Differential Transcription of Selected Cytokine and Neuroactive Ligand-receptor Genes in Peripheral Leukocytes from Calves in Response to Cautery Disbudding
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Groups and Ethics Approval
2.2. Disbudding and Blood Sampling
2.3. RNA Extraction and Purification
2.4. Enumeration of Gene-Specific RNA
2.5. Processing mRNA Expression Data
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Welfare Implications of Dehorning and Disbudding Cattle. Available online: https://www.avma.org/resources-tools/literature-reviews/welfare-implications-dehorning-and-disbudding-cattle (accessed on 25 April 2020).
- Animal Welfare (Care and Procedures) Regulations 2018 (LI 2018/50). Available online: http://www.legislation.govt.nz/regulation/public/2018/0050/latest/whole.html (accessed on 29 June 2020).
- Heinrich, A.; Duffield, T.F.; Lissemore, K.D.; Millman, S.T. The effect of meloxicam on behavior and pain sensitivity of dairy calves following cautery dehorning with a local anesthetic. J. Dairy Sci. 2010, 93, 2450–2457. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, P.M.; Weary, D.M. Reducing pain after dehorning in dairy calves. J. Dairy Sci. 2000, 83, 2037–2041. [Google Scholar] [CrossRef]
- McMeekan, C.M.; Stafford, K.J.; Mellor, D.J.; Bruce, R.A.; Ward, R.N.; Gregory, N.G. Effects of regional analgesia and/or a non-steroidal anti-inflammatory analgesic on the acute cortisol response to dehorning in calves. Res. Vet. Sci. 1998, 64, 147–150. [Google Scholar] [CrossRef]
- Stafford, K.J.; Mellor, D.J. Dehorning and disbudding distress and its alleviation in calves. Vet. J. 2005, 169, 337–349. [Google Scholar] [CrossRef]
- Stock, M.L.; Millman, S.T.; Barth, L.A.; Van Engen, N.K.; Hsu, W.H.; Wang, C.; Gehring, R.; Parsons, R.L.; Coetzee, J.F. The effects of firocoxib on cautery disbudding pain and stress responses in preweaned dairy calves. J. Dairy Sci. 2015, 98, 6058–6069. [Google Scholar] [CrossRef]
- Stock, M.L.; Barth, L.A.; Van Engen, N.K.; Millman, S.T.; Gehring, R.; Wang, C.; Voris, E.A.; Wulf, L.W.; Labeur, L.; Hsu, W.H.; et al. Impact of carprofen administration on stress and nociception responses of calves to cautery dehorning. J. Anim. Sci. 2016, 94, 542–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coetzee, J.F.; Mosher, R.A.; KuKanich, B.; Gehring, R.; Robert, B.; Reinbold, J.B.; White, B.J. Pharmacokinetics and effect of intravenous meloxicam in weaned Holstein calves following scoop dehorning without local anesthesia. BMC Vet. Res. 2012, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef]
- Bates, A.J.; Eder, P.; Laven, R.A. Effect of analgesia and anti-inflammatory treatment on weight gain and milk intake of dairy calves after disbudding. N. Z. Vet. J. 2015, 63, 153–157. [Google Scholar] [CrossRef]
- Van der Saag, D.; Lomax, S.; Windsor, P.A.; Taylo, C.; Whit, P.J. Evaluating treatments with topical anaesthetic and buccal meloxicam for pain and inflammation caused by amputation dehorning of calves. PLoS ONE 2018, 13, e0198808. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery 2000, 127, 117–126. [Google Scholar] [CrossRef]
- Beilin, B.; Bessler, H.; Mayburd, E.; Smirnov, G.; Dekel, A.; Yardeni, I.; Shavit, Y. Effects of preemptive analgesia on pain and cytokine production in the postoperative period. Anesthesiology 2003, 98, 151–155. [Google Scholar] [CrossRef]
- Pang, W.; Earley, B.; Sweeney, T.; Gath, V.; Crowe, M.A. Temporal patterns of inflammatory gene expression in local tissues after banding or burdizzo castration in cattle. BMC Vet. Res. 2009, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Van der Poll, T.; Marchant, A.; Buurman, W.A.; Berman, L.; Keogh, C.V.; Lazarus, D.D.; Nguyen, L.; Goldman, M.; Moldawer, L.L.; Lowry, S.F. Endogenous IL-10 protects mice from death during septic peritonitis. J. Immunol. 1995, 155, 397–401. [Google Scholar]
- Julius, D.; Basbaum, A.I. Molecular mechanisms of nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef]
- Mirra, A.; Spadavecchia, C.; Bruckmaier, R.; Gutzwiller, A.; Casoni, D. Acute pain and peripheral sensitization following cautery disbudding in 1- and 4-week-old calves. Physiol. Behav. 2018, 184, 248–260. [Google Scholar] [CrossRef]
- Korkmaz, M.; Saritaş, Z.K.; Bülbül, A.; Demirkan, I. Effect of pre-emptive dexketoprofen trometamol on acute cortisol, inflammatory response and oxidative stress to hot-iron disbudding in calves. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 563–568. [Google Scholar]
- Geiss, G.K.; Bumgarner, R.E.; Birditt, B.; Dahl, T.; Dowidar, N.; Dunaway, D.L.; Fell, H.P.; Ferree, S.; George, R.D.; Grogan, T.; et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008, 26, 317–325. [Google Scholar] [CrossRef]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Van Miert, A.S.J.P.A.M. Pro-inflammatory cytokines in a ruminant model: Pathophysiological, pharmacological, and therapeutic aspects. Vet. Q. 1995, 17, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Przkora, R.; Herndon, D.N.; Jeschke, M.G. Cytokine expression profile over time in burned mice. Cytokine 2009, 45, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuboi, I.; Tanaka, H.; Nakao, M.; Shichijo, S.; Itoh, K. Nonsteroidal anti-inflammatory drugs differentially regulate cytokine production in human lymphocytes: Up-regulation of TNF, IFN-y and IL-2, in contrast to down-regulation of IL-6 production. Cytokine 1995, 7, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Page, T.H.; Turner, J.J.; Brown, A.C.; Timms, E.M.; Inglis, J.J.; Brennan, F.M.; Foxwell, B.M.; Ray, K.P.; Feldmann, M. Nonsteroidal Anti-Inflammatory Drugs Increase TNF Production in Rheumatoid Synovial Membrane Cultures and Whole Blood. J. Immunol. 2010, 185, 3694–3701. [Google Scholar] [CrossRef] [Green Version]
- Ballou, M.A.; Sutherland, M.A.; Brooks, T.A.; Hulbert, L.E.; Davis, B.L.; Cobb, C.J. Administration of anesthetic and analgesic prevent the suppression of many leukocyte responses following surgical castration and physical dehorning. Vet. Immunol. Immunopathol. 2013, 151, 285–293. [Google Scholar] [CrossRef]
- Poznanski, S.M.; Lee, A.J.; Nham, T.; Lusty, E.; Larché, M.J.; Lee, D.A.; Ashkar, A.A. Combined stimulation with interleukin-18 and interleukin-12 potently induces interleukin-8 production by natural killer cells. J. Innate Immun. 2017, 9, 211–525. [Google Scholar] [CrossRef]
- Cunha, F.Q.; Lorenzetti, B.B.; Poole, S.; Ferreira, S.H. Interleukin-8 as a mediator of sympathetic pain. Br. J. Pharmacol. 1991, 104, 765–767. [Google Scholar] [CrossRef] [Green Version]
- Barry, A.; O’Halloran, K.D.; McKenna, J.P.; McCreary, C.; Downer, E.J. Plasma IL-8 signature correlates with pain and depressive symptomatology in patients with burning mouth syndrome: Results from a pilot study. J. Oral Pathol. Med. 2018, 47, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Samperio, P.; García, E.; Vázquez, A.; Palma, J. Regulation of interleukin-8 by interleukin-10 and transforming growth factor beta in human monocytes infected with Mycobacterium bovis. Clin. Diagn. Lab. Immunol. 2002, 9, 802–807. [Google Scholar]
- Gibbons, D.; Fleming, P.; Virasami, A.; Michel, M.L.; Sebire, N.J.; Costeloe, K.; Carr, R.; Klein, N.; Hayday, A. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat. Med. 2014, 20, 1206–1210. [Google Scholar] [CrossRef]
- Hirano, T. Interleukin 6 and its Receptor: Ten Years Later. Int. Rev. Immunol. 1998, 16, 249–284. [Google Scholar] [CrossRef] [PubMed]
- Summer, G.J.; Romero-Sandoval, E.A.; Bogen, O.; Dina, O.A.; Khasar, S.G.; Levine, J.D. Proinflammatory cytokines mediating burn-injury pain. Pain 2008, 135, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, S.L.; Chensue, S.W.; Phan, S.H. Prostaglandins as endogenous mediators of interleukin 1 production. J. Immunol. 1986, 136, 186–192. [Google Scholar] [PubMed]
- Kunkel, S.L.; Spengler, M.; May, M.A.; Spengler, R.D.; Larrick, J.; Remick, D.G. Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J. Biol. Chem. 1988, 263, 5380–5384. [Google Scholar]
- Lisboa, F.A.; Bradley, M.J.; Hueman, M.T.; Schobel, S.A.; Gaucher, B.J.; Styrmisdottir, E.L.; Potter, B.K.; Forsberg, J.A.; Elster, E.A. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds. Surgery 2016, 161, 1164–1173. [Google Scholar] [CrossRef] [Green Version]
- Furst, D.E. Meloxicam: Selective COX-2 inhibition in clinical practice. Semin. Arthritis Rheum. 1997, 26, 21–27. [Google Scholar] [CrossRef]
- Engelhardt, G. Pharmacology of meloxicam, a new non-steroidal anti-inflammatory drug with an improved safety profile through preferential inhibition of COX-2. Br. J. Rheumatol. 1996, 35 (Suppl. 1), 4–12. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.A.; Coetzee, J.F.; Edwards-Callaway, L.N.; Glynn, H.; Dockweiler, J.; KuKanich, B.; Lin, H.; Wang, C.; Fraccaro, E.; Jones, M.; et al. The effect of timing of oral meloxicam administration on physiological responses in calves after cautery dehorning with local anesthesia. J. Dairy Sci. 2013, 96, 5194–5205. [Google Scholar] [CrossRef]
- Nicolette, M.; Teri, G.; Maccauro, G.; Tripodi, D.; Varvara, G.; Saggini, A.; Potalivo, G.; Castellani, M.L.; Fulcheri, M.; Rosati, M.; et al. Impact of neuropeptide substance P an inflammatory compound on arachidonic acid compound generation. Int. J. Immunopathol. Pharmacol. 2012, 25, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Salvemini, D.; Misko, T.P.; Masferrer, J.L.; Seibert, K.; Currie, M.G.; Needle-man, P. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. USA 1993, 90, 7240–7244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aley, K.O.; McCarter, G.; Levine, J.D. Nitric Oxide Signaling in Pain and Nociceptor Sensitization in the Rat. J. Neurosci. 1998, 18, 7008–7014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeberhard, E.E.; Henderson, S.A.; Arabolos, N.S.; Griscavage, J.M.; Castro, F.E.; Barrett, C.T.; Ignarro, L.J. Non-steroidal anti-inflammatory drugs inhibit expression of inducible nitric oxide synthase gene. Biochem. Biophys. Res. Commun. 1995, 208, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Dudhgaonkar, S.P.; Tandon, S.K.; Bhat, A.S.; Jadhav, S.H.; Kumar, D. Synergistic anti-inflammatory interaction between meloxicam andaminoguanidine hydrochloride in carrageenan-inducedacute inflammation in rats. Life Sci. 2006, 78, 1044–1048. [Google Scholar] [CrossRef]
- Zhou, J.N.; Fang, H. Transcriptional regulation of corticotropin-releasing hormone gene in stress response. IBRO Rep. 2018, 5, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Pacak, K.; Palkovit, M. Stressor Specificity of Central Neuroendocrine Responses: Implications for Stress-Related Disorders. Endocr. Rev. 2001, 22, 502–548. [Google Scholar] [CrossRef]
- Farinas, I. Neurotrophin actions during the development of the peripheral nervous system. Microsc. Res. Tech. 1999, 45, 233–242. [Google Scholar] [CrossRef]
- Lewin, G.R.; Ritter, A.M.; Mendell, L.M. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J. Neurosci. 1993, 13, 2136–2148. [Google Scholar] [CrossRef]
- McMahon, S.B.; Armanini, M.P.; Ling, L.H.; Phillips, H.S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 1994, 12, 1161–1171. [Google Scholar] [CrossRef]
- Shepherd, A.J.; Copits, B.A.; Mickle, A.D.; Karlsson, P.; Kadunganattil, S.; Haroutounian, S.; Tadinada, S.M.; de Kloet, A.D.; Valtcheva, M.V.; McIlvried, L.A.; et al. Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. J. Neurosci. 2018, 38, 7032–7057. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.J.; Mickle, A.D.; Golden, J.P.; Mack, M.R.; Halabi, C.M.; de Kloet, A.D.; Samineni, V.K.; Kim, B.S.; Krause, E.G.; Gereau, R.W., IV; et al. Macrophage angiotensin II type 2 receptor triggers neuropathic pain. Proc. Natl. Acad. Sci. USA 2018, 115, E8057–E8066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Pang, W.Y.; Earley, B.; Murray, M.; Sweeney, T.; Gath, V.; Crowe, M.A. Banding or Burdizzo castration and carprofen administration on peripheral leukocyte inflammatory cytokine transcripts. Res. Vet. Sci. 2011, 90, 127–132. [Google Scholar] [CrossRef]
- Maślanka, T.; Jaroszewski, J.J. In vitro effects of meloxicam on the number, Foxp3 expression, production of selected cytokines, and apoptosis of bovine CD25+CD4+ and CD25-CD4+ cells. J. Vet. Sci. 2013, 14, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harizi, H.; Juzan, M.; Pitard, V.; Moreau, J.F.; Gualde, N. Cyclooxygenase-2-issued prostaglandin E2enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J. Immunol. 2002, 168, 2255–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bromander, S.; Anckarsäter, R.; Kristiansson, M.; Blennow, K.; Zetterberg, H.; Anckarsäter, H.; Wass, C.E. Changes in serum and cerebrospinal fluid cytokines in response to non-neurological surgery: An observational study. J. Neuroinflammation 2012, 9, 242. [Google Scholar] [CrossRef] [Green Version]
Gene | Gene Category | Genebank Accession | Target Sequence Position |
---|---|---|---|
IFNγ | Pro-inflammatory cytokine | NM_174086.1 | 503–602 |
IL1B | Pro-inflammatory cytokine | NM_174093.1 | 331–430 |
IL6 | Pro-inflammatory cytokine | NM_173923.2 | 293–392 |
IL8 (CXCL8) | Pro-inflammatory cytokine | NM_173925.2 | 278–377 |
TNFα | Pro-inflammatory cytokine | NM_173966.2 | 950–1049 |
IL10 | Anti-inflammatory cytokine | NM_174088.1 | 145–244 |
AGTR2 | Neuroactive ligand-receptor | XM_001249373.2 | 1206–1305 |
CRH | Neuroactive ligand-receptor | NM_001013400.1 | 443–542 |
NGF | Neuroactive ligand-receptor | NM_001099362.1 | 558–657 |
NOS1 | Neuroactive ligand-receptor | XM_867630.5 | 2657–2756 |
PGHS2 | Neuroactive ligand-receptor | NM_174445.2 | 881–980 |
TAC1 | Neuroactive ligand-receptor | NM_174193.1 | 317–416 |
GAPDH | Reference | NM_001034034.1 | 213–312 |
GUSB | Reference | NM_001083436.1 | 1815–1914 |
YWHAZ | Reference | NM_174814.2 | 147–246 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongara, K.; Dukkipati, V.S.R.; Tai, H.M.; Heiser, A.; Murray, A.; Webster, J.; Johnson, C.B. Differential Transcription of Selected Cytokine and Neuroactive Ligand-receptor Genes in Peripheral Leukocytes from Calves in Response to Cautery Disbudding. Animals 2020, 10, 1187. https://doi.org/10.3390/ani10071187
Kongara K, Dukkipati VSR, Tai HM, Heiser A, Murray A, Webster J, Johnson CB. Differential Transcription of Selected Cytokine and Neuroactive Ligand-receptor Genes in Peripheral Leukocytes from Calves in Response to Cautery Disbudding. Animals. 2020; 10(7):1187. https://doi.org/10.3390/ani10071187
Chicago/Turabian StyleKongara, Kavitha, Venkata Sayoji Rao Dukkipati, Hui Min Tai, Axel Heiser, Alan Murray, James Webster, and Craig Brian Johnson. 2020. "Differential Transcription of Selected Cytokine and Neuroactive Ligand-receptor Genes in Peripheral Leukocytes from Calves in Response to Cautery Disbudding" Animals 10, no. 7: 1187. https://doi.org/10.3390/ani10071187
APA StyleKongara, K., Dukkipati, V. S. R., Tai, H. M., Heiser, A., Murray, A., Webster, J., & Johnson, C. B. (2020). Differential Transcription of Selected Cytokine and Neuroactive Ligand-receptor Genes in Peripheral Leukocytes from Calves in Response to Cautery Disbudding. Animals, 10(7), 1187. https://doi.org/10.3390/ani10071187