM (%) | 9.14 a,b | 9.62 a | 9.06 b | 0.178 | * | *** | n.s. |
DM (%) | 13.9 a,b | 14.4 a | 13.8 b | 0.17 | * | *** | n.s. |
NFDM (%) | 9.69 b | 9.80 a,b | 9.82 a | 0.046 | * | *** | ** |
Protein (%) | 4.22 b | 4.28 a,b | 4.36 a | 0.046 | * | ** | * |
True protein (%) | 3.89 b | 3.94 a,b | 4.01 a | 0.041 | * | ** | * |
Casein (%) | 3.37 | 3.43 | 3.45 | 0.033 | n.s. | *** | * |
Whey protein (%) | 0.523 a,b | 0.506 b | 0.556 a | 0.013 | ** | *** | n.s. |
Lactose (%) | 4.34 | 4.31 | 4.30 | 0.027 | n.s. | ** | n.s. |
Ash (%) | 0.441 | 0.476 | 0.436 | 0.015 | n.s. | n.s. | n.s. |
LSCC (cell/mL) | 5.77 a,b | 5.72 b | 5.90 a | 0.061 | * | ** | *** |
Glucose (mg/dL) | 59.5 | 57.2 | 59.8 | 1.03 | n.s. | *** | n.s. |
Cholesterol (mg/dL) | 109 a,b | 111 a | 102 b | 2.5 | * | *** | *** |
Urea (mg/dL) | 43.2 a | 38.9 b | 42.2 a | 1.00 | ** | n.s. | n.s. |
BHB (mmol/L) | 0.410 | 0.417 | 0.405 | 0.019 | n.s. | ** | ** |
NEFA (mmol/L) | 0.631 | 0.717 | 0.625 | 0.054 | n.s. | * | *** |
Haematocrit (%) | 31.6 | 32.1 | 32.1 | 0.55 | n.s. | *** | ** |
Variable | Experiment 1 | Experiment 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | AB | AP | SEM | Signification | C | AB | AP | SEM | Signification | |
Na (mg/kg) | 354 | 373 | 369 | 11.7 | n.s. | 343 | 350 | 362 | 11.6 | n.s. |
Mg (mg/kg) | 160 | 162 | 161 | 7.6 | n.s. | 167 | 156 | 166 | 3.9 | n.s. |
P (mg/kg) | 1152 | 1245 | 1200 | 62.6 | n.s. | 1171 | 1142 | 1181 | 41.4 | n.s. |
S (mg/kg) | 408 | 401 | 403 | 16.6 | n.s. | 405 a | 365 b | 402 a,b | 10.7 | * |
K (mg/kg) | 1492 | 1513 | 1560 | 61.6 | n.s. | 1405 | 1415 | 1514 | 39.8 | n.s. |
Ca (mg/kg) | 1394 | 1536 | 1449 | 58.9 | n.s. | 1437 | 1447 | 1451 | 36.8 | n.s. |
Mn (µg/kg) | 64.2 | 77.2 | 89.8 | 13.36 | n.s. | 70.1 | 68.9 | 62.7 | 5.60 | n.s. |
Fe (µg/kg) | 457 | 678 | 499 | 154.2 | n.s. | 483 | 403 | 468 | 26.7 | n.s. |
Cu (µg/kg) | 111 a | 105 a,b | 94 b | 4.1 | * | 95.1 a | 80.6 b | 80.6 b | 3.74 | * |
Se (µg/kg) | 25.8 | 26.5 | 26.3 | 2.93 | n.s. | 36.6 a,b | 33.3 b | 40.7 a | 1.67 | * |
Zn (µg/kg) | 4811 | 4734 | 4968 | 225.3 | n.s. | 5387 | 4925 | 4987 | 286.1 | n.s. |
Variable | Experiment 1 | Experiment 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | AB | AP | SEM | Signification | C | AB | AP | SEM | Signification | |
C6:0 | 1.17 | 0.94 | 0.61 | 0.228 | n.s. | 0.420 | 0.945 | 0.881 | 0.250 | n.s. |
C8:0 | 3.21 | 3.31 | 3.33 | 0.124 | n.s. | 3.29 | 3.18 | 3.36 | 0.081 | n.s. |
C10:0 | 9.08 | 9.36 | 9.58 | 0.228 | n.s. | 9.07 | 9.16 | 9.36 | 0.177 | n.s. |
C12:0 | 5.33 | 5.50 | 5.58 | 0.114 | n.s. | 5.17 | 5.27 | 5.40 | 0.086 | n.s. |
C13:0 | 0.117 | 0.105 | 0.104 | 0.012 | n.s. | 0.108 | 0.077 | 0.104 | 0.020 | n.s. |
C14:0 | 10.1 b | 10.3 a,b | 10.5 a | 0.11 | * | 10.1 | 10.1 | 10.5 | 0.13 | n.s. |
C14:1c9 | 0.070 | 0.124 | 0.077 | 0.018 | n.s. | 0.153 | 0.104 | 0.115 | 0.036 | n.s. |
C15:0 | 1.16 | 1.03 | 1.04 | 0.045 | n.s. | 1.12 | 1.24 | 1.16 | 0.076 | n.s. |
C15:1 | 0.168 | 0.153 | 0.146 | 0.013 | n.s. | 0.168 | 0.150 | 0.159 | 0.013 | n.s. |
C16:0 | 23.0 b | 23.5 a,b | 23.8 a | 0.20 | * | 24.0 | 24.3 | 24.2 | 0.45 | n.s. |
C16:1 | 1.17 b | 1.24 a,b | 1.35 a | 0.052 | * | 1.22 | 1.19 | 1.29 | 0.034 | n.s. |
C16:2 | 1.17 | 1.17 | 1.14 | 0.078 | n.s. | 0.968 | 1.133 | 1.182 | 0.092 | n.s. |
C17:1 | 0.307 | 0.339 | 0.333 | 0.013 | n.s. | 0.345 | 0.390 | 0.363 | 0.023 | n.s. |
C18:0 | 12.3 | 11.8 | 11.4 | 0.32 | n.s. | 13.2 | 12.7 | 12.2 | 0.34 | n.s. |
C18:1t11 | 0.300 | 1.458 | 0.067 | 0.477 | n.s. | 0.193 | 1.866 | 0.106 | 0.814 | n.s. |
C18:1c9 | 22.5 | 21.7 | 23.2 | 0.62 | n.s. | 22.5 a | 19.8 b | 22.5 a | 0.77 | * |
C18:2t9,12 | 1.31 a | 0.72 b | 1.44 a | 0.107 | *** | 1.23 | 1.69 | 1.43 | 0.421 | n.s. |
C18:2n6 | 3.40 | 3.47 | 3.56 | 0.063 | n.s. | 3.28 | 3.24 | 3.31 | 0.062 | n.s. |
C18:3n6 | 0.156 a,b | 0.176 a | 0.142 b | 0.010 | * | 0.161 | 0.164 | 0.146 | 0.042 | n.s. |
C19:0 | 0.121 | 0.118 | 0.089 | 0.014 | n.s. | 0.124 | 0.099 | 0.103 | 0.024 | n.s. |
C18:3n3 | 0.302 | 0.269 | 0.275 | 0.013 | n.s. | 0.309 | 0.329 | 0.252 | 0.032 | n.s. |
CLA c9t11 | 1.06 | 1.07 | 1.19 | 0.057 | n.s. | 0.866 | 0.674 | 0.876 | 0.079 | n.s. |
CLA t10c12 | 0.208 | 0.232 | 0.145 | 0.056 | n.s. | 0.095 | 0.298 | 0.151 | 0.064 | n.s. |
∑CLA | 1.27 | 1.31 | 1.33 | 0.069 | n.s. | 0.961 | 0.971 | 1.027 | 0.112 | n.s. |
C20:0 | 0.382 | 0.307 | 0.315 | 0.030 | n.s. | 0.374 a | 0.244 b | 0.307 a,b | 0.035 | * |
C20:1n9 | 0.160 | 0.136 | 0.112 | 0.037 | n.s. | 0.100 | 0.064 | 0.090 | 0.022 | n.s. |
C21:0 | 0.082 a | 0.048 a,b | 0.030 b | 0.017 | * | 0.046 | 0.027 | 0.047 | 0.011 | n.s. |
C20:4n6 | 0.203 | 0.190 | 0.203 | 0.009 | n.s. | 0.225 | 0.211 | 0.225 | 0.017 | n.s. |
C20:5n3 | 0.131 a | 0.093 a,b | 0.086 b | 0.014 | * | 0.124 | 0.116 | 0.102 | 0.020 | n.s. |
C24:1 | 0.064 a | 0.027 b | 0.026 b | 0.011 | * | 0.052 | 0.072 | 0.029 | 0.030 | n.s. |
C22:6n6 | 0.034 a,b | 0.015 b | 0.048 a | 0.008 | * | 0.039 | 0.031 | 0.033 | 0.005 | n.s. |
SFA 1 | 66.1 | 66.3 | 66.4 | 0.34 | n.s. | 66.9 | 67.4 | 67.7 | 0.41 | n.s. |
MUFA 2 | 24.7 | 25.2 | 25.4 | 0.33 | n.s. | 24.6 a,b | 23.6 b | 24.6 a | 0.30 | * |
PUFA 3 | 7.97 a | 7.41 b | 8.22 a | 0.154 | ** | 7.30 | 7.88 | 7.71 | 0.56 | n.s. |
UFA 4 | 32.7 | 32.6 | 33.6 | 0.40 | n.s. | 31.9 | 31.5 | 32.3 | 0.44 | n.s. |
SFA/UFA | 2.02 | 2.04 | 1.98 | 0.034 | n.s. | 2.10 | 2.14 | 2.09 | 0.042 | n.s. |
SCFA 5 | 13.5 | 13.6 | 13.5 | 0.25 | n.s. | 12.8 | 13.3 | 13.6 | 0.37 | n.s. |
MCFA 6 | 42.6 b | 43.4 a,b | 44.1 a | 0.41 | * | 43.3 | 43.9 | 44.5 | 0.53 | n.s. |
LCFA 7 | 42.7 | 41.9 | 42.4 | 0.45 | n.s. | 42.8 a | 41.7 b | 41.9 a,b | 0.29 | * |
n3 | 0.433 a | 0.362 b | 0.361 b | 0.022 | * | 0.433 | 0.445 | 0.353 | 0.047 | n.s. |
n6 | 3.79 | 3.85 | 3.95 | 0.060 | n.s. | 3.71 | 3.64 | 3.72 | 0.095 | n.s. |
n6/n3 | 8.94 b | 10.68 a | 11.03 a | 0.512 | * | 8.58 | 8.80 | 10.74 | 0.870 | n.s. |
AI 8 | 2.38 | 2.39 | 2.41 | 0.039 | n.s. | 2.42 | 2.52 | 2.49 | 0.038 | n.s. |
TI 9 | 3.14 | 3.10 | 3.08 | 0.042 | n.s. | 3.28 | 3.39 | 3.27 | 0.063 | n.s. |
DI C14:0 | 0.007 | 0.012 | 0.007 | 0.002 | n.s. | 0.015 | 0.010 | 0.011 | 0.004 | n.s. |
DI C16:0 | 0.051 b | 0.053 a,b | 0.057 a | 0.002 | * | 0.051 a,b | 0.049 b | 0.053 a | 0.001 | ** |
DI C18:0 | 1.86 | 1.96 | 2.05 | 0.067 | n.s. | 1.71 | 1.70 | 1.85 | 0.062 | n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monllor, P.; Romero, G.; Sendra, E.; Atzori, A.S.; Díaz, J.R. Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality. Animals 2020, 10, 339. https://doi.org/10.3390/ani10020339
Monllor P, Romero G, Sendra E, Atzori AS, Díaz JR. Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality. Animals. 2020; 10(2):339. https://doi.org/10.3390/ani10020339
Chicago/Turabian StyleMonllor, Paula, Gema Romero, Esther Sendra, Alberto Stanislao Atzori, and José Ramón Díaz. 2020. "Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality" Animals 10, no. 2: 339. https://doi.org/10.3390/ani10020339
APA StyleMonllor, P., Romero, G., Sendra, E., Atzori, A. S., & Díaz, J. R. (2020). Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality. Animals, 10(2), 339. https://doi.org/10.3390/ani10020339