In Vitro Fermentation Patterns and Methane Output of Perennial Ryegrass Differing in Water-Soluble Carbohydrate and Nitrogen Concentrations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pasture Management
2.2. Pasture Sampling
2.3. In Vitro Incubations
2.4. Analyses
2.5. Calculations
2.6. Statistical Analysis
3. Results
3.1. Forage Nutritional Value and In Vitro Digestibility
3.2. In Vitro Gas Production
3.3. In Vitro Volatile Fatty Acids
3.4. In Vitro Methane Production and Concentration
3.5. Microbial Nitrogen Yield and Nitrogen Utilisation
4. Discussion
4.1. Chemical Composition and In Vitro Gas Production of Forage
4.2. In Vitro Fermentation and Methane Output
4.3. Microbial Nitrogen Yield and Nitrogen Utilisation
4.4. Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Livestock’s Long Shadow-Environmental Issues and Options; Food and Agriculture Organization: Rome, Italy, 2006; Volume 3, pp. 1–377. [Google Scholar]
- Hristov, A.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.C.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, B.; Falcucci, A.; Mottet, A.; Early, L.; Werner, B.; Steinfeld, H.; Gerber, P. Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig. Adapt. Strat. Glob. Chang. 2017, 22, 199–224. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Mcallister, T.A. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4. [Google Scholar] [CrossRef]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. Animal 2013, 7 (Suppl. 2), 303–315. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, M.O. Water-soluble carbohydrates in perennial ryegrass breeding: III. Relationships with herbage production, digestibility and crude protein content. Grass Forage Sci. 1989, 44, 423–430. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Merry, R.J.; Davies, D.R.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Anim. Feed Sci. Technol. 2003, 104, 59–70. [Google Scholar] [CrossRef]
- Parsons, A.; Rowarthl, J.; Rasmussen, S. High-sugar grasses. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Hume, D.E.; Hickey, M.J.; Lyons, T.B.; Baird, D.B. Agronomic performance and water-soluble carbohydrate expression of selected ryegrasses at two locations in New Zealand. N. Z. J. Agric. Res. 2010, 53, 37–57. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.J.; Rasmussen, S.; Xue, H.; Newman, J.A.; Anderson, C.B.; Cosgrove, G. Some ‘high sugar grasses’ don’t like it hot. Proc. N. Z. Grassl. Assoc. 2004, 66, 265–271. [Google Scholar]
- Loaiza, P.; Balocchi, O.; López, I.F. Changes in water-soluble carbohydrates relative to crude protein in perennial ryegrass in response to defoliation frequency. Grassl. Sci. 2017, 63, 159–168. [Google Scholar] [CrossRef]
- Loaiza, P.A.; Balocchi, O.; Bertrand, A. Carbohydrate and crude protein fractions in perennial ryegrass as affected by defoliation frequency and nitrogen application rate. Grass Forage Sci. 2017, 72, 556–567. [Google Scholar] [CrossRef]
- Rivero, M.J.; Balocchi, O.A.; Moscoso, C.J.; Siebald, J.A.; Neumann, F.L.; Meyer, D.; Lee, M.R.F. Does the “high sugar” trait of perennial ryegrass cultivars express under temperate climate conditions? Grass Forage Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.A.; Moorby, J.M.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; MacRae, J.C.; Theodorou, M.K. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): Milk production from late-lactation dairy cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Tas, B.M.; Taweel, H.Z.; Smit, H.J.; Elgersma, A.; Dijkstra, J.; Tamminga, S. Effects of perennial ryegrass cultivars on milk yield and nitrogen utilization in grazing dairy cows. J. Dairy Sci. 2006, 89, 3494–3500. [Google Scholar] [CrossRef]
- Taweel, H.Z.; Smit, H.J.; Elgersma, A. Will feeding high sugar grass reduce methane emission by grazing dairy cows? Grassl. Sci. Eur. 2001, 11, 787–789. [Google Scholar]
- Staerfl, S.M.; Amelchanka, S.L.; Kälber, T.; Soliva, C.R.; Kreuzer, M.; Zeitz, J.O. Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows. Livest. Sci. 2012. [Google Scholar] [CrossRef]
- Jonker, A.; Molano, G.; Sandoval, E.; Taylor, P.S.; Antwi, C.; Olinga, S.; Cosgrove, G.P. Methane emissions differ between sheep offered a conventional diploid, a high-sugar diploid or a tetraploid perennial ryegrass cultivar at two allowances at three times of the year. Anim. Prod. Sci. 2018, 58, 1043–1048. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 2005, 123, 9–30. [Google Scholar] [CrossRef]
- Purcell, P.J.; Boland, T.M.; O’Kiely, P. The effect of water-soluble carbohydrate concentration and type on in vitro rumen methane output of perennial ryegrass determined using a 24-hour batch-culture gas production technique. Ir. J. Agric. Food Res. 2014, 53, 21–36. [Google Scholar]
- Purcell, P.J.; O’Brien, M.; Navarro-Villa, A.; Boland, T.M.; Mcevoy, M.; Grogan, D.; O’Kiely, P. In vitro rumen methane output of perennial ryegrass varieties and perennial grass species harvested throughout the growing season. Grass Forage Sci. 2012, 67, 280–298. [Google Scholar] [CrossRef]
- Lovett, D.K.; McGilloway, D.; Bortolozzo, A.; Hawkins, M.; Callan, J.; Flynn, B.; O’Mara, F.P. In vitro fermentation patterns and methane production as influenced by cultivar and season of harvest of Lolium perenne L. Grass Forage Sci. 2006, 61, 9–21. [Google Scholar] [CrossRef]
- Lovett, D.K.; Bortolozzo, A.; Kiely, P.O.; Conaghan, P.; Mara, F.P.O. In vitro total and methane gas production asinfluenced by rate of nitrogen application, seasonof harvest and perennial ryegrass cultivar. Grass Forage Sci. 2004, 59, 227–232. [Google Scholar] [CrossRef]
- MAFF. The Analysis of Agricultural Material, 3rd ed.; Agricultural Development and Advisory Service: London, UK, 1985. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1996. [Google Scholar]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Blümmel, M.; Steinga, H.; Becker, K. The relationship between in vitro gas production, in vitro microbial biomass yield and N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.S. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed Sci. Technol. 2005, 123, 291–302. [Google Scholar] [CrossRef]
- Wales, W.J.; Kolver, E.S.; Egan, A.R. Digestion during continuous culture fermentation when replacing perennial ryegrass with barley and steam-flaked corn. J. Dairy Sci. 2009, 92, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Yoon, I.K.; Stern, M.D.; Jung, H.G.; Chester-Jones, H. Effects of type of carbohydrate supplementation to lush pasture on microbial fermentation in continuous culture. J. Dairy Sci. 1999, 82, 153–160. [Google Scholar] [CrossRef]
- France, J.; Theodoridou, K.; Lowman, R.S.; Beever, D.E. Feed evaluation for animal production. In Feeding Systems and Feed Evaluation Models; Theodoridou, K., France, J., Eds.; CAB International: Wallingford, UK, 2000; pp. 1–9. [Google Scholar]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Subathira, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123, 403–419. [Google Scholar] [CrossRef]
- Keim, J.P.; Valderrama, X.; Alomar, D.; López, I.F. In situ rumen degradation kinetics as affected by type of pasture and date of harvest. Sci. Agric. 2013, 70, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Keim, J.P.; Anrique, R. Nutritional strategies to improve nitrogen use efficiency by grazing dairy cows. Chil. J. Agric. Res. 2011, 71, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.R.F.; Rivero, M.J.; Cone, J. The role of pasture in the diet of livestock. In Improving Grassland and Pasture Management in Temperate Agriculture; Marshall, A., Collins, R., Eds.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018; pp. 31–44. [Google Scholar]
- Moscoso, C.J.; Morgan, S.A.; Rivero, M.J. The effect of drying methods on water-soluble carbohydrates and crude protein concentrations and their ratio in two perennial ryegrass cultivars. Agronomy 2019, 9, 383. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, S.; Tremblay, G.F.; Bertrand, A.; Bélanger, G.; Castonguay, Y.; Michaud, R. Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol. 2010, 157, 139–150. [Google Scholar] [CrossRef]
- Bryant, R.H.; Gregorini, P.; Edwards, G.R. Effects of N fertilisation, leaf appearance and time of day on N fractionation and chemical composition of Lolium perenne cultivars in spring. Anim. Feed Sci. Technol. 2012, 173, 210–219. [Google Scholar] [CrossRef]
- Peyraud, J.L.; Astigarraga, L. Review of the effect of nitrogen fertilization on the chemical composition, intake, digestion and nutritive value of fresh herbage: Consequences on animal nutrition and N balance. Anim. Feed Sci. Technol. 1998, 72, 235–259. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Brooks, A.E.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; Macrae, J.C.; Scollan, N.D. In vitro investigation into the nutritive value of Lolium perenne bred for an elevated concentration of water-soluble carbohydrate and the added effect of sample processing: Freeze-dried and ground vs. frozen and thawed. Anim. Res. 2002, 51, 269–277. [Google Scholar] [CrossRef]
- Keim, J.P.; López, I.F.; Balocchi, O.A. Sward herbage accumulation and nutritive value as affected by pasture renovation strategy. Grass Forage Sci. 2015, 70, 283–295. [Google Scholar] [CrossRef]
- Keim, J.P.; López, I.F.; Berthiaume, R. Nutritive value, in vitro fermentation and methane production of perennial pastures as affected by botanical composition over a growing season in the south of Chile. Anim. Prod. Sci. 2014, 54, 598–607. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Harris, L.J.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of water-soluble carbohydrate. Anim. Sci. 2002, 74, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Obara, Y.; Dellow, D.W.; Nolan, J.V. The influence of energy rich supplements on nitrogen kinetics in ruminants. In Physiological Aspects of Digestion and Metabolism in Ruminants; Tsuda, T., Sasaki, Y., Kawashima, R., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 515–534. [Google Scholar]
- Niderkorn, V.; Baumont, R.; le Morvan, A.; Macheboeuf, D. Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics. J. Anim. Sci. 2011, 89, 1138–1145. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Theobald, V.J.; Gordon, N.; Leyland, M.; Tweed, J.K.S.; Fychan, R.; Scollan, N.D. The effect of high polyphenol oxidase grass silage on metabolism of polyunsaturated fatty acids and nitrogen across the rumen of beef steers. J. Anim. Sci. 2014, 92, 5076–5087. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Guo, G.; Huo, W.J.; Zhang, S.L.; Pei, C.X.; Zhang, Y.L.; Wang, H. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. Animal 2018, 12, 2071–2079. [Google Scholar] [CrossRef]
- Wolin, M.J.; Miller, T.L.; Stewart, C.S. Microbe–microbe interaction. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Blackie: London, UK, 1997. [Google Scholar]
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [CrossRef]
- Purcell, P.J.; O’Brien, M.; Boland, T.M.; O’Donovan, M.; O’Kiely, P. Impacts of herbage mass and sward allowance of perennial ryegrass sampled throughout the growing season on in vitro rumen methane production. Anim. Feed Sci. Technol. 2011, 166–167, 405–411. [Google Scholar] [CrossRef]
- Merino, V.M.; Balocchi, O.A.; Rivero, M.J. Milk production, milk quality, and behaviour of dairy cows grazing on swards with low and high water-soluble carbohydrates content in autumn: A pilot trial. Animals 2019, 9, 1012. [Google Scholar] [CrossRef] [Green Version]
- Chaves, A.V.; Waghorn, G.C.; Brookes, I.M.; Woodfield, D.R. Effect of maturation and initial harvest dates on the nutritive characteristics of ryegrass (Lolium perenne L.). Anim. Feed Sci. Technol. 2006, 127, 293–318. [Google Scholar] [CrossRef]
- Merry, R.J.; Lee, M.R.F.; Davies, D.R.; Dewhurst, R.J.; Moorby, J.M.; Scollan, N.D.; Theodorou, M.K. Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization. J. Anim. Sci. 2006, 84, 3049–3060. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on ruminal microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Berthiaume, R.; Benchaar, C.; Chaves, A.V.; Tremblay, G.F.; Castonguay, Y.; Bertrand, A.; Bélanger, G.; Michaud, R.; Lafrenière, C.; McAllister, T.A.; et al. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. J. Dairy Sci. 2010, 93, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkstra, J.; Kebreab, E.; Bannink, A.; France, J.; López, S. Application of the gas production technique to feed evaluation systems for ruminants. Anim. Feed Sci. Technol. 2005, 123, 561–578. [Google Scholar] [CrossRef]
- Gregorini, P. Diurnal grazing pattern: Its physiological basis and strategic management. Anim. Prod. Sci. 2012, 52, 416–430. [Google Scholar] [CrossRef]
- Vibart, R.E.; Tavendale, M.; Otter, D.; Schwendel, B.H.; Lowe, K.; Gregorini, P.; Pacheco, D. Milk production and composition, nitrogen utilization, and grazing behavior of late-lactation dairy cows as affected by time of allocation of a fresh strip of pasture. J. Dairy Sci. 2017, 100, 5305–5318. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, I.E.; Al-Marashdeh, O.; Burgos, A.R.; Gregorini, P.; Balocchi, O.A.; Wittwer, F.; Pulido, R.G. The order of grass and maize silage supplementation modifies milk yield, grazing behavior and nitrogen partitioning of lactating dairy cows. Animals 2019, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, C.; Letelier, P.A.; Ungerfeld, E.M.; Morales, J.M.; Hube, S.; Pérez-Prieto, L.A. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows. J. Dairy Sci. 2016, 99, 7945–7955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivero, M.J.; Balocchi, O.L.; Neumann, F.L.; Siebald, J.A. Grazing preference of dairy cows and pasture productivity for different cultivars of perennial ryegrass under contrasting managements. Animals 2019, 9, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Autumn | Spring | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Variable | HS | LS | HS | LS | SEM | P | S | P × S |
WSC | 322a | 224c | 343a | 293b | 10.3 | *** | ** | n.s. |
CP | 154b | 202a | 120c | 156b | 4.58 | *** | *** | n.s. |
WSC to CP ratio | 2.10b | 1.11c | 2.86a | 1.88b | 0.117 | *** | *** | n.s. |
aNDF | 379b | 456a | 385b | 391b | 6.1 | *** | ** | *** |
ADF | 206b | 227a | 230a | 238a | 4.9 | * | * | n.s. |
Hem | 173b | 230a | 156c | 153c | 4.2 | *** | *** | *** |
Ash | 84.8a | 67.1b | 71.6b | 80.3a | 3.34 | * | ** | n.s. |
OMD | 608 | 546 | 606 | 631 | 27.9 | n.s. | n.s. | n.s. |
tOMD | 942 | 932 | 929 | 923 | 6.5 | n.s. | n.s. | n.s. |
NDFD | 789 | 784 | 776 | 760 | 11.8 | n.s. | n.s. | n.s. |
Pasture Type | Season | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Variable | HS | LS | Autumn | Spring | SEM | P | S | P × S |
TGP24 | 218 | 204 | 204 | 218 | 3.2 | * | * | n.s. |
PF | 4.30 | 4.58 | 4.62 | 4.27 | 0.089 | n.s. | * | n.s. |
Predicted Michaelis–Menten parameters | ||||||||
A | 249 | 232 | 234 | 247 | 4.0 | * | n.s. | n.s. |
C | 0.12 | 0.11 | 0.11 | 0.12 | 0.003 | n.s. | n.s. | n.s. |
MDR | 0.12 | 0.12 | 0.12 | 0.13 | 0.003 | n.s. | n.s. | n.s. |
K | 6.48 | 6.52 | 6.61 | 6.39 | 0.147 | n.s. | n.s. | n.s. |
n | 149 | 148 | 148 | 149 | 0.02 | n.s. | n.s. | n.s. |
ta | 3.11 | 3.1 | 3.15 | 3.06 | 0.079 | n.s. | n.s. | n.s. |
tb | 13.6 | 13.7 | 13.9 | 13.4 | 0.35 | n.s. | n.s. | n.s. |
tc | 28.4 | 28.9 | 29.3 | 28.0 | 0.93 | n.s. | n.s. | n.s. |
4 h | 24 h | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Autumn | Spring | Autumn | Spring | p-Value | ||||||||||||
Variable | LS | HS | LS | HS | LS | HS | LS | HS | SEM | P | S | P × S | T | T × P | T × S | T × P × S |
VFA concentration (mM) | ||||||||||||||||
Total VFA | 30.7 | 32.9 | 37.1 | 38.3 | 58.0 | 62.7 | 72.3 | 74.2 | 1.95 | † | *** | n.s. | *** | n.s. | * | n.s. |
Acetate | 21.0 | 22.1 | 26.2 | 24.8 | 39.1 | 40.6 | 47.1 | 47.7 | 1.60 | n.s. | *** | n.s. | *** | n.s. | n.s. | n.s. |
Propionate | 7.06 | 8.05 | 8.61 | 10.8 | 12.7 | 15.5 | 17.7 | 19.3 | 0.514 | *** | *** | n.s. | *** | n.s. | ** | n.s. |
Butyrate | 1.54 | 1.60 | 1.41 | 1.87 | 4.21 | 4.85 | 5.07 | 5.88 | 0.185 | ** | ** | n.s. | *** | n.s. | ** | n.s. |
BCVFA | 1.08 | 1.18 | 0.91 | 0.86 | 1.93 | 1.65 | 1.73 | 1.41 | 0.090 | ** | *** | n.s. | *** | n.s. | n.s. | n.s. |
Acetate | 68.4 | 67.0 | 70.2 | 64.7 | 67.5 | 64.8 | 65.2 | 64.3 | 1.07 | *** | n.s. | n.s. | † | n.s. | n.s. | n.s. |
Propionate | 23.0 | 24.5 | 23.4 | 28.1 | 21.9 | 24.8 | 24.4 | 25.9 | 0.58 | *** | *** | n.s. | n.s. | n.s. | n.s. | ** |
Butyrate | 5.02 | 4.81 | 3.90 | 4.91 | 7.26 | 7.76 | 7.00 | 7.93 | 0.432 | n.s. | n.s. | n.s. | *** | n.s. | n.s. | n.s. |
BCVFA | 3.52 | 3.68 | 2.48 | 2.30 | 3.33 | 2.65 | 2.40 | 1.90 | 0.319 | † | *** | n.s. | n.s. | n.s. | n.s. | n.s. |
A:P | 3.00 | 2.74 | 3.05 | 2.30 | 3.08 | 2.61 | 2.67 | 2.48 | 0.121 | ** | * | n.s. | n.s. | n.s. | n.s. | † |
(A + B):P | 3.19 | 2.93 | 3.21 | 2.48 | 3.41 | 2.92 | 2.96 | 2.78 | 0.112 | *** | * | n.s. | n.s. | n.s. | n.s. | * |
Autumn | Spring | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Variable | HS | LS | HS | LS | SEM | P | S | P × S |
CH4 (mL/100 mL TGP) | 15.7c | 17.3a | 15.6c | 16.4b | 0.13 | *** | * | n.s. |
CH4 production at 6 h (mL) | 16.4 | 16.2 | 17.0 | 17.1 | 1.13 | n.s. | n.s. | n.s. |
CH4 production at 12 h (mL) | 25.3 | 24.5 | 25.6 | 25.8 | 1.70 | n.s. | n.s. | n.s. |
CH4 production at 24 h (mL) | 33.2 | 33.4 | 34.9 | 34.1 | 0.65 | n.s. | n.s. | n.s. |
Predicted Michaelis–Menten parameters for CH4 production | ||||||||
A | 43.8b | 59.5ab | 61.8a | 51.0ab | 3.37 | n.s. | n.s. | * |
C | 0.069a | 0.038b | 0.037b | 0.057ab | 0.0046 | n.s. | n.s. | ** |
K | 9.40 | 20.6 | 18.5 | 13.0 | 2.75 | n.s. | n.s. | n.s. |
n | 1.22a | 0.98b | 0.99b | 1.11ab | 0.044 | n.s. | n.s. | * |
ta | 3.81 | 6.20 | 5.72 | 4.46 | 0.622 | n.s. | n.s. | n.s. |
tc | 23.0 | 69.5 | 60.4 | 38.4 | 11.57 | n.s. | n.s. | n.s. |
Pasture Type | Season | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Variable | HS | LS | Autumn | Spring | SEM | P | S | P × S |
NH3-N4h (mmol/L) | 6.11 | 8.16 | 7.92 | 6.36 | 0.410 | ** | ** | n.s. |
NH3-N24h (mmol/L) | 10.4 | 12.9 | 13.2 | 10.1 | 0.410 | ** | ** | n.s. |
ND (g/kg N) | 780 | 838 | 877 | 750 | 30.4 | n.s. | * | n.s. |
MN (mg/g OM) | 14.6 | 15.3 | 15.2 | 14.7 | 0.53 | n.s. | n.s. | n.s. |
NUE (%) | 64.1 | 54.1 | 55.2 | 63.0 | 2.21 | * | * | n.s. |
EMPS (g MN/kg of truly digested OM) | 22.1 | 20.9 | 19.3 | 23.8 | 1.30 | n.s. | * | n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero, M.J.; Keim, J.P.; Balocchi, O.A.; Lee, M.R.F. In Vitro Fermentation Patterns and Methane Output of Perennial Ryegrass Differing in Water-Soluble Carbohydrate and Nitrogen Concentrations. Animals 2020, 10, 1076. https://doi.org/10.3390/ani10061076
Rivero MJ, Keim JP, Balocchi OA, Lee MRF. In Vitro Fermentation Patterns and Methane Output of Perennial Ryegrass Differing in Water-Soluble Carbohydrate and Nitrogen Concentrations. Animals. 2020; 10(6):1076. https://doi.org/10.3390/ani10061076
Chicago/Turabian StyleRivero, M. Jordana, Juan P. Keim, Oscar A. Balocchi, and Michael R.F. Lee. 2020. "In Vitro Fermentation Patterns and Methane Output of Perennial Ryegrass Differing in Water-Soluble Carbohydrate and Nitrogen Concentrations" Animals 10, no. 6: 1076. https://doi.org/10.3390/ani10061076
APA StyleRivero, M. J., Keim, J. P., Balocchi, O. A., & Lee, M. R. F. (2020). In Vitro Fermentation Patterns and Methane Output of Perennial Ryegrass Differing in Water-Soluble Carbohydrate and Nitrogen Concentrations. Animals, 10(6), 1076. https://doi.org/10.3390/ani10061076