Milk Potential of Pantaneira Cows, a Local Breed, at Organic System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Emanuelson, U.; Sjöström, K.; Fall, N. Biosecurity and animal disease management in organic and conventional Swedish dairy herds: A questionnaire study. Acta Vet. Scand. 2018, 60, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieber, A.; Wallenbeck, A.; Neff, A.S.; Leiber, F.; Simantke, C.; Knierim, U.; Ivemeyer, S. Comparison of performance and fitness traits in German Angler, Swedish Red and Swedish Polled with Holstein dairy cattle breeds under organic production. Animal 2019, 14, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Scholten, C.; Miranda, J.P.R.; Luna, M.A.G.; Castro, M.R.L.; Medeiros, M.I.M. Empregos verdes e conservação dos recursos genéticos animais. Rev. CFMV 2013, 60, 2013. [Google Scholar]
- Food and Agriculture Organization (FAO). The State of the World’s Animal Genetic Resources for Food Agriculture; Food and Agriculture Organization (FAO): Rome, Italy, 2007; Volume 511, pp. 113–135. [Google Scholar]
- Issa, É.C.; Jorge, W.; Sereno, J.R. Cytogenetic and molecular analysis of the Pantaneiro cattle breed. Pesqui. Agropecuária Bras. 2006, 41, 1609–1615. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Food and Agriculture Organization (FAO): Rome, Italy, 2016; pp. 497–523. [Google Scholar]
- Junior, J.R.; De Oliveira, M.V.M.; De Carvalho, D.M.G.; Teodoro, A.L.; Junior, F.M.D.V.; Goes, R.H.; Costa, L.G. Potencial produtivo de novilhas da raça “Pantaneira” alimentadas com fenos de baixa qualidade. Semin. Ciênc. Agrár. 2014, 35, 2605. [Google Scholar] [CrossRef] [Green Version]
- Abreu, U.G.P.; Cobuci, J.A.; Silva, M.V.G.B.; Sereno, J.R.B. Uso de modelos no lineales para el ajuste de la curva de crecimiento de bovinos Pantaneiros. Arch. Zootec. 2004, 53, 367–370. [Google Scholar]
- Dani, S.U.; Dani, M.; Freire, I.; Gouvea, S.; Knackfuss, F.; Lima, F.; Mercadante, M.E.Z.; Monteiro, E.; Paggiaro, S.; Razook, A.; et al. Survival of the thriftiest: Restricted nurture reveals the thrifty nature of a growth gene in Bos indicus. Genet. Mol. Res. 2010, 9, 1032–1044. [Google Scholar] [CrossRef] [PubMed]
- Sereno, J.R.B. Uso do potencial do bovino Pantaneiro na produção de carne orgânica do Pantanal. I Conferência Virtual Global sobre Produção Orgânica de Bovinos de Corte. 02 de setembro à 15 de outubro de 2002- Via Internet, 2002. Available online: http://www.cpap.embrapa.br/agencia/congressovirtual/pdf/portugues/06pt04 (accessed on 13 February 2012).
- Dani, S.U.; De Oliveira, M.V.M. Cattle, cheese and conservation. Nature 2013, 502, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazza, M.C.M.; Mazza, C.A.; Sereno, J.R.B.; Santos, S.A.L.; Pellegrin, A.O. Ethnobiology and Conservation of Pantaneiro Cattle in Brazil, 1st ed.; Embrapa-CPAP-Corumbá: Corumbá, Brazil, 1994; pp. 54–61. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Terra, S.; Gimenes, F.M.D.A.; Giacomini, A.A.; Gerdes, L.; Manço, M.X.; De Mattos, W.T.; Batista, K. Seasonal alteration in sward height of Marandu palisade grass (Brachiaria brizantha) pastures managed by continuous grazing interferes with forage production. Crop. Pasture Sci. 2020, 71, 285. [Google Scholar] [CrossRef]
- Prohmann, P.; Branco, A.; Paris, W.; Barreto, J.; Magalhães, V.; Goes, R.H.; De Oliveira, M.V.M. Método de amostragem e caracterização química da forragem consumida por bovinos em pasto consorciado de aveia e azevém. Arq. Bras. De Med. Vet. E Zootec. 2012, 64, 953–958. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies-Washington: Washington, DC, USA, 2001; p. 405. [Google Scholar]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, W.; Hong, B.; Broderick, G.; Bula, R. In Vitro Inoculum Enriched with Particle-Associated Microorganisms for Determining Rates of Fiber Digestion and Protein Degradation. J. Dairy Sci. 1984, 67, 2902–2909. [Google Scholar] [CrossRef]
- AOAC—Association of Official Agriculture Chemists. Official Methods of Analysis of the Association of Official Agriculture Chemists; AOAC—Association of Official Agriculture Chemists: Washington, DC, USA, 1990; p. 1298. [Google Scholar]
- Sniffen, C.J.; O’connor, J.D.; van Soest, P.J. Net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Leiva, E.; Hall, M.B.; Van Horn, H. Performance of Dairy Cattle Fed Citrus Pulp or Corn Products as Sources of Neutral Detergent-Soluble Carbohydrates. J. Dairy Sci. 2000, 83, 2866–2875. [Google Scholar] [CrossRef]
- Valadares, R.; Broderick, G.; Filho, S.D.C.V.; Clayton, M. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Rennó, L.N.; Filho, S.D.C.V.; Paulino, M.F.; Leão, M.I.; Valadares, R.F.D.; Rennó, F.P.; Paixão, M.L. Níveis de uréia na ração de novilhos de quatro grupos genéticos: Parâmetros ruminais, uréia plasmática e excreções de uréia e creatinina. Rev. Bras. Zootec. 2008, 37, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Evans, E.H.; Yorston, S.A.; Binnendyk, D.V. Numerous Factors Affect Milk Protein Percentage. Feedstuffs 1993, 15, 14–21. [Google Scholar]
- Anonymous. The R Project for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 13 February 2012).
- Sarkar, D. Lattice: Multivariate Data Visualization with R; Springer-Verlag: New York, NY, USA, 2008; pp. 241–259. [Google Scholar]
- Li, C.; Beauchemin, K.A.; Yang, W. Feeding diets varying in forage proportion and particle length to dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. J. Dairy Sci. 2020, 103, 4340–4354. [Google Scholar] [CrossRef]
- Pimentel, J.J.D.O.; Lana, R.D.P.; Graça, D.D.S.; De Matos, L.L.; Teixeira, R.M.A. Teores de proteína bruta no concentrado e níveis de suplementação para vacas leiteiras em pastagens de capim-braquiária cv. marandu no período da seca. Rev. Bras. Zootec. 2011, 40, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Rabaza, A.; Banchero, G.; Cajarville, C.; Zunino, P.; Britos, A.; Repetto, J.L.; Fraga, M. Effects of feed withdrawal duration on animal behaviour, rumen microbiota and blood chemistry in feedlot cattle: Implications for rumen acidosis. Animal 2019, 14, 66–77. [Google Scholar] [CrossRef]
- Lucy, M.; Escalante, R.; Keisler, D.; Lamberson, W.; Mathew, D. Short communication: Glucose infusion into early postpartum cows defines an upper physiological set point for blood glucose and causes rapid and reversible changes in blood hormones and metabolites. J. Dairy Sci. 2013, 96, 5762–5768. [Google Scholar] [CrossRef] [Green Version]
- Sauls-Hiesterman, J.; Banuelos, S.; Atanasov, B.; Bradford, B.; Stevenson, J. Physiologic responses to feeding rumen-protected glucose to lactating dairy cows. Anim. Reprod. Sci. 2020, 216, 106346. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.L.P.; Berchielli, T.; Leme, P.R.; Nogueira, J.R.; Pinheiro, M.D.G. Concentração de nitrogênio uréico plasmático (NUP) e produção de leite de vacas mestiças mantidas em gramíneas tropicais sob pastejo rotacionado. Rev. Bras. Zootec. 2004, 33, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Dall-Orsoletta, A.C.; Almeida, J.G.R.; Oziemblowski, M.M.; Ribeiro-Filho, H.M. Corn supplementation on milk urea nitrogen content of dairy cows grazing on temperate annual pasture. Ciência Rural 2020, 50, 20190077. [Google Scholar] [CrossRef] [Green Version]
- Kand, D.; Raharjo, I.B.; Castro-Montoya, J.; Dickhoefer, U. The effects of rumen nitrogen balance on in vitro rumen fermentation and microbial protein synthesis vary with dietary carbohydrate and nitrogen sources. Anim. Feed. Sci. Technol. 2018, 241, 184–197. [Google Scholar] [CrossRef]
- Agle, M.; Hristov, A.; Zaman, S.; Schneider, C.; Ndegwa, P.; Vaddella, V. The effects of ruminally degraded protein on rumen fermentation and ammonia losses from manure in dairy cows. J. Dairy Sci. 2010, 93, 1625–1637. [Google Scholar] [CrossRef]
- Krolow, R.; Silva, M.; Paim, N.; Medeiros, R.; Gonzalez, H. Composição do leite de vacas Holandesas em pastejo de azevém com a utilização do trevo branco como fonte proteica. Arq. Bras. Med. Vet. E Zootec. 2012, 64, 1352–1359. [Google Scholar] [CrossRef] [Green Version]
- Marczuk, J.; Brodzki, P.; Brodzki, A.; Kurek, L. The concentration of free amino acids in blood serum of dairy cows with primary ketosis. Pol. J. Vet. Sci. 2018, 21, 149–156. [Google Scholar]
- Engineering National Academies of Sciences. Nutrient Requirements of Beef Cattle, 8th Revised ed.; The National Academies Press-Washington: Washington, DC, USA, 2015; p. 494. [Google Scholar]
- Vaarst, M.; Smolders, G.; Wahome, R.; Odhong, C.; Kiggundu, M.; Kabi, F.; Nalubwama, S.; Halberg, N. Options and challenges for organic milk production in East African small holder farms under certified organic crop production. Livest. Sci. 2019, 220, 230–240. [Google Scholar] [CrossRef]
Intake | Level of Concentrate (% of Body Weight) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
1.2 | 0.9 | 0.6 | 0.3 | 0.0 | Lin | Qua | ||
DM, kg/d | 10.19 | 9.66 | 9.12 | 8.58 | 8.09 | 0.304 | <0.01 | 0.78 |
DM, % BW | 2.37 | 2.28 | 2.18 | 2.08 | 1.99 | 0.063 | 0.03 | 0.63 |
For, kg/d | 5.07 | 5.82 | 6.58 | 7.33 | 8.09 | 0.310 | <0.01 | 0.85 |
Con, kg/d | 5.13 | 3.84 | 2.55 | 1.25 | 0.00 | 0.264 | <0.01 | 0.53 |
For:Con Rate | 50:50 | 60:40 | 72:28 | 85:15 | 100:00 | |||
CP, kg/d | 1.43 | 1.13 | 0.83 | 0.54 | 0.25 | 0.060 | <0.01 | 0.98 |
NDF, kg/d | 6.29 | 6.30 | 6.33 | 6.35 | 6.39 | 0.213 | 0.88 | 0.81 |
ADF, kg/d | 3.30 | 3.39 | 3.48 | 3.57 | 3.68 | 0.128 | 0.27 | 0.84 |
RDP balance, g/d | 104 | −86 | −251 | −405 | 698 | |||
RUP balance, g/d | 91 | −2 | −280 | −593 | 1175 |
Digestibility | Level of Concentrate (% of Body Weight) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
1.2 | 0.9 | 0.6 | 0.3 | 0.0 | Lin | Qua | ||
DM, % | 93.20 | 93.55 | 91.23 | 86.26 | 78.63 | 0.868 | <0.01 | <0.01 |
CP, % | 79.95 | 78.69 | 70.69 | 55.95 | 34.45 | 2.49 | <0.01 | <0.01 |
EE, % | 91.85 | 88.72 | 85.00 | 80.71 | 75.82 | 1.091 | <0.01 | 0.49 |
NDF, % | 67.04 | 68.65 | 70.14 | 71.50 | 72.73 | 0.563 | <0.01 | 0.81 |
ADF, % | 51.30 | 52.89 | 54.52 | 56.04 | 57.44 | 0.443 | <0.01 | 0.69 |
TC, % | 72.73 | 70.89 | 68.00 | 64.09 | 59.13 | 0.769 | <0.01 | 0.01 |
NFC, % | 89.56 | 87.13 | 84.44 | 81.47 | 78.25 | 0.696 | <0.01 | 0.48 |
TND, % | 70.81 | 68.77 | 66.30 | 63.39 | 60.03 | 0.626 | <0.01 | 0.20 |
DE, Kcal | 2.94 | 2.91 | 2.89 | 2.89 | 2.90 | 0.027 | 0.65 | 0.74 |
Plasma and Urine Content | Level of Concentrate (% of Body Weight) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
1.2 | 0.9 | 0.6 | 0.3 | 0.0 | Lin | Qua | ||
Glucose, mg/dL | 56.67 | 56.56 | 56.44 | 56.33 | 56.22 | 1.600 | 0.92 | 0.47 |
NUP, mg/dL | 31.80 | 28.78 | 25.75 | 22.73 | 19.71 | 1.133 | <0.01 | 0.81 |
LUU, g/d | 154.43 | 149.28 | 144.14 | 138.99 | 133.85 | 7.520 | 0.29 | 0.71 |
LUU, mg/kg BW | 366.99 | 358.19 | 349.40 | 340.60 | 331.81 | 20.521 | 0.49 | 0.99 |
Milk Yield and Composition | Level of Concentrate (% of Body Weight) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
1.2 | 0.9 | 0.6 | 0.3 | 0.0 | Lin | Qua | ||
Milk Yield, Kg/d | 8.24 | 7.94 | 7.655 | 7.40 | 7.18 | 0.231 | 0.04 | 0.9 |
ECM, kg/d | 8.43 | 8.26 | 8.10 | 7.93 | 7.78 | 0.975 | 0.45 | 0.58 |
Protein, % | 3.87 | 3.85 | 3.82 | 3.80 | 3.77 | 0.017 | 0.03 | 0.18 |
Fat, % | 3.93 | 4.09 | 4.26 | 4.39 | 4.52 | 0.070 | <0.01 | 0.41 |
Lactose, % | 6.32 | 6.27 | 6.22 | 6.17 | 6.17 | 0.025 | <0.01 | 0.26 |
Not-fat solids, % | 11.02 | 10.93 | 10.81 | 10.76 | 10.68 | 0.046 | <0.01 | 0.36 |
MYE, kg/kg of DMI | 0.83 | 0.86 | 0.89 | 0.92 | 0.96 | 0.109 | 0.20 | 0.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biazolli, W.; Vinicius Morais de Oliveira, M.; Ferreira Luz, D.; de Oliveira Seno, L.; Martins Wanderley, A.; Loesia Lima, P.G.; Fernandes, T.; de Vargas Junior, F.M. Milk Potential of Pantaneira Cows, a Local Breed, at Organic System. Animals 2020, 10, 1079. https://doi.org/10.3390/ani10061079
Biazolli W, Vinicius Morais de Oliveira M, Ferreira Luz D, de Oliveira Seno L, Martins Wanderley A, Loesia Lima PG, Fernandes T, de Vargas Junior FM. Milk Potential of Pantaneira Cows, a Local Breed, at Organic System. Animals. 2020; 10(6):1079. https://doi.org/10.3390/ani10061079
Chicago/Turabian StyleBiazolli, Willian, Marcus Vinicius Morais de Oliveira, Dirce Ferreira Luz, Leonardo de Oliveira Seno, Alysson Martins Wanderley, Pedro Gustavo Loesia Lima, Tatiane Fernandes, and Fernando Miranda de Vargas Junior. 2020. "Milk Potential of Pantaneira Cows, a Local Breed, at Organic System" Animals 10, no. 6: 1079. https://doi.org/10.3390/ani10061079
APA StyleBiazolli, W., Vinicius Morais de Oliveira, M., Ferreira Luz, D., de Oliveira Seno, L., Martins Wanderley, A., Loesia Lima, P. G., Fernandes, T., & de Vargas Junior, F. M. (2020). Milk Potential of Pantaneira Cows, a Local Breed, at Organic System. Animals, 10(6), 1079. https://doi.org/10.3390/ani10061079