The Pharmacokinetics of Medetomidine Administered Subcutaneously during Isoflurane Anaesthesia in Sprague-Dawley Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Procedure
2.3. Blood Sampling
2.4. Serum Analysis
2.5. Pharmacokinetic and Pharmacodynamic Calculations
2.6. Trial of Results
2.7. Statistical Analyses
3. Results
3.1. Group T
3.2. Group IV
3.3. Group SC
3.4. Pharmacokinetic Calculations
3.5. Trial of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pawela, C.P.; Biswal, B.B.; Hudetz, A.G.; Schulte, M.L.; Li, R.; Jones, S.R.; Cho, Y.R.; Matloub, H.S.; Hyde, J.S. A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. NeuroImage 2009, 46, 1137–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonckers, E.; Van Audekerke, J.; De Visscher, G.; Vander Linden, A.; Verhoye, M. Functional connectivity fMRI of the rodent brain: Comparison of functional connectivity networks in rat and mouse. PLoS ONE 2011, 6, e18876. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zou, Q.; Gu, H.; Raichle, M.E.; Stein, E.A.; Yang, Y. Rat brains also have a default mode network. Proc. Natl. Acad. Sci. USA 2012, 109, 3979–3984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, M.; Vazquez, A.L.; Zong, X.; Kim, S.-G. Effects of the α(2)-adrenergic receptor agonist dexmedetomidine on neurovascular responses in somatosensory cortex. Eur. J. Neurosci. 2013, 37, 80–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierakowiak, A.; Monnot, C.; Aski, S.N.; Uppman, M.; Li, T.-Q.; Dambert, P.; Brene, S. Default mode network, motor network, dorsal and ventral basal ganglia networks in the rat brain: Comparison to human networks using resting State-fMRI. PLoS ONE 2015, 10, e0120345. [Google Scholar] [CrossRef]
- Zerbi, V.; Grandjean, J.; Rudin, M.; Wenderoth, N. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. Neuroimage 2015, 123, 11–21. [Google Scholar] [CrossRef]
- Hsu, L.M.; Liang, X.; Gu, H.; Brynildsen, J.K.; Stark, J.A.; Ash, J.A.; Lin., C.P.; Lu, H.; Rapp, P.R.; Stein, E.A.; et al. Constituents and functional implications of the rat default mode network. Proc. Natl. Acad. Sci. USA 2016, 113, E4541–E4547. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.; Ramos-Cabrer, P.; Wiedermann, D.; van Camp, N.; Hoehn, M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 2006, 29, 1303–1310. [Google Scholar] [CrossRef]
- Sommers, M.G.; Pikkemaat, J.A.; Booij, L.H.D.J.; Heerschap, A. Improved Anesthesia Protocols for fMlU Studies in Rats: The Use of Medetomidine For Stable, Reversible Sedation. 2002. Available online: https://cds.ismrm.org/ismrm-2002/PDF2/0393.PDF (accessed on 20 May 2020).
- Seewoo, B.J.; Feindel, K.W.; Etherington, S.J.; Rodger, J. Frequency-specific effects of low-intensity rTMS can persist for up to 2 weeks post-stimulation: A longitudinal rs-fMRI/MRS study in rats. Brain Stimul. 2019. [Google Scholar] [CrossRef]
- Bol, C.; Danhof, M.; Stanski, D.R.; Mandema, J.W. Pharmacokinetic-pharmacodynamic characterization of the cardiovascular, hypnotic, EEG and ventilatory responses to dexmedetomidine in the rat. J. Pharm. Exp. 1997, 283, 1051–1058. [Google Scholar]
- Sinclair, M.D. A review of the physiological effects of α(2)-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 2003, 44, 885–897. [Google Scholar] [PubMed]
- Doze, V.A.; Chen, B.X.; Maze, M. Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors. Anesthesiology 1989, 71, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Correa-Sales, C.; Rabin, B.C.; Maze, M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992, 76, 948–952. [Google Scholar] [CrossRef] [PubMed]
- De Sarro, G.B.; Ascioti, C.; Froio, F.; Liberi, V.; Nistico, G. Evidence that locus coeruleus is the site where clonidine and drugs acting at alpha 1- and alpha 2-adrenoceptors affect sleep and arousal mechanisms. Br. J. Pharm. 1987, 90, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Pypendop, B.H.; Verstegen, J.P. Hemodynamic effects of medetomidine in the dog: A dose titration study. Vet. Surg. Vs 1998, 27, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Savola, J.M. Cardiovascular actions of medetomidine and their reversal by atipamezole. Acta Vet. Scand. Suppl. 1989, 85, 39–47. [Google Scholar]
- Schmeling, W.T.; Kampine, J.P.; Roerig, D.L.; Warltier, D.C. The effects of the stereoisomers of the alpha 2-adrenergic agonist medetomidine on systemic and coronary hemodynamics in conscious dogs. Anesthesiology 1991, 75, 499–511. [Google Scholar] [CrossRef]
- Yaksh, T.L. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharm. Biochem. Behav. 1985, 22, 845–858. [Google Scholar] [CrossRef]
- Stenberg, D. Physiological role of alpha 2-adrenoceptors in the regulation of vigilance and pain: Effect of medetomidine. Acta Vet. Scand. Suppl. 1989, 85, 21–28. [Google Scholar] [PubMed]
- Mirski, M.A.; Rossell, L.A.; McPherson, R.W.; Traystman, R.J. Dexmedetomidine decreases seizure threshold in a rat model of experimental generalized epilepsy. Anesthesiology 1994, 81, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Adachi, T.; Kurata, J.; Utsumi, J.; Shichino, T.; Segawa, H. Dexmedetomidine reduces seizure threshold during enflurane anaesthesia in cats. Br. J. Anaesth. 1999, 82, 935–937. [Google Scholar] [CrossRef] [PubMed]
- Gellai, M. Modulation of vasopressin antidiuretic action by renal alpha 2-adrenoceptors. Am. J. Physiol. 1990, 259, F1–F8. [Google Scholar] [CrossRef]
- Talukder, M.H.; Hikasa, Y. Diuretic effects of medetomidine compared with xylazine in healthy dogs. Can. J. Vet. Res. Rev. Can. De Rech. Vet. 2009, 73, 224–236. [Google Scholar]
- Kanda, T.; Hikasa, Y. Effects of medetomidine and midazolam alone or in combination on the metabolic and neurohormonal responses in healthy cats. Can. J. Vet. Res. Rev. Can. De Rech. Vet. 2008, 72, 332–339. [Google Scholar]
- Zuurbier, C.J.; Keijzers, P.J.; Koeman, A.; Van Wezel, H.B.; Hollmann, M.W. Anesthesia’s effects on plasma glucose and insulin and cardiac hexokinase at similar hemodynamics and without major surgical stress in fed rats. Anesth. Analg. 2008, 106, 135–142. [Google Scholar] [CrossRef]
- Virtanen, R.; Savola, J.M.; Saano, V.; Nyman, L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharm. 1988, 150, 9–14. [Google Scholar] [CrossRef]
- Eger, E.I., 2nd. The pharmacology of isoflurane. Br. J. Anaesth. 1984, 56 (Suppl. 1), 71s–99s. [Google Scholar]
- Dohoo, S.E. Isoflurane as an inhalational anesthetic agent in clinical practice. Can. Vet. J. = La Rev. Vet. Can. 1990, 31, 847–850. [Google Scholar]
- Paddleford, R.R. Manual of Small Animal Anesthesia; Churchill Livingstone: New York, NY, USA, 1988. [Google Scholar]
- Ludders, J.W. Advantages and Guidelines for Using Isoflurane. Vet. Clin. North Am. Small Anim. Pr. 1992, 22, 328–331. [Google Scholar] [CrossRef]
- Mazze, R.I.; Rice, S.A.; Baden, J.M. Halothane, isoflurane, and enflurane MAC in pregnant and nonpregnant female and male mice and rats. Anesthesiology 1985, 62, 339–341. [Google Scholar] [CrossRef]
- Paasonen, J.; Stenroos, P.; Salo, R.A.; Kiviniemi, V.; Grohn, O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage 2018, 172, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Brynildsen, J.K.; Hsu, L.-M.; Ross, T.J.; Stein, E.A.; Yang, Y.; Lu, H. Physiological characterization of a robust survival rodent fMRI method. Magn. Reson. Imaging 2017, 35, 54–60. [Google Scholar] [CrossRef]
- Pirttimaki, T.; Salo, R.A.; Shatillo, A.; Kettunen, M.I.; Paasonen, J.; Sierra, A.; Jokivarsi, K.; Leinonen, V.; Andrade, P.; Quittek, S.; et al. Implantable RF-coil with multiple electrodes for long-term EEG-fMRI monitoring in rodents. J. Neurosci. Methods 2016, 274, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandjean, J.; Schroeter, A.; Batata, I.; Rudin, M. Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 2014, 102, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Jonckers, E.; Delgado y Palacios, R.; Shah, D.; Guglielmetti, C.; Verhoye, M.; Van der Linden, A. Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn. Reson. Med. 2014, 72, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.; Ma, Y.; Zhang, N. Global reduction of information exchange during anesthetic-induced unconsciousness. Brain Struct. Funct. 2017, 222, 3205–3216. [Google Scholar] [CrossRef]
- Masamoto, K.; Fukuda, M.; Vazquez, A.; Kim, S.G. Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Eur. J. Neurosci. 2009, 30, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Masamoto, K.; Kim, T.; Fukuda, M.; Wang, P.; Kim, S.G. Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex. Cerebral Cortex (New York, NY: 1991) 2007, 17, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, Q.; Schroeter, A.; Cole, D.M.; Rudin, M. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions. Front. Neural Circuits 2017, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Alst, T.M.; Wachsmuth, L.; Datunashvili, M.; Albers, F.; Just, N.; Budde, T.; Faber, C. Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. NeuroImage 2019, 195, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Masamoto, K.; Kanno, I. Anesthesia and the Quantitative Evaluation of Neurovascular Coupling. J. Cereb. Blood Flow Metab. 2012, 32, 1233–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirmpilatze, N.; Baudewig, J.; Boretius, S. Temporal stability of fMRI in medetomidine-anesthetized rats. bioRxiv 2019, 667659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, K.K.; Mohammed, H.O.; Scarlett, J.M.; Short, C.E. Reduction of isoflurane anesthetic requirement by medetomidine and its restoration by atipamezole in dogs. Am. J. Vet. Res. 1993, 54, 294–299. [Google Scholar] [PubMed]
- Gao, Y.-R.; Ma, Y.; Zhang, Q.; Winder, W.T.; Liang, Z.; Antinori, L.; drew, P.J.; Zhang, N. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage 2017, 153, 382–398. [Google Scholar] [CrossRef]
- Hillman, E.M.C. Coupling Mechanism and Significance of the BOLD Signal: A Status Report. Annu. Rev. Neurosci. 2014, 37, 161–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, K.-H.; Lee, H.-L.; Li, Z.; Chang, W.; Nasrallah, F.A.; Yeowd, L.Y.; Singhd, K.K.D.R. Evaluation of nuisance removal for functional MRI of rodent brain. NeuroImage 2019, 188, 694–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prielipp, R.C.; Wall, M.H.; Tobin, J.R.; Groban, L.; Cannon, M.A.; Fahey, F.H.; Gage, H.D.; Stump, D.A.; James, R.L.; Bennett, J.; et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesth. Analg. 2002, 95, 1052–1059. [Google Scholar]
- Iida, H.; Ohata, H.; Iida, M.; Watanabe, Y.; Dohi, S. Isoflurane and sevoflurane induce vasodilation of cerebral vessels via ATP-sensitive K+ channel activation. Anesthesiology 1998, 89, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Ohata, H.; Iida, H.; Dohi, S.; Watanabe, Y. Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs. Anesth. Analg. 1999, 89, 370–377. [Google Scholar] [PubMed] [Green Version]
- National Health and Medical Research Council. Australian Code for the Care and Use of Animals for Scientific Purposes, 8th ed.; National Health and Medical Research Council: Canberra, Australia, 2013.
- Toutain, P.L.; Bousquet-Melou, A. Plasma clearance. J. Vet. Pharm. 2004, 27, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Bousquet-Melou, A. Bioavailability and its assessment. J. Vet. Pharm. 2004, 27, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Gaud, N.; Kumar, A.; Matta, M.; Kole, P.; Sridhar, S.; Mandlekar, S.; Holenarsipur, V.K. Single jugular vein cannulated rats may not be suitable for intravenous pharmacokinetic screening of high logP compounds. Eur. J. Pharm. Sci. 2017, 99, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Salonen, J.S. Pharmacokinetics of medetomidine. Acta Vet. Scand. Suppl. 1989, 85, 49–54. [Google Scholar]
- Callahan, L.M.; Ross, S.M.; Jones, M.L.; Musk, G.C. Mortality associated with using medetomidine and ketamine for general anesthesia in pregnant and nonpregnant Wistar rats. Lab Anim. 2014, 43, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Lemke, K.A. Pharmacology-Anticholinergics and Sedatives. In Lumb and Jones’ Veterinary Anesthesia and Analgesia 4th Edition; Tranquilli, W.J., Thurmon, J.C., Grimm, K.A., Eds.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 218–219. [Google Scholar]
- Toutain, P.L.; Bousquet-Melou, A. Volumes of distribution. J. Vet. Pharm. 2004, 27, 441–453. [Google Scholar] [CrossRef]
Expired Isoflurane (%) | ||||||||
---|---|---|---|---|---|---|---|---|
5 min | 10 min | 15 min | 25 min | 35 min | 45 min | 60 min | 90 min | |
Group T (n = 6) | 0.6 (± 0.2) | 0.6 (± 0.4) | 0.5 (± 0.3) | 0.5 (± 0.04) | 0.5 (± 0.1) | 0.5 (± 0.1) | 0.4 (± 0.1) | 0.5 (± 0.1) |
Group SC (n = 7) | 1.2 (± 0.5) | 1.0 (± 0.5) | 1.0 (± 0.3) | 1.0 (± 0.1) | 1.0 (± 0.1) | 1.0 (± 0.1) | 1.0 (± 0.2) | 1.2 (± 0.3) |
Rat ID | Cmax (ng/mL) | tmax (min) | λz (/min) | t1/2β (min) | AUC0→∞ (ng.min/mL) | Cl (mL/kg/min) | Vdarea (L/kg) | LD (mg/kg) | MD (mg/kg/h) |
---|---|---|---|---|---|---|---|---|---|
R | 4.9 | 60 | 0.0095 | 73.0 | 664.7 | 75.2 | 7.9 | 0.1142 | 0.0651 |
S | 3.3 | 60 | 0.0118 | 58.7 | 570.8 | 87.6 | 7.4 | 0.1070 | 0.0758 |
T | 4.4 | 50 | 0.0112 | 61.9 | 610.1 | 82.0 | 7.3 | 0.1055 | 0.0709 |
U | 3.7 | 40 | 0.0130 | 53.3 | 485.3 | 103.0 | 7.9 | 0.1143 | 0.0891 |
V | 2.9 | 120 | 0.0107 | 64.8 | 511.8 | 97.7 | 9.1 | 0.1316 | 0.0845 |
W | 2.8 | 60 | 0.0112 | 61.9 | 485.6 | 103.0 | 9.2 | 0.1325 | 0.0891 |
X | 3.3 | 120 | 0.0084 | 82.5 | 704.4 | 71.0 | 8.5 | 0.1218 | 0.0614 |
Mean (SD) | 3.6 (0.7) | 72.9 (30.6) | 0.0108 (0.0014) | 65.2 (9.0) | 576.1 (81.1) | 88.5 (12.1) | 8.2 (0.7) | 0.1181 (0.0101) | 0.0765 (0.0105) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kint, L.T.; Seewoo, B.J.; Hyndman, T.H.; Clarke, M.W.; Edwards, S.H.; Rodger, J.; Feindel, K.W.; Musk, G.C. The Pharmacokinetics of Medetomidine Administered Subcutaneously during Isoflurane Anaesthesia in Sprague-Dawley Rats. Animals 2020, 10, 1050. https://doi.org/10.3390/ani10061050
Kint LT, Seewoo BJ, Hyndman TH, Clarke MW, Edwards SH, Rodger J, Feindel KW, Musk GC. The Pharmacokinetics of Medetomidine Administered Subcutaneously during Isoflurane Anaesthesia in Sprague-Dawley Rats. Animals. 2020; 10(6):1050. https://doi.org/10.3390/ani10061050
Chicago/Turabian StyleKint, Leila T., Bhedita J. Seewoo, Timothy H. Hyndman, Michael W. Clarke, Scott H. Edwards, Jennifer Rodger, Kirk W. Feindel, and Gabrielle C. Musk. 2020. "The Pharmacokinetics of Medetomidine Administered Subcutaneously during Isoflurane Anaesthesia in Sprague-Dawley Rats" Animals 10, no. 6: 1050. https://doi.org/10.3390/ani10061050
APA StyleKint, L. T., Seewoo, B. J., Hyndman, T. H., Clarke, M. W., Edwards, S. H., Rodger, J., Feindel, K. W., & Musk, G. C. (2020). The Pharmacokinetics of Medetomidine Administered Subcutaneously during Isoflurane Anaesthesia in Sprague-Dawley Rats. Animals, 10(6), 1050. https://doi.org/10.3390/ani10061050