The Use of Concentrates Rich in Orange By-Products in Goat Feed and Its Effects on Physico-Chemical, Textural, Fatty Acids, Volatile Compounds and Sensory Characteristics of the Meat of Suckling Kids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Dietary Treatments
2.2. Sampling and Chemical Analysis of Diet and Mother’s Milk
2.3. Slaughter Procedures and Muscle Sampling
2.4. Fatty Acid Analysis
2.5. Volatile Compound Analysis
2.6. Sensorial Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis and Physical Properties of the Meat
3.2. Fatty Acids and Nutritional Properties of the Meat
3.3. Volatile Compounds and Aromatic Properties of Meat
3.4. Sensorial Properties of Meat
3.5. Discriminant Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/es/#data/QA (accessed on 30 July 2019).
- Marichal, A.; Castro, N.; Capote, J.; Zamorano, M.J.; Argüello, A. Effects of live weight at slaughter (6, 10, and 25 kg) on kid carcass and meat quality. Livest. Prod. Sci. 2003, 83, 247–256. [Google Scholar] [CrossRef]
- MAPA. 2019. Available online: https://www.mapa.gob.es/es/agricultura/temas/default.aspx (accessed on 30 July 2019).
- Bampidis, V.; Robinson, P. Citrus byproducts as ruminant feeds: A review. Anim. Feed Sci. Tech. 2006, 3–4, 175–217. [Google Scholar] [CrossRef]
- Inserra, L.; Priolo, A.; Biondi, L.; Lanza, M.; Bognanno, M.; Gravador, R.; Luciano, G. Dietary citrus pulp reduces lipid oxidation in lamb meat. Meat Sci. 2014, 96, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Piquer, O.; Ródenas, L.; Casado, C.; Blas, E.; Pascual, J. Whole citrus fruits as an alternative to wheat grain or citrus pulp in sheep diet: Effect on the evolution of ruminal parameters. Small Rumin. Res. 2009, 83, 14–21. [Google Scholar] [CrossRef]
- Caparra, P.; Foti, F.; Scerra, M.; Sinatra, M.C.; Scerra, V. Solar-dried citrus pulp as an alternative energy source in lamb diet: Effects on growth and carcass and meat quality. Small Rumin. Res. 2007, 68, 303–311. [Google Scholar] [CrossRef]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Review. Anim. Feed Sci. Tech. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemist. Official Methods of Analysis, 17th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Delgado-Pertíñez, M.; Gutiérrez-Peña, R.; Mena, Y.; Fernández-Cabanás, V.M.; Laberye, D. Milk production, fatty acid composition and vitamin E content of Payoya goats according to grazing level in summer on Mediterranean shrublands. Small Rumin. Res. 2013, 114, 167–175. [Google Scholar] [CrossRef]
- Nsahlai, I.V.; Goetsch, A.L.; Luo, J.; Johnson, Z.B.; Moore, J.E.; Sahlu, T.; Ferrell, C.L.; Galyean, M.L.; Owens, F.N. Metabolizable energy requirements of lactating goats. Small Rumin. Res. 2004, 53, 253–273. [Google Scholar] [CrossRef]
- European Communities. Council Regulation (EC) Nº 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Communities 2009, L 303, 1–30. [Google Scholar]
- CIE (Comission International de l’Éclairage). Official Recommendations on Uniform Colour Spaces. Colour Difference Equations and Metric Colour Terms; Suppl. No.2; CIE Publication No. 15 Colourimetry; International Commission on Illumination: Paris, France, 1986. [Google Scholar]
- Guzmán, J.L.; Vega, F.; Zarazaga, L.A.; Argüello, A.; Delgado-Pertíñez, M. Carcass characteristics and meat quality of Payoya breed conventionally and organically reared dairy goat suckling kids. Ann. Anim. Sci. 2019, 19, 1143–1159. [Google Scholar] [CrossRef] [Green Version]
- Hornsey, H.C. The colour of cooked cured pork. I.- Estimation of the Nitric oxide-Haem Pigments. J. Sci. Food. Agric. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- Ripoll, G.; Alcalde, M.J.; Horcada, A.; Campo, M.M.; Sañudo, C.; Teixeira, A.; Panea, B. Effect of slaughter weight and breed on instrumental and sensory meat quality of suckling kids. Meat Sci. 2012, 92, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Peña, R.; Fernández-Cabanás, V.M.; Mena, Y.; Delgado-Pertíñez, M. Fatty acid profile and vitamins A and E contents of milk in goat farms under Mediterranean wood pastures as affected by grazing conditions and seasons. J. Food Compos. Anal. 2018, 72, 122–131. [Google Scholar] [CrossRef]
- Horcada, A.; Ripoll, G.; Alcalde, M.J.; Sañudo, C.; Teixeira, A.; Panea, B. Fatty acid profile of three adipose depots in seven Spanish breeds of suckling kids. Meat Sci. 2012, 92, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 49–56. [Google Scholar] [CrossRef]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation And Instrumental Tenderness Measurements of Fresh Meat; American Meat Science Association: Savoy, IL, USA; National Live Stock and Meat Broad: Chicago, IL, USA, 1995. [Google Scholar]
- Insausti, K.; Goñi, V.; Petri, C.; Gorraiz, C.; Beriain, M.J. Effect of weight at slaughter on the volatile compound of cooked beef from Spanish cattle breeds. Meat Sci. 2005, 70, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A. Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages. Talanta 2007, 72, 1552–1563. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, S0021–S9673. [Google Scholar] [CrossRef]
- Martínez-Cerezo, S.; Sañudo, C.; Medel, I.; Olleta, J.L. Breed, slaughter weight and ageing time effects on sensory characteristics of lamb. Meat Sci. 2005, 69, 571–578. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.; Friendly, M.; Kindt, R.; Legendr, P.; McGlinn, D.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P.; et al. Community Ecology Package; R Package Version 2.5–4. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 17 June 2019).
- Rencher, A.C. Methods of Multivariate Analysis, 2nd ed.; John Wiley and Sons INC: Hoboken, NJ, USA, 2002. [Google Scholar]
- Venables, W.; Ripley, B. Modern Applied Statistics, 4th ed.; Springer: New York, NY, USA, 2002; p. 498. [Google Scholar]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review and nutritional and physiological factors affecting goat milk lipids synthesis and lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Argüello, A.; Castro, N.; Capote, J.; Solomon, M. Effects of diet and live weight at slaughter on kid meat quality. Meat Sci. 2005, 70, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- De la Vega, F.; Guzmán, J.L.; Delgado-Pertínez, M.; Zarazaga, L.A.; Arguello, A. Fatty acid composition of muscle and internal fat depots of organic and conventional Payoya goat kids. Span. J. Agric. Res. 2013, 11, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jacome-Sosa, M.; Proctor, S. The role of ruminant trans fat as a potential nutraceutical in the prevention of cardiovascular disease. Food Res. Int. 2012, 46, 460–468. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Partida, J.A.; Olleta, J.L.; Sañudo, C.; Albertí, P.; Campo, M.M. Fatty acid composition and sensory traits of beef fed palm oil supplements. Meat Sci. 2007, 76, 444–454. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Van Ba, H.; Hwang, I.; Jeong, D.; Touseef, A. Principle of meat aroma flavors and future prospect. In Latest Research into Quality Control; Akyar, I., Ed.; Intech Open Science: Rijeka, Croatia, 2012; pp. 145–176. [Google Scholar]
- Vasta, V.; Ratel, J.; Engel, E. Mass spectometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals. J. Agr. Food Chem. 2007, 55, 4630–4639. [Google Scholar] [CrossRef]
- Kondjoyan, N.; Berdagué, J.L. A Compilation of Relative Retention Indices for the Analysis of Aromatic Compounds; Laboratoire Flaveur, INRA-Theix: Clermont Ferrand, France, 1996; p. 234. [Google Scholar]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Deutsche Forschungsanstat für Lebensmittelchemie and Instit für Lebensmittelchemie der Technischen Universitat München: Munich/Freising, Germany, 1998; p. 63. [Google Scholar]
- Roldán, M.; Ruiz, J.; Pulgar, J.S.; Pérez-Palacios, T.; Antequera, T. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations. Meat Sci. 2015, 100, 52–57. [Google Scholar] [CrossRef]
- Limacher, A.; Kerler, J.; Davidek, T.; Schmalzried, F.; Blank, I. Formation of furan and methylfuran by maillard-type reactions in model systems and food. J. Agr. Food Chem. 2008, 56, 3639–3647. [Google Scholar] [CrossRef]
- FEDNA. Composición y Valor Nutritivo De Alimentos Para La Fabricación De Piensos Compuestos, 3rd ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2016; p. 502. Available online: http://www.fundacionfedna.org/ingredientes-para-piensos. (accessed on 12 March 2019).
- Bravo-Lamas, L.; Barron, L.; Farmer, L.; Aldai, N. Fatty acid composition of intramuscular fat and odour-active compounds of lamb commercialized in northern Spain. Meat Sci. 2018, 139, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Farmer, L.; Hagan, T.; Paraskevas, O. Role of selected precursors in meat flavor formation. In Quality Attributes of Muscle Foods; Xiong, Y.L., Ho, C.T., Shahidi, F., Eds.; Springer: New York, NY, USA, 1999; pp. 159–172. [Google Scholar]
- Madruga, M.; Elmore, J.; Dodson, A.; Mottram, D. Volatile flavour profile of goat meat extracted by three widely used techniques. Food Chem. 2009, 115, 1081–1087. [Google Scholar] [CrossRef]
- Mottram, D. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Rochat, S.; Chaintreau, A. Carbonyl odorants contributing to the in-oven roast beef top note. J. Agr. Food Chem. 2005, 53, 9578–9585. [Google Scholar] [CrossRef]
- Elmore, S.; Cooper, S.; Enser, M.; Mottram, D.; Sinclair, L.; Wilkinson, R.; Wood, J. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Sci. 2005, 69, 233–242. [Google Scholar] [CrossRef]
- Resconi, V.; Campo, M.M.; Montossi, F.; Ferreira, V.; Sañudo, C.; Escudero, A. Relationship between odour-active compounds and flavour perception in meat from lambs fed different diets. Meat Sci. 2010, 85, 700–706. [Google Scholar] [CrossRef]
Ingredients (% Dry Matter Basis) | DOP-0 | DOP-40 | DOP-80 |
---|---|---|---|
Alfalfa hay | 17.44 | 17.53 | 17.64 |
Concentrate | |||
Dehydrated orange pulp (pellets) | 0.00 | 19.96 | 39.87 |
Grain (oats) | 22.10 | 13.23 | 4.38 |
Grain (barley) | 8.53 | 5.11 | 1.70 |
Grain (corn) | 19.34 | 11.61 | 3.89 |
Soy flour 44% | 7.31 | 10.23 | 12.97 |
Sunflower pellets 28% | 12.84 | 12.50 | 13.78 |
Grain (peas) | 10.32 | 8.12 | 4.05 |
Salt | 0.41 | 0.41 | 0.41 |
Stabilised butter | 0.41 | 0.00 | 0.00 |
Vitamins and minerals 2 | 1.31 | 1.31 | 1.32 |
Chemical Composition (% Dry Matter Basis) | |||
Dry matter (DM) | 90.51 | 89.82 | 89.97 |
Crude protein | 17.76 | 16.59 | 18.43 |
Crude fibre | 9.27 | 10.62 | 12.33 |
Ether extract | 3.42 | 2.31 | 1.71 |
Ash | 4.82 | 6.44 | 7.50 |
Forage unit for lactation (UFL/kg DM) | 0.98 | 0.98 | 0.97 |
Protein digestible in the intestine (PDI) | 10.5 | 11.0 | 11.5 |
Proximate Fatty Acid Composition (%) | |||
C8:0–C14 | 1.54 | 3.12 | 4.54 |
C16:0 | 31.4 | 23.6 | 26.3 |
C16:1 | 1.04 | 0.63 | 0.62 |
C18:0 | 11.8 | 9.70 | 10.7 |
C18:1 n-9 cis | 34.1 | 23.3 | 19.3 |
C18:2 n-6 cis | 48.3 | 34.8 | 28.2 |
C18:3 n-6 | 0.18 | 0.18 | 0.44 |
C18:3 n-3 | 2.92 | 3.81 | 4.12 |
∑SFA | 44.7 | 36.4 | 41.5 |
∑MUFA | 35.1 | 24.0 | 19.9 |
∑PUFA | 51.4 | 38.8 | 32.8 |
Item 3 | DOP-0 | DOP-40 | DOP-80 | SEM 2 | p-Values |
---|---|---|---|---|---|
No. of goats | 10 | 10 | 10 | ||
Dry matter (%) | 13.14 | 12.95 | 12.56 | 0.254 | 0.757 |
Fat matter (%) | 4.94 a,b | 5.33 a | 4.31 b | 0.135 | 0.027 |
Crude protein (%) | 3.89 | 4.20 | 3.82 | 0.094 | 0.107 |
ME (MJ/kg) | 3.44 | 3.54 | 3.25 | 0.054 | 0.108 |
∑ SFA | 206.39 | 207.17 | 201.79 | 2.611 | 0.401 |
C8:0-C13:0 | 56.35 | 58.92 | 58.49 | 0.836 | 0.370 |
C14:0 | 29.80 | 30.53 | 29.58 | 0.453 | 0.252 |
C16:0 | 69.90 | 70.20 | 68.67 | 0.928 | 0.672 |
C18:0 | 31.49 a | 29.68 a,b | 27.28 b | 0.505 | 0.001 |
∑ MUFA | 70.45 | 68.85 | 64.89 | 1.026 | 0.083 |
C16:1 | 3.36 | 3.47 | 3.36 | 0.087 | 0.657 |
Total C18:1 | 64.64 | 63.07 | 59.33 | 0.972 | 0.177 |
∑ PUFA | 16.83 | 16.29 | 15.60 | 0.311 | 0.314 |
Total C18:2 n-6 | 11.45 | 11.15 | 10.86 | 0.280 | 0.736 |
C18:3 n-3 | 0.91 | 0.94 | 0.94 | 0.027 | 0.580 |
C20:2 | 0.15 | 0.16 | 0.15 | 0.005 | 0.160 |
C20:3 n-6 | 0.18 | 0.18 | 0.16 | 0.007 | 0.079 |
C20:4 n-6 | 0.08 b | 0.10 a | 0.09 a,b | 0.003 | 0.014 |
C20:5n-3 | 0.36 | 0.35 | 0.35 | 0.006 | 0.784 |
C22:5n-3 | 0.40 | 0.40 | 0.37 | 0.009 | 0.264 |
C22:6n-3 | 0.41 | 0.39 | 0.36 | 0.011 | 0.323 |
Others FA | 24.20 | 22.78 | 22.30 | 0.417 | 0.204 |
PUFA/SFA | 0.08 | 0.08 | 0.08 | 0.001 | 0.343 |
n-6/n-3 | 5.42 | 5.27 | 5.29 | 0.166 | 0.552 |
AI | 2.34 b | 2.47 a,b | 2.55 a | 0.023 | 0.101 |
TI | 2.72 | 2.76 | 2.80 | 0.020 | 0.390 |
Chemical and Physical Characteristics | DOP-0 (n = 10) | DOP-40 (n = 10) | DOP-80 (n = 10) | SEM 2 | p |
---|---|---|---|---|---|
pH24hours | 5.93 | 5.89 | 6.10 | 0.045 | 0.219 |
Chemical composition (% fresh meat) | |||||
Moisture | 77.13 | 77.48 | 77.12 | 0.239 | 0.843 |
Protein | 18.68 | 18.54 | 18.57 | 0.195 | 0.981 |
Fat | 1.99 | 1.83 | 1.95 | 0.059 | 0.486 |
Ash | 1.24 | 1.28 | 1.34 | 0.034 | 0.545 |
Shear force (kg/cm2) | 5.93 | 5.36 | 6.56 | 0.213 | 0.074 |
Water loss (% fresh meat) | |||||
Expelled juice | 17.13 | 16.47 | 16.15 | 0.407 | 0.630 |
Cooking loss | 25.76 | 25.68 | 24.04 | 0.648 | 0.492 |
Colour | |||||
Myoglobin content (mg/g fresh meat) | 2.42 | 2.23 | 2.63 | 0.169 | 0.520 |
Lightness (L*) | 56.19 a | 53.94 b | 53.14 b | 0.424 | 0.004 |
Redness (a*) | 4.52 b | 6.30 a | 5.83 a | 0.237 | 0.029 |
Yellowness (b*) | 7.40 | 6.06 | 6.66 | 0.282 | 0.054 |
Chroma (C*) | 8.80 | 9.23 | 8.61 | 0.256 | 0.367 |
Hue angle (0) | 58.03 a | 44.81 b | 48.26 b | 1.856 | 0.013 |
Item 2 | DOP-0 (n = 10) | DOP-40 (n = 10) | DOP-80 (n = 10) | SEM 3 | p |
---|---|---|---|---|---|
∑ SFA | 602.36 | 579.87 | 523.00 | 14.300 | 0.060 |
C8:0–C13:0 | 7.70 | 7.87 | 6.69 | 7.415 | 0.389 |
C14:0 | 40.33 | 40.51 | 35.70 | 1.864 | 0.506 |
C16:0 | 298.92 | 290.67 | 269.73 | 8.146 | 0.332 |
C18:0 | 229.56 a | 213.79 a | 186.41 b | 4.602 | 0.000 |
∑ MUFA | 483.3 a | 479.8 a | 456.5 b | 13.983 | 0.018 |
C16:1 | 21.40 | 23.37 | 18.67 | 0.985 | 0.148 |
Total C18:1 | 404.6 a | 393.3 ab | 371.6 b | 12.648 | 0.015 |
∑ PUFA | 344.63 | 318.23 | 316.95 | 6.405 | 0.137 |
Total C18:2 n-6 | 159.27 a | 135.69 b | 139.73 b | 3.526 | 0.009 |
C18:3 n-3 | 4.72 | 5.10 | 4.50 | 0.127 | 0.148 |
C20:2 | 21.12 | 19.79 | 18.03 | 0.668 | 0.167 |
C20:3 n-6 | 6.63 a | 5.81 b | 5.68 b | 0.155 | 0.020 |
C20:4 n-6 | 108.55 | 106.64 | 107.36 | 2.637 | 0.959 |
C20:5 n-3 | 5.20 | 5.67 | 4.97 | 0.205 | 0.059 |
C22:5 n-3 | 16.31 | 16.18 | 16.52 | 0.283 | 0.891 |
C22:6 n-3 | 6.65 | 7.48 | 6.92 | 0.237 | 0.361 |
Others FA | 214.90 a | 191.96 ab | 189.32 b | 4.519 | 0.033 |
Ratios to nutritional human health | |||||
PUFA/SFA | 0.57 b | 0.55 b | 0.61 a | 0.786 | 0.007 |
n-6/n-3 | 8.39 a | 7.06 b | 7.58 b | 0.184 | 0.007 |
AI | 0.59 | 0.59 | 0.61 | 0.009 | 0.660 |
TI | 1.26 a | 1.19 b | 1.20 b | 0.011 | 0.010 |
Volatile Compounds | IDB-5 | MS | RI | DOP-0 (n = 10) | DOP-40 (n = 10) | DOP-80 (n = 10) | SEM | p |
---|---|---|---|---|---|---|---|---|
Aldehydes | ||||||||
Acethaldehyde | <500 | + | + | 24.37 | 28.44 | 30.77 | 1.404 | 0.230 |
2-Methyl butanal | 648 | + | + | 5.62 | 6.31 | 7.40 | 0.500 | 0.678 |
3-Methyl butanal | 657 | + | + | 9.84 | 10.22 | 11.57 | 0.801 | 0.652 |
Total (%) | 54.44 | 55.80 | 54.97 | |||||
Aliphatic Ketones | ||||||||
2-Propanone | 503 | + | + | 11.15 | 11.23 | 13.13 | 0.565 | 0.512 |
2,3-Butanedione | 593 | + | + | 0.18 | 0.17 | 0.19 | 0.019 | 0.864 |
2-Butanone | 601 | + | + | 2.83 | 3.17 | 3.96 | 0.274 | 0.500 |
n-Nonane | 622 | + | 0.33 | 0.33 | 0.49 | 0.041 | 0.266 | |
Total (%) | 19.80 | 18.49 | 19.64 | |||||
Aliphatic Alcohols | ||||||||
Ethanol | 669 | + | + | 0.61 | 0.67 | 0.80 | 0.100 | 0.857 |
Total (%) | 0.83 | 0.83 | 0.88 | |||||
Furans | ||||||||
Ethyl furan | 955 | + | + | 0.14 b | 0.20 a,b | 0.30 a | 0.027 | 0.036 |
Total (%) | 0.19 | 0.25 | 0.33 | |||||
Sulphur Compounds | ||||||||
Methanethiol | 1280 | + | + | 7.12 | 8.28 | 8.30 | 0.548 | 0.953 |
Dimethyl disulfide | 761 | + | + | 1.20 c | 1.46 b | 2.32 a | 0.194 | 0.047 |
Carbon disulfide | 544 | + | + | 0.18 | 0.20 | 0.18 | 0.009 | 0.142 |
2,3,4-Trisulfide | 970 | + | + | 0.81 | 0.80 | 0.76 | 0.130 | 0.961 |
Total (%) | 13.09 | 13.05 | 12.83 | |||||
Aliphatic Aldehydes | ||||||||
2-Methyl propanal | 905 | + | + | 7.46 | 8.28 | 8.96 | 0.550 | 0.895 |
Hexanal | 800 | + | + | 0.30 | 0.35 | 0.45 | 0.050 | 0.415 |
Heptanal | 900 | + | + | 0.22 | 0.14 | 0.14 | 0.027 | 0.665 |
Octanal | 1002 | + | + | 0.13 | 0.14 | 0.14 | 0.027 | 0.815 |
Nonanal | 1109 | + | + | 0.05 | 0.07 | 0.04 | 0.018 | 0.764 |
Total (%) | 11.15 | 11.14 | 10.75 | |||||
Aliphatic Hydrocarbons | ||||||||
Heptane | 700 | + | + | 0.06 b | 0.07 b | 0.16 a | 0.014 | 0.043 |
3-Methyl heptane | 783 | + | nd | nd | 0.02 | 0.023 | - | |
Total (%) | 0.08 | 0.07 | 0.18 | |||||
Aromatic Hydrocarbons | ||||||||
Methyl benzene | 667 | + | + | 0.29 | 0.29 | 0.37 | 0.028 | 0.881 |
Total (%) | 0.40 | 0.36 | 0.41 |
Sensory Attributes | DOP-0 (n = 10) | DOP-40 (n = 10) | DOP-80 (n = 10) | SEM | p |
---|---|---|---|---|---|
Tenderness | 7.37 | 7.43 | 7.56 | 0.548 | 0.344 |
Juiciness | 7.19 | 7.40 | 7.53 | 0.414 | 0.171 |
Flavour quality | 7.10 b | 7.53 a | 7.77 a | 0.606 | 0.007 |
Overall appraisal | 7.17 | 7.59 | 7.72 | 0.619 | 0.074 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán, J.L.; Delgado-Pertíñez, M.; Beriáin, M.J.; Pino, R.; Zarazaga, L.Á.; Horcada, A. The Use of Concentrates Rich in Orange By-Products in Goat Feed and Its Effects on Physico-Chemical, Textural, Fatty Acids, Volatile Compounds and Sensory Characteristics of the Meat of Suckling Kids. Animals 2020, 10, 766. https://doi.org/10.3390/ani10050766
Guzmán JL, Delgado-Pertíñez M, Beriáin MJ, Pino R, Zarazaga LÁ, Horcada A. The Use of Concentrates Rich in Orange By-Products in Goat Feed and Its Effects on Physico-Chemical, Textural, Fatty Acids, Volatile Compounds and Sensory Characteristics of the Meat of Suckling Kids. Animals. 2020; 10(5):766. https://doi.org/10.3390/ani10050766
Chicago/Turabian StyleGuzmán, José Luis, Manuel Delgado-Pertíñez, María José Beriáin, Rafael Pino, Luis Ángel Zarazaga, and Alberto Horcada. 2020. "The Use of Concentrates Rich in Orange By-Products in Goat Feed and Its Effects on Physico-Chemical, Textural, Fatty Acids, Volatile Compounds and Sensory Characteristics of the Meat of Suckling Kids" Animals 10, no. 5: 766. https://doi.org/10.3390/ani10050766
APA StyleGuzmán, J. L., Delgado-Pertíñez, M., Beriáin, M. J., Pino, R., Zarazaga, L. Á., & Horcada, A. (2020). The Use of Concentrates Rich in Orange By-Products in Goat Feed and Its Effects on Physico-Chemical, Textural, Fatty Acids, Volatile Compounds and Sensory Characteristics of the Meat of Suckling Kids. Animals, 10(5), 766. https://doi.org/10.3390/ani10050766