Effect of Accumulation of Heavy Metals in the Red Fox Intestine on the Prevalence of Its Intestinal Parasites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Foxes
2.2. Samples
- Small intestine (jejunum) without ingesta from foxes where no parasites were detected;
- Small intestine (jejunum) without ingesta from foxes where parasites were detected;
- Parasites, further classified into the following three groups: (a) Nematoda, (b) Cestoda—Mesocestoides spp., (c) Cestoda—others;
- Standard reference material (CRM 12-02-01 Bovine Liver) from the Czechoslovak Institute of Metrology.
2.3. Sample Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sures, B. Environmental parasitology: Relevancy of parasites in monitoring environmental pollution. Trends Parasitol. 2004, 20, 170–177. [Google Scholar] [CrossRef]
- Poulin, R. The functional importance of parasites in animal communities: Many roles at many levels? Int. J. Parasitol. 1999, 29, 903–914. [Google Scholar] [CrossRef]
- Marcogliese, D.J. Food webs and the transmission of parasites to marine fish. Parasitology 2002, 124, 83–99. [Google Scholar] [CrossRef]
- Khaleghzadeh-Ahangar, H.; Malek, M.; McKenzie, K. The parasitic nematodes Hysterothylacium sp. type MB larvae as bioindicators of lead and cadmium: A comparative study of parasite and host tissues. Parasitology 2011, 138, 1400–1405. [Google Scholar] [CrossRef]
- Yen Nhi, T.T.; Mohd Shazili, N.A.; Shaharom-Harrison, F. Use of cestodes as indicator of heavy-metal pollution. Exp. Parasitol. 2013, 133, 75–79. [Google Scholar] [CrossRef]
- Dural, M.; Genc, E.; Sangun, M.K.; Güner, Ö. Accumulation of some heavy metals in Hysterothylacium aduncum (Nematoda) and its host sea bream, Sparus aurata (Sparidae) from North-Eastern Mediterranean Sea (Iskenderun Bay). Environ. Monit. Assess. 2011, 174, 147–155. [Google Scholar] [CrossRef]
- Sures, B.; Grube, K.; Taraschewski, H. Experimental studies on the lead accumulation in the cestode Hymenolepis diminuta and its final host, Rattus norvegicus. Ecotoxicology 2002, 11, 365–368. [Google Scholar] [CrossRef]
- Sures, B. Fish macroparasites as indicators of heavy metal pollution in river sites in Austria. Parasitology 2003, 126, 61–69. [Google Scholar]
- Tenora, F.; Barus, V.; Kracmar, S.; Dvoracek, J. Concentrations of some heavy metals in Ligula intestinalis plerocercoids (Cestoda) and Philometraovata (Nematoda) compared to some their hosts (Osteichthyes). Helminthologia 2000, 37, 15–22. [Google Scholar]
- Sures, B. Accumulation of heavy metals by intestinal helminths in fish: An overview and perspective. Parasitology 2003, 126, S53–S60. [Google Scholar] [CrossRef]
- Lafferty, K.D. Environmental parasitology: What can parasites tell us about human impacts on the environment? Parasitol. Today 1997, 13, 251–255. [Google Scholar] [CrossRef]
- Barus, V.; Tenora, V.; Sumbera, R. Relative concentrations of four heavy metals in the parasites Protospirura muricola (Nematoda) and Inermicapsifer arvicanthidis (Cestoda) in their definitive host silvery mole-rat (Heliophobius argenteocinereus: Rodentia). Helminthologia 2003, 40, 227–232. [Google Scholar]
- Azmat, R.; Fayyaz, S.; Kazi, N.; Mahmood, S.; Uddin, F. Natural bioremediation of heavy metals through Nematode parasite of fish. Biotechnology 2008, 7, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Höss, S.; Schlottmann, K.; Traunspurger, W. Toxicity of ingested cadmium to the nematode Caenorhabditis elegans. Environ. Sci. Technol. 2011, 45, 10219–10225. [Google Scholar] [CrossRef]
- Meloun, M.; Hill, M.; Militký, J.; Kupka, K. Analysis of large and small samples of biochemical and clinical data. Clin. Chem. Lab. Med. 2001, 39, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Sures, B. Competition for minerals between Acanthocephalus lucii and its definitive host perch (Perca fluviatilis). Int. J. Parasitol. 2002, 32, 1117–1122. [Google Scholar] [CrossRef]
- Torres, J.; Eira, C.; Miquel, J.; Foronda, P.; Feliu, C. Cadmium and lead concentrations in Moniliformis moniliformis (Acanthocephala) and Rodentolepis microstoma (Cestoda), and in their definitive hosts, Rattus rattus and Mus domesticus in El Hierro (Canary Archipelago, Spain). Acta Parasitol. 2011, 56, 320–324. [Google Scholar] [CrossRef]
- Scheef, G.; Sures, B.; Taraschewski, H. Cadmium accumulation in Moniliformis moniliformis (Acanthocephala) from experimentally infected rats. Parasitol. Res. 2000, 86, 688–691. [Google Scholar] [CrossRef]
- Sures, B.; Franken, M.; Taraschewski, H. Element concentrations in the archiacanthocephalan Macracanthorhynchus hirudinaceus compared with those in the porcine definitive host from a slaughterhouse in La Paz, Bolivia. Int. J. Parasitol. 2000, 30, 1071–1076. [Google Scholar] [CrossRef]
- Jankovská, I.; Lukešová, D.; Száková, J.; Langrová, I.; Vadlejcj, J.; Čadková, Z.; Válek, P.; Petrtýl, M.; Kudrnáčová, M. Competition for minerals (Zn, Mn, Fe, Cu) and Cd between sheep tapeworm (Moniezia expansa) and its definitive host sheep (Ovis aries). Helminthologia 2011, 48, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Jankovská, I.; Miholová, D.; Petrtýl, M.; Romočuský, Š.; Kalous, L.; Vadlejcj, J.; Čadková, Z.; Langrová, I. Intestinal parasite Acanthocephalus lucii (Acanthocephala) from European perch (Perca fluviatilis) as a bioindicator for lead pollution in the stream “Jevanský potok” near Prague, Czech Republic. Bull. Environ. Contam. Toxicol. 2011, 86, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Jankovská, I.; Miholová, D.; Bejček, V.; Vadlejch, J.; Šulc, M.; Száková, J.; Langrová, I. Influence of parasitism on trace element contents in tissues of Red Fox (Vulpes vulpes) and its parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda). Arch. Environ. Contam. Toxicol. 2010, 58, 469–477. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs Text with EEA relevance. OJEU 2014, L138, 75–79. [Google Scholar]
- Tsukada, H. A division between foraging range and territory related to food distribution in the red fox. J. Ethol. 1997, 15, 27–37. [Google Scholar] [CrossRef]
- Sures, B.; Reimann, N. Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Polar Biol. 2003, 26, 680–686. [Google Scholar] [CrossRef]
- Retief, N.R.; Avenant-Oldewage, A.; du Preez, H.H. The use of cestode parasites from the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913) in the Vaal Dam, South Africa as indicators of heavy metal bioaccumulation. Phys. Chem. Earth 2006, 31, 840–847. [Google Scholar] [CrossRef]
- Oyoo-Okoth, E.; Wim, A.; Osano, O.; Kraak, M.H.; Ngure, V.; Makwali, J.; Orina, P.S. Use of the fish endoparasite Ligula intestinalis (L., 1758) in an intermediate cyprinid host (Rastreneobola argentea) for biomonitoring heavy metal contamination in Lake Victoria, Kenya. Lakes Reserv. Res. Manag. 2010, 15, 63–73. [Google Scholar] [CrossRef]
- Filistowicz, A.; Dobrzaňski, Z.; Przysiecki, P.; Nowicki, S.; Filistowicz, A. Concentration of heavy metals in hair and skin of silver and red foxes (Vulpes vulpes). Environ. Monit. Assess. 2011, 182, 477–484. [Google Scholar] [CrossRef]
- Dobrzaňski, Z.; Filistowicz, A.; Przysiecki, P.; Filistowicz, A.; Nowicki, S.; Walkowiak, K.; Czyz, K. Mercury bioaccumulation in hair and skin of arctic foxes (Vulpes lagopus) and silver foxes (Vulpes vulpes) in rural and urbanised region. Czech. J. Anim. Sci. 2014, 59, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Chand, N.; Tyagi, S.; Prasad, R.; Sirohi, A.S.; Srivastava, N.; Kumar, S.; Yadav, B.P.S. Heavy metal and trace mineral in blood and hair of cattle reared around industrial effluent contaminated area. J. Anim. Res. 2017, 7, 685–689. [Google Scholar] [CrossRef]
- Popham, J.D.; Webster, J.M. Cadmium toxicity in the free-living nematode, Caenorhabditis elegans. Environ. Res. 1979, 20, 183–191. [Google Scholar] [CrossRef]
- Phillips, C.J.C.; Chiy, P.C.; Zachou, E. Effects of cadmium in herbage on the apparent absorption of elements by sheep in comparison with inorganic cadmium added to their diet. Environ. Res. 2005, 99, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A. Cadmium toxicity and treatment: An update. Caspian J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 2003, 8, 121–135. [Google Scholar] [CrossRef]
- Loppi, S.; Frati, L.; Paoli, L.; Bigagli, V.; Rossetti, C.; Bruscoli, C.; Corsini, A. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Sci. Total Environ. 2004, 326, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-T.; Duan, H.-N.; Li, S.-P.; Kuang, J.-L.; Zeng, Y.; Shu, W.-S. Cadmium pollution triggers a positive biodiversity–productivity relationship: Evidence from a laboratory microcosm 4experiment. Sci. Total Environ. 2010, 47, 890–898. [Google Scholar] [CrossRef]
- Hursky, O.; Pietrock, M. Chemical contaminants and parasites: Assessment of human health risks associated with consumption of whitefish (Coregonus clupeaformis) from two boreal lakes in northern Saskatchewan, Canada. Sci. Total Environ. 2012, 424, 97–103. [Google Scholar] [CrossRef]
- Zmudzki, S.; Laskowski, R. Biodiversity and structure of spider communities along a metal pollution gradient. Ecotoxicology 2012, 21, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Kirin, D.; Boyanov, B.; Ilieva, N. Biodiversity and heavy metal pollutions in freshwater ecosystems in border areas from Tunja river. Zaštita Mater. 2013, 54, 153–160. [Google Scholar]
- Chunhabundit, R. Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol. Res. 2016, 32, 65–72. [Google Scholar] [CrossRef]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metcheva, R.; Yurukova, L.; Bezrukov, V.; Beltcheva, M.; Yankov, Y.; Dimitrov, K. Trace and toxic elements accumulation in food chain representatives at Livingston Island (Antarctica). Int. J. Biol. 2010, 2, 155–161. [Google Scholar] [CrossRef]
- Ruprich, J.; Drápal, J.; Řehůřková, I.; Šťastný, K.; Kalivodová, M. Cattle tissues as a source of cadmium for consumers. Acta Vet. Brno 2015, 84, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Sriprachote, A.; Kanyawongha, P.; Pantuwan, G.; Ochiai, K.; Matoh, T. Evaluation of Thai rice cultivars with low-grain cadmium. Soil Sci. Plant Nutr. 2012, 58, 568–572. [Google Scholar] [CrossRef] [Green Version]
Tissues | Metal (mg kg−1) | |||||||
---|---|---|---|---|---|---|---|---|
Cd | Pb | Cr | Cu | Zn | Mn | Ni | ||
Small intestines free of parasites n = 19 | x̅ | 0.03 | 0.52 | 0.14 | 1.37 | 21.9 | 4.27 | 0.23 |
x̅0,5 | 0.03 | 0.29 | 0.06 | 1.31 | 20.7 | 1.82 | 0.20 | |
x̅R | 0.03 | 0.34 | 0.07 | 1.33 | 17.8 | 1.65 | 0.20 | |
LL | 0.02 | 0.18 | 0.05 | 1.05 | 17.3 | 1.53 | 0.13 | |
LU | 0.04 | 0.61 | 0.24 | 1.68 | 23.2 | 4.09 | 0.29 | |
Small intestines with parasites n = 15 | x̅ | 0.01 | 0.22 | 0.13 | 1.19 | 23.9 | 2.84 | 0.19 |
x̅0,5 | 0.01 | 0.13 | 0.09 | 1.07 | 24.2 | 1.77 | 0.12 | |
x̅R | 0.01 | 0.12 | 0.09 | 1.09 | 23.4 | 1.89 | 0.15 | |
LL | 0.00 | 0.06 | 0.06 | 0.97 | 20.9 | 1.47 | 0.11 | |
LU | 0.01 | 0.37 | 0.15 | 1.24 | 27.4 | 2.39 | 0.26 | |
Nematoda (roundworms) n = 4 | x̅ | 0.08 | 1.37 | 0.34 | 1.65 | 33.2 | 4.32 | 0.30 |
x̅0,5 | 0.05 | 1.23 | 0.18 | 1.78 | 34.1 | 4.06 | 0.26 | |
x̅R | 0.04 | 1.23 | 0.18 | 1.81 | 26.9 | 4.04 | 0.26 | |
LL | 0 | 0.65 | 0.12 | 0.04 | 13.9 | 3.09 | 0.10 | |
LU | 0.20 | 2.25 | 0.22 | 2.99 | 50.6 | 6.09 | 0.59 | |
Cestoda (tapeworms) Mesocestoides n = 9 | x̅ | 0.09 | 3.23 | 0.54 | 3.77 | 60.8 | 26.7 | 1.13 |
x̅0,5 | 0.03 | 2.34 | 0.35 | 2.72 | 59.0 | 20.6 | 0.70 | |
x̅R | 0.06 | 2.46 | 0.36 | 2.52 | 50.3 | 21.3 | 0.62 | |
LL | 0 | 0.69 | 0.07 | 0 | 26.2 | 5.62 | 0 | |
LU | 0.25 | 4.82 | 0.98 | 8.38 | 97.1 | 46.0 | 3.31 | |
Cestoda (tapeworms) n = 4 | x̅ | 0.07 | 0.83 | 0.57 | 8.10 | 63.2 | 21.1 | 4.15 |
x̅0,5 | 0.02 | 0.66 | 0.42 | 3.93 | 55.6 | 18.0 | 3.06 | |
x̅R | 0.02 | 0.65 | 0.40 | 3.44 | 42.7 | 16.8 | 2.83 | |
LL | 0 | 0.19 | 0.10 | 0 | 11.7 | 3.15 | 0 | |
LU | 0.28 | 1.82 | 1.33 | 4.59 | 129.8 | 39.7 | 11.26 |
Mesocestoides spp. vs. Intestine | Metal | ||||||
---|---|---|---|---|---|---|---|
Cd | Pb | Cr | Cu | Zn | Mn | Ni | |
Spearmans’ rank correlation coefficient (r) | 0.23 | 0.75 | 0.77 | 0.03 | 0.32 | 0.47 | 0.03 |
p-value | >0.05 | <0.05 | <0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkovcova, M.; Fiser, V.; Bednarova, M.; Havlicek, Z.; Adámková, A.; Mlcek, J.; Jurikova, T.; Balla, S.; Adámek, M. Effect of Accumulation of Heavy Metals in the Red Fox Intestine on the Prevalence of Its Intestinal Parasites. Animals 2020, 10, 343. https://doi.org/10.3390/ani10020343
Borkovcova M, Fiser V, Bednarova M, Havlicek Z, Adámková A, Mlcek J, Jurikova T, Balla S, Adámek M. Effect of Accumulation of Heavy Metals in the Red Fox Intestine on the Prevalence of Its Intestinal Parasites. Animals. 2020; 10(2):343. https://doi.org/10.3390/ani10020343
Chicago/Turabian StyleBorkovcova, Marie, Vladimir Fiser, Martina Bednarova, Zdenek Havlicek, Anna Adámková, Jiri Mlcek, Tunde Jurikova, Stefan Balla, and Martin Adámek. 2020. "Effect of Accumulation of Heavy Metals in the Red Fox Intestine on the Prevalence of Its Intestinal Parasites" Animals 10, no. 2: 343. https://doi.org/10.3390/ani10020343
APA StyleBorkovcova, M., Fiser, V., Bednarova, M., Havlicek, Z., Adámková, A., Mlcek, J., Jurikova, T., Balla, S., & Adámek, M. (2020). Effect of Accumulation of Heavy Metals in the Red Fox Intestine on the Prevalence of Its Intestinal Parasites. Animals, 10(2), 343. https://doi.org/10.3390/ani10020343