Effect of Soy Lecithin Supplementation in Beef Cows before Calving on Colostrum Composition and Serum Total Protein and Immunoglobulin G Concentrations in Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Conditions and Animals
2.2. Samples Collection and Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Colostrum Composition
3.2. Fatty Acids Profile in Colostrum
3.3. IgG and STP Concentrations in Calves’ Serum
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nowak, W.; Mikuła, R.; Zachwieja, A.; Paczyńska, K.; Pecka, E.; Drzazga, K.; Ślósarz, P. The impact of cow nutrition in the dry period on colostrum quality and immune status of calves. Pol. J. Vet. Sci. 2012, 15, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, G.; Silva, J.T.; Rocha Santos, F.H.; Machado Bittar, C.M. Nutritional and microbiological quality of bovine colostrum samples in Brazil. Braz. J. Anim. Sci. 2017, 46, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Contarini, G.; Povolo, M.; Pelizzola, V.; Monti, L.; Bruni, A.; Passolungo, L.; Abeni, F.; Degano, L. Bovine colostrum: Changes in lipid constituents in the first 5 days after parturition. J. Dairy Sci. 2014, 97, 5065–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, T.M.; Bateman, H.G.; Aldrich, J.M.; Schlotterbeck, R.L. Effects of changing the essential and functional fatty acid intake of dairy calves. J. Dairy Sci. 2009, 92, 670–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, M.R.; Jacobson, N.L.; Allen, R.S.; Zaletel, J.H. Lipid deficiency in the calf: Two figures. J. Nutr. 1954, 52, 259–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, M.; Babaei, M.; Shahneh, A.Z. Effect of using extruded linseed on colostrum production, composition, some blood parameters and overall health in Holstein dairy cows. Adv. Appl. Sci. Res. 2015, 6, 29–34. [Google Scholar]
- Lanier, J.S.; Corl, B.A. Challenges in enriching milk fat with polyunsaturated fatty acids. J. Anim. Sci. Biotechnol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kęsek, M.; Szulc, T.; Zielak-Steciwko, A. Genetic, physiological and nutritive factors affecting the fatty acid profile in cows’ milk—A review. Anim. Sci. Pap. Rep. 2014, 32, 95–105. [Google Scholar]
- Loncarevic, I.; Pajin, B.; Omorjan, R.; Torbica, A.; Zaric, D.; Maksimovic, J.; Gajic, J.S. The influence of lecithin from different sources on crystallization and physical properties of nontrans fat. J. Texture Stud. 2013, 44, 450–458. [Google Scholar] [CrossRef]
- Marchesini, G.; Segato, S.; Stefani, A.; Tenti, S.; Dorigo, M.; Gerardi, G.; Bernardini, D.; Andrighetto, I. Lecithin: A by-product of biodiesel production and a source of choline for dairy cows. Ital. J. Anim. Sci. 2012, 11, 203–207. [Google Scholar] [CrossRef]
- Nardi, R.; Marchesini, G.; Tenti, S.; Contiero, B.; Andrighetto, I.; Segato, S. Lecithin as a supplement for mid-lactating dairy cows. Acta Argic. Slov. 2012, 3, 67–70. [Google Scholar]
- Attia, Y.A.E.W.; Abd El-Hamid, A.E.H.E.; Oliveira, M.C.; Kamel, K.I.; Nagadi, S.A.; Sadaka, T.A.A. Soy lecithin in diets for rabbit does improves productive and reproductive performance. Anim. Sci. Pap. Rep. 2018, 36, 193–203. [Google Scholar]
- Shi, B.; Wang, C.; Teng, T.; Liu, T.; Zhang, X.; Shan, A. Effects of dietary soybean lecithin oil on the immunoglobulin level and fat globule size of milk in lactating sows. Food Agric. Immunol. 2019, 30, 774–785. [Google Scholar] [CrossRef]
- Pecka, E.; Dobrzański, Z.; Zachwieja, A.; Szulc, T.; Czyż, K. Studies of composition and major protein level in milk and colostrum of mares. Anim. Sci. J. 2012, 83, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Kęsek, M.M.; Smołucha, G.; Zielak-Steciwko, A.E. Acetyl-CoA Carboxylase α and Stearoyl-CoA Desaturase genes polymorphism and their influence on fatty acid profile in milk of Polish Holstein-Friesian cows. Ann. Anim. Sci. 2017, 17, 993–1006. [Google Scholar] [CrossRef] [Green Version]
- Maślak, E.; Buczek, E.; Szumny, A.; Szczepański, W.; Franczyk-Zarów, M.; Kopec, A.; Chłopicki, S.; Leszczyńska, T.; Kostogrys, R.B. Individual CLA isomers, c9t11 and t10c12, prevent excess liver glycogen storage and inhibit lipogenic genes expression induced by high-fructose diet in rats. Biomed. Res. Int. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.K.A.; Shook, G.E. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Montanholi, Y.R.; Lam, S.; Peripolli, V.; Vander Voort, G.; Miller, S.P. Associations between chemical composition and physical properties of milk and colostrum with feed efficiency in beef cows. Can. J. Anim. Sci. 2013, 93, 487–492. [Google Scholar] [CrossRef]
- Lowe, D.E.; Lively, F.O.; Gordon, A.W. The effect of dam genotype in a beef breeding herd on calving parameters and chemical composition of colostrum. Adv. Anim. Biosci. 2017, 8, 15–18. [Google Scholar] [CrossRef]
- Corino, C.; Pastorelli, G.; Rosi, F.; Bontempo, V.; Rossi, R. Effect of dietary conjugated linoleic acid supplementation in sows on performance and immunoglobulin concentration in piglets. J. Anim. Sci. 2009, 87, 2299–2305. [Google Scholar] [CrossRef] [PubMed]
- Salehi, R.; Ambrose, D.J.; Oba, M. Effects of prepartum diets supplemented with rolled oilseeds on Brix values and fatty acid profile of colostrum. J. Dairy Sci. 2016, 99, 3598–3601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugano, M.; Tsujita, A.; Yamasaki, M.; Noguchi, M.; Yamada, K. Conjugated linoleic acid modulates tissue levels of chemical mediators and immunoglobulins in rats. Lipids 1998, 33, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, M.; Chujo, H.; Hirao, A.; Koyanagi, N.; Okamoto, T.; Tojo, N.; Oishi, A.; Iwata, T.; Yamauchi-Sato, Y.; Yamamoto, T.; et al. Immunoglobulin and cytokine production from spleen lymphocytes is modulated in C57BL/6J mice by dietary cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid. J. Nutr. 2003, 133, 784–788. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, M.; Bassaganya-Riera, J.; Mohede, I.C.M. Immunomodulatory properties of conjugated linoleic acid. Am. J. Clin. Nutr. 2004, 79, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Mi, J.D.; Zhou, J.W.; Ding, L.M.; Wang, L.; Long, R.J. Short communication: Changes in the composition of yak colostrum during the first week of lactation. J. Dairy Sci. 2016, 99, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Nardone, A.; Lacetera, N.; Bernabucci, U.; Ronchi, B. Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J. Dairy Sci. 1997, 80, 838–844. [Google Scholar] [CrossRef]
- Parodi, P.W. Positional distribution of fatty acids in triglycerides from prepartum mammary gland secretion and early postpartum milk. J. Dairy Sci. 1983, 66, 912–919. [Google Scholar] [CrossRef]
- Craninx, M.; Steen, A.; Van Laar, H.; Van Nespen, T.; Martın-Tereso, J.; De Baets, B.; Fievez, V. Effect of lactation stage on the odd- and branched-chain milk fatty acids of dairy cattle under grazing and indoor conditions. J. Dairy Sci. 2008, 91, 2662–2677. [Google Scholar] [CrossRef] [Green Version]
- Meklati, F.R.; Meribai, A.; Yezli, N.; Benabdelaziz, T. Colostrum and milk fatty acids profiles from imported prim’Holstein cows. Pertanika J. Trop. Agric. Sci. 2019, 42, 595–607. [Google Scholar]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 1, 132–162. [Google Scholar] [CrossRef] [PubMed]
- Coleman, D.N.; Murphy, K.D.; Relling, A.E. Prepartum fatty acid supplementation in sheep. II. Supplementation of eicosapentaenoic acid and docosahexaenoic acid during late gestation alters the fatty acid profile of plasma, colostrum, milk and adipose tissue, and increases lipogenic gene expression of adipose tissue. J. Anim. Sci. 2018, 96, 1181–1204. [Google Scholar] [PubMed] [Green Version]
- Mašek, T.; Krstulović, L.; Brozić, D.; Vranić, M.; Maurić, M.; Bajić, M.; Starčević, K. Cow colostrum and early milk enriched with eicosapentaenoic and docosahexaenoic fatty acid. Eur. Food Res. Technol. 2014, 238, 635–640. [Google Scholar] [CrossRef]
- Santschi, D.E.; Wettstein, H.R.; Leiber, F.; Witschi, A.K.M.; Kreuzer, M. Colostrum and milk fatty acids of dairy cows as influenced by extruded linseed supplementation during the transition period. Can. J. Anim. Sci. 2009, 89, 383–392. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Guo, G.; Huo, W.J.; Zhang, S.L.; Pei, C.X.; Zhang, Y.L.; Wang, H. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. Animal 2018, 12, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Lerch, S.; Ferlay, A.; Shingfield, K.J.; Martin, B.; Pomiès, D.; Chilliard, Y. Rapeseed or linseed supplements in grass-based diets: Effects on milk fatty acid composition of Holstein cows over two consecutive lactations. J. Dairy Sci. 2012, 95, 5221–5241. [Google Scholar] [CrossRef] [Green Version]
- Neveu, C.; Baurhoo, B.; Mustafa, A. Effect of feeding extruded flaxseed with different grains on the performance of dairy cows and milk fatty acid profile. J. Dairy Sci. 2014, 97, 1543–1551. [Google Scholar] [CrossRef] [Green Version]
- Thanh, L.P.; Suksombat, W. Milk yield, composition, and fatty acid profile in dairy cows fed a high-concentrate diet blended with oil mixtures rich in polyunsaturated fatty acids. Asian Australas. J. Anim. Sci. 2015, 28, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Lerma-Reyes, I.; Mendoza-Martinez, G.D.; Rojo-Rubio, R.; Mejia, M.; Garcia-Lopez, J.C.; Lee-Rangel, H.A. Influence of supplemental canola or soybean oil on milk yield, fatty acid profile and postpartum weight changes in grazing dairy goats. Asian Australas. J. Anim. Sci. 2018, 31, 225–229. [Google Scholar] [CrossRef]
- Hur, S.J.; Kim, H.S.; Bahk, Y.Y.; Park, Y. Overview of conjugated linoleic acid formation and accumulation in animal products. Livest. Sci. 2017, 195, 105–111. [Google Scholar] [CrossRef]
- Van Tran, L.; Malla, B.A.; Kumar, S.; Kumar Tyagi, A. Polyunsaturated Fatty Acids in Male Ruminant Reproduction—A Review. Asian Australas. J. Anim. Sci. 2017, 30, 622–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladino, R.A.; O’Donovan, M.; Kenny, D.A. Fatty acid intake and rumen fatty acid composition is affected by pre-grazing herbage mass and daily herbage allowance in Holstein dairy cows. Span. J. Agric. Res. 2014, 12, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Castro, T.; Martinez, D.; Isabel, B.; Cabezas, A.; Jimeno, V. Vegetable oils rich in polyunsaturated fatty acids supplementation of dairy cows’ diets: Effects on productive and reproductive performance. Animals 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corl, B.A.; Baumgard, L.H.; Dwyer, D.A.; Griinari, J.M.; Phillips, B.S.; Bauman, D.E. The role of 9-desaturase in the production of cis-9,trans-11 CLA. J. Nutr. Biochem. 2001, 12, 622–630. [Google Scholar] [CrossRef]
- Proell, J.M.; Mosley, E.E.; Powell, G.L.; Jenkins, T.C. Isomerization of stable isotopically labeled elaidic acid to cis and trans monoenes by ruminal microbes. J. Lipid Res. 2002, 43, 2072–2076. [Google Scholar] [CrossRef] [Green Version]
- Raboisson, D.; Trillat, P.; Cahuzac, C. Failure of passive transfer in calves: A meta-analysis on the consequences and assessment of the economic impact. PLoS ONE 2016, 11, 1–19. [Google Scholar] [CrossRef]
- McGee, M.; Earley, B. Review: Passive immunity in beef-suckler calves. Animal. 2019, 13, 810–825. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, W.T.; Fonteque, G.V.; Ramos, A.F.; da Silva Mariante, A.; do Egito, A.A.; Villamil Martins, V.M.; Saito, M.E.; Fonteque, J.H. Transfer of passive immunity and serum proteinogram in the first six months of life of Criollo Lageano and Black and White Holstein calves. Pesq. Vet. Bras. 2012, 32, 980–986. [Google Scholar] [CrossRef]
- Murphy, J.M.; Hagey, J.V.; Chigerwe, M. Comparison of serum immunoglobulin G half-life in dairy calves fed colostrum, colostrum replacer or administered with intravenous bovine plasma. Vet. Immunol. Immunopathol. 2014, 158, 233–237. [Google Scholar] [CrossRef]
- Besser, T.E.; Gay, C.C. The importance of colostrum to the health of the neonatal calf. Vet. Clin. North Am. Food Anim. Pract. 1994, 10, 107–117. [Google Scholar] [CrossRef]
- Kamada, H.; Nonaka, I.; Ueda, Y.; Murai, M. Selenium addition to colostrum increases immunoglobulin G absorption by newborn calves. J. Dairy Sci. 2007, 90, 5665–5670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, D.M.; Arellano, K.K.; Irsik, M.; Rae, D.O.; Yelich, J.V.; Mjoun, K.; Hersom, M.J. Effects of trace mineral supplement source during gestation and lactation in Angus and Brangus cows and subsequent calf immunoglobulin concentrations, growth and development. ARPAS 2017, 33, 194–204. [Google Scholar] [CrossRef]
- Villarroel, A.; Miller, T.B.; Johnson, E.D.; Noyes, K.R.; Ward, J.K. Factors affecting serum total protein and immunoglobulin G concentration in replacement dairy calves. Adv. Dairy Res. 2013, 1, 106–110. [Google Scholar]
- Tyler, J.W.; Hancock, D.D.; Parish, S.M.; Rea, D.E.; Besser, T.E.; Sanders, S.G.; Wilson, L.K. Evaluation of 3 assays for failure of passive transfer in calves. J. Vet. Intern. Med. 1996, 10, 304–307. [Google Scholar] [CrossRef]
- Calloway, C.D.; Tyler, J.W.; Tessman, R.K.; Hostetler, D.; Holle, J. Comparison of refractometers and test endpoints in the measurement of serum protein concentration to assess passive transfer status in calves. J. Am. Vet. Med. Assoc. 2002, 221, 1605–1608. [Google Scholar] [CrossRef] [Green Version]
- Elizondo-Salazar, J.A.; Heinrichs, A.J. Feeding heat-treated colostrum or unheated colostrum with two different bacterial concentrations to neonatal dairy calves. J. Dairy Sci. 2009, 92, 4565–4571. [Google Scholar] [CrossRef] [Green Version]
- Hogan, I.; Doherty, M.; Fagan, J.; Kennedy, E.; Conneely, M.; Brady, P.; Ryan, C.; Lorenz, I. Comparison of rapid laboratory tests for failure of passive transferin the bovine. Ir. Vet. J. 2015, 68, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zakian, A.; Nouri, M.; Rasooli, A.; Ghorbanpour, M.; Constable, P.D.; Mohammad-Sadegh, M. Evaluation of 5 methods for diagnosing failure of passive transfer in 160 Holstein calves. Vet. Clin. Pathol. 2018, 47, 275–283. [Google Scholar] [CrossRef]
Fatty Acids (g/100 g) | Feeds | ||
---|---|---|---|
Meadow Hay | Concentrate | Soy Lecithin | |
C14:0 | 0.86 | 0.34 | 0.08 |
C15:0 | ND | ND | 0.06 |
C16:0 | 21.43 | 10.27 | 20.46 |
C17:0 | 5.29 | ND | 0.16 |
C18:0 | ND | 1.21 | 4.67 |
C18:1 n-9c | ND | 40.58 | 9.38 |
C18:2 n-6 | 34.48 | 39.62 | 56.95 |
C18:3 n-6 | 0.21 | 0.04 | 8.17 |
C18:3 n-3 | 33.84 | 7.94 | 0.07 |
Other | 3.89 | ND | ND |
Components | Group | p-Value | |
---|---|---|---|
Control | Supplementation | ||
X ± SD | X ± SD | ||
Dry matter (%) | 18.34 ± 1.63 | 17.02 ± 1.62 | 0.126 |
Fat (%) | 3.55 ± 0.23 | 3.74 ± 0.26 | 0.155 |
Lactose (%) | 3.61 ± 1.30 | 2.89 ± 1.02 | 0.238 |
Protein (%) | 10.31 ± 1.01 | 9.72 ± 1.74 | 0.421 |
IgG (g/L) | 60.55 ± 15.41 | 64.84 ± 5.96 | 0.147 |
LogSCC | 3.11 ± 0.43 | 3.09 ± 0.49 | 0.928 |
LogTBC | 2.64 ± 0.95 | 2.71 ± 0.84 | 0.863 |
Fatty Acids (g/100 g) | Group | p-Value | |
---|---|---|---|
Control | Supplementation | ||
X ± SD | X ± SD | ||
C4:0 | 0.27 ± 0.14 | 0.45 ± 0.25 | 0.079 |
C6:0 | 0.35 ± 0.14 | 0.56 ± 0.15 | 0.005 |
C8:0 | 0.35 ± 0.06 | 0.44 ± 0.07 | 0.010 |
C10:0 | 1.24 ± 0.17 | 1.33 ± 0.10 | 0.178 |
C12:0 | 2.59 ± 0.34 | 2.54 ± 0.32 | 0.750 |
C14:0 | 14.91 ± 1.28 | 14.38 ± 1.69 | 0.460 |
C15:0 | 0.79 ± 0.07 | 1.03 ± 0.31 | 0.033 |
C16:0 | 49.75 ± 3.51 | 47.07 ± 5.47 | 0.373 |
C17:0 | 0.88 ± 0.23 | 0.94 ± 0.35 | 0.680 |
C18:0 | 4.15 ± 0.99 | 5.97 ± 1.89 | 0.021 |
Total SFA | 75.28 ± 2.88 | 74.71 ± 5.05 | 0.949 |
Fatty Acids (g/100 g) | Group | p-Value | |
---|---|---|---|
Control | Supplementation | ||
X ± SD | X ± SD | ||
C14:1 | 1.33 ± 0.39 | 1.29 ± 0.19 | 0.825 |
C15:1 | 0.17 ± 0.04 | 0.20 ± 0.09 | 0.318 |
C16:1 | 3.81 ± 0.39 | 2.02 ± 0.61 | 0.005 |
C17:1 | 0.53 ± 0.09 | 0.48 ± 0.07 | 0.139 |
C18:1 n-9c | 15.58 ± 2.79 | 17.51 ± 3.99 | 0.251 |
C18:1 n-9t | ND | 0.48 ± 0.09 | 0.000 |
C18:1 n-11t | 0.33 ± 0.08 | ND | 0.000 |
C18:2 n-6 | 1.35 ± 0.16 | 1.59 ± 0.30 | 0.049 |
c-9, t-11 (CLA) | 0.26 ± 0.08 | 0.35 ± 0.14 | 0.103 |
C18:3 n-3 | 0.54 ± 0.09 | 0.65 ± 0.29 | 0.270 |
C20:4 n-6 | 0.28 ± 0.11 | 0.25 ± 0.07 | 0.465 |
C20:5 n-3 (EPA) | 0.21 ± 0.07 | 0.18 ± 0.07 | 0.519 |
Remaining acids | 0.33 ± 0.17 | 0.29 ± 0.11 | 0.128 |
Total UFA | 24.72 ± 2.57 | 25.29 ± 4.26 | 0.342 |
Days of Life | IgG Concentration (g/L) | p-Value | |
---|---|---|---|
Control | Supplementation | ||
X ± SD | X ± SD | ||
3rd | 20.47 ± 10.28 | 21.48 ± 5.32 | 0.797 |
7th | 18.42 ± 8.98 | 20.39 ± 5.07 | 0.575 |
14th | 12.33 ± 5.52 | 18.20 ± 4.83 | 0.029 |
21st | 15.03 ± 6.20 | 17.40 ± 3.98 | 0.350 |
Days of Life | STP concentration (g/L) | p-Value | |
---|---|---|---|
Control | Supplementation | ||
X ± SD | X ± SD | ||
3rd | 66.66 ± 10.61 | 67.39 ± 12.88 | 0.897 |
7th | 58.92 ± 7.47 | 61.12 ± 11.36 | 0.634 |
14th | 58.91 ± 7.13 | 57.73 ± 8.95 | 0.762 |
21st | 57.31 ± 9.96 | 59.06 ± 11.78 | 0.739 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtas, E.; Zachwieja, A.; Piksa, E.; Zielak-Steciwko, A.E.; Szumny, A.; Jarosz, B. Effect of Soy Lecithin Supplementation in Beef Cows before Calving on Colostrum Composition and Serum Total Protein and Immunoglobulin G Concentrations in Calves. Animals 2020, 10, 765. https://doi.org/10.3390/ani10050765
Wojtas E, Zachwieja A, Piksa E, Zielak-Steciwko AE, Szumny A, Jarosz B. Effect of Soy Lecithin Supplementation in Beef Cows before Calving on Colostrum Composition and Serum Total Protein and Immunoglobulin G Concentrations in Calves. Animals. 2020; 10(5):765. https://doi.org/10.3390/ani10050765
Chicago/Turabian StyleWojtas, Edyta, Andrzej Zachwieja, Eliza Piksa, Anna E. Zielak-Steciwko, Antoni Szumny, and Bogdan Jarosz. 2020. "Effect of Soy Lecithin Supplementation in Beef Cows before Calving on Colostrum Composition and Serum Total Protein and Immunoglobulin G Concentrations in Calves" Animals 10, no. 5: 765. https://doi.org/10.3390/ani10050765
APA StyleWojtas, E., Zachwieja, A., Piksa, E., Zielak-Steciwko, A. E., Szumny, A., & Jarosz, B. (2020). Effect of Soy Lecithin Supplementation in Beef Cows before Calving on Colostrum Composition and Serum Total Protein and Immunoglobulin G Concentrations in Calves. Animals, 10(5), 765. https://doi.org/10.3390/ani10050765