Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Donazar, J.A.; Negro, J.J.; Palacios, C.J.; Gangoso, L.; Godoy, J.A.; Ceballos, O.; Hiraldo, F.N.; Capote, N. Description of a new subspecies of Neophron percnopterus from the Canary Islands. J. Raptor Res. 2002, 36, 17–23. [Google Scholar]
- van Overveld, T.; García-Alfonso, M.; Dingemanse, N.J.; Bouten, W.; Gangoso, L.; de la Riva, M.; Serrano, D.; Donázar, J.A. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Cortés-Avizanda, A.; Blanco, G.; Devault, T.L.; Markandya, A.; Virani, M.Z.; Brandt, J.; Donázar, J.A. Supplementary feeding and endangered avian scavengers: Benefits, caveats, and controversies. Front. Ecol. Environ. 2016, 14, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. Bol. Of. Estado 2011, 46, 20912–20951. (In Spanish)
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. The need for efforts to obtain high quality evidence in a one health approach. Biomed. Res. 2018, 29, 2355–2361. [Google Scholar]
- British Veterinary Association. Strategy adopts a One Health approach to antimicrobial resistance. Vet. Rec. 2013, 173, 255. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef] [Green Version]
- Walther, B.A.; Boëte, C.; Binot, A.; By, Y.; Cappelle, J.; Carrique-Mas, J.; Chou, M.; Furey, N.; Kim, S.; Lajaunie, C.; et al. Biodiversity and health: Lessons and recommendations from an interdisciplinary conference to advise Southeast Asian research, society and policy. Infect. Genet. Evol. 2016, 40, 29–46. [Google Scholar] [CrossRef]
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. Ups. J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 19 March 2020).
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 24, S44–S51. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Heal. 2019, 3, e357–e369. [Google Scholar] [CrossRef] [Green Version]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Molina-López, R.A.; Vidal, A.; Obón, E.; Martín, M.; Darwich, L. Multidrug-resistant Salmonella enterica serovar typhimurium monophasic variant 4,12:i:-Isolated from asymptomatic wildlife in a catalonian wildlife rehabilitation center, Spain. J. Wildl. Dis. 2015, 51, 759–763. [Google Scholar] [CrossRef]
- Vidal, A.; Baldomà, L.; Molina-López, R.A.; Martin, M.; Darwich, L. Microbiological diagnosis and antimicrobial sensitivity profiles in diseased free-living raptors. Avian Pathol. 2017, 46, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Radhouani, H.; Poeta, P.; Gonçalves, A.; Pacheco, R.; Sargo, R.; Igrejas, G. Wild birds as biological indicators of environmental pollution: Antimicrobial resistance patterns of Escherichia coli and Enterococci isolated from common buzzards (Buteo buteo). J. Med. Microbiol. 2012, 61, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, A.; Fioretti, A.; Russo, T.P.; Varriale, L.; Rampa, L.; Paone, S.; De Luca Bossa, L.M.; Raia, P.; Dipineto, L. Occurrence of enteropathogenic bacteria in birds of prey in Italy. Lett. Appl. Microbiol. 2018, 66, 202–206. [Google Scholar] [CrossRef]
- Grzywaczewski, G.; Kowalczyk-Pecka, D.; Cios, S.; Bojar, W.; Junkuszew, A.; Bojar, H.; Kolejko, M. Tawny owl Strix aluco as a potential transmitter of Enterobacteriaceae epidemiologically relevant for forest service workers, nature protection service and ornithologists. Ann. Agric. Environ. Med. 2017, 24, 62–65. [Google Scholar] [CrossRef]
- Badia-Boher, J.A.; Sanz-Aguilar, A.; de la Riva, M.; Gangoso, L.; van Overveld, T.; García-Alfonso, M.; Luzardo, O.P.; Suarez-Pérez, A.; Donázar, J.A. Evaluating European LIFE conservation projects: Improvements in survival of an endangered vulture. J. Appl. Ecol. 2019, 56, 1210–1219. [Google Scholar] [CrossRef]
- Marin, C.; Palomeque, M.D.; Marco-Jiménez, F.; Vega, S. Wild griffon vultures (Gyps fulvus) as a source of Salmonella and Campylobacter in eastern Spain. PLoS ONE 2014, 9, 1–5. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute, C. M02-A12: Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition. Clin. Lab. Stand. Inst. 2015, 35, 73. [Google Scholar]
- Mukerji, S.; O’Dea, M.; Barton, M.; Kirkwood, R.; Lee, T.; Abraham, S. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Essays Biochem. 2017, 61, 23–35. [Google Scholar]
- Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barrón, D. Wildlife contamination with fluoroquinolones from livestock: Widespread occurrence of enrofloxacin and marbofloxacin in vultures. Chemosphere 2016, 144, 1536–1543. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Barrón, D. Food safety in scavenger conservation: Diet-associated exposure to livestock pharmaceuticals and opportunist mycoses in threatened Cinereous and Egyptian vultures. Ecotoxicol. Environ. Saf. 2017, 135, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Yang, R.S.; Xia, J.; Chen, L.; Zhang, R.; Fang, L.X.; Lei, F.; Song, G.; Jia, L.; Han, L.; et al. High colonization rate of a novel carbapenem-resistant Klebsiella lineage among migratory birds at Qinghai Lake, China. J. Antimicrob. Chemother. 2019, 74, 2895–2903. [Google Scholar] [CrossRef] [PubMed]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzouvelekis, L.S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolejska, M.; Masarikova, M.; Dobiasova, H.; Jamborova, I.; Karpiskova, R.; Havlicek, M.; Carlile, N.; Priddel, D.; Cizek, A.; Literak, I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016, 71, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Van Duijkeren, E.; Schwarz, C.; Bouchard, D.; Catry, B.; Pomba, C.; Baptiste, K.E.; Moreno, M.A.; Rantala, M.; Ružauskas, M.; Sanders, P.; et al. The use of aminoglycosides in animals within the EU: Development of resistance in animals and possible impact on human and animal health: A review. J. Antimicrob. Chemother. 2019, 74, 2480–2496. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Available online: http://data.europa.eu/eli/reg/2019/6/oj (accessed on 2 June 2020).
- Marrow, J.; Whittington, J.K.; Mitchell, M.; Hoyer, L.L.; Maddox, C. Prevalence and antibiotic-resistance characteristics of Enterococcus spp. isolated from free-living and captive raptors in central Illinois. J. Wildl. Dis. 2009, 45, 302–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tormoehlen, K.; Johnson-Walker, Y.J.; Lankau, E.W.; Myint, M.S.; Herrmann, J.A. Considerations for studying transmission of antimicrobial resistant enteric bacteria between wild birds and the environment on intensive dairy and beef cattle operations. Peer J. 2019, 2019, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Maherchandani, S.; Shringi, B.N.; Kashyap, S.K.; Sundar, K.S.G. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture. Infect. Ecol. Epidemiol. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacopello, C.; Foti, M.; Mascetti, A.; Grosso, F.; Ricciardi, D.; Fisichella, V.; Lo Piccolo, F. Antibiotico resistenza in ceppi di Enterobacteriaceae isolati da avifauna europea ricoverata presso un centro di recupero per la fauna selvatica. Vet. Ital. 2016, 52, 139–144. (In Italian) [Google Scholar] [PubMed]
- Guenther, S.; Aschenbrenner, K.; Stamm, I.; Bethe, A.; Semmler, T.; Stubbe, A.; Stubbe, M.; Batsajkhan, N.; Glupczynski, Y.; Wieler, L.H.; et al. Comparable High Rates of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli in Birds of Prey from Germany and Mongolia. PLoS ONE 2012, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Blanco, G.; Díaz de Tuesta, J.A. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers. Sci. Total Environ. 2018, 634, 1513–1518. [Google Scholar] [CrossRef]
- Battisti, A.; Di Guardo, G.; Agrimi, U.; Bozzano, A.I. Embryonic and neonatal mortality from salmonellosis in captive bred raptors. J. Wildl. Dis. 1998, 34, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Blanco, G. Supplementary feeding as a source of multiresistant Salmonella in endangered Egyptian vultures. Transbound. Emerg. Dis. 2018, 65, 806–816. [Google Scholar] [CrossRef]
- Molina-Lopez, R.A.; Valverdú, N.; Martin, M.; Mateu, E.; Obon, E.; Cerdà-Cuéllar, M.; Darwich, L. Wild raptors as carriers of antimicrobial resistant Salmonella and Campylobacter strains. Vet. Rec. 2011, 168, 565–568. [Google Scholar] [CrossRef]
- Botti, V.; Valérie Navillod, F.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Vet. Ital. 2013, 49, 195–202. [Google Scholar] [PubMed]
- Jijón, S.; Wetzel, A.; LeJeune, J. Salmonella enterica isolated from Wildlife at two Ohio Rehabilitation Centers. J. Zoo Wildl. Med. 2007, 38, 409–413. [Google Scholar] [CrossRef]
- Seng, P.; Boushab, B.M.; Romain, F.; Gouriet, F.; Bruder, N.; Martin, C.; Paganelli, F.; Bernit, E.; Le Treut, Y.P.; Thomas, P.; et al. Emerging role of Raoultella ornithinolytica in human infections: A series of cases and review of the literature. Int. J. Infect. Dis. 2016, 45, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajjar, R.; Ambaraghassi, G.; Sebajang, H.; Schwenter, F.; Su, S.H. Raoultella ornithinolytica: Emergence and resistance. Infect. Drug Resist. 2020, 13, 1091–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauler-Ametlller, H.; Pretus, J.L.; Hernández-Matías, A.; Ortiz-Santaliestra, M.E.; Mateo, R.; Real, J. Domestic waste disposal sites secure food availability but diminish plasma antioxidants in Egyptian vulture. Sci. Total Environ. 2019, 650, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Resistant | Intermediate | Susceptible |
---|---|---|---|
Ampicillin | 54.25 | - | 45.75 |
Amoxicillin/Clavulanic Acid | 8.5 | 2.85 | 88.65 |
Cephalexin | 16.15 | 3.1 | 80.75 |
Cefpodoxime | 3.1 | 0.77 | 96.13 |
Piperacillin | 23.1 | 10 | 66.9 |
Imipenem | 6.96 | 1.54 | 91.5 |
Gentamicin | 11.5 | - | 88.5 |
Tobramycin | 8 | 1.4 | 90.6 |
Amikacin | 6.87 | - | 93.13 |
Enrofloxacin | 17.7 | 3.1 | 79.2 |
Marbofloxacin | 16.15 | 0.75 | 83.1 |
Tetracycline | 48.44 | 1.56 | 50 |
Nitrofurantoin | 6.15 | 10 | 83.85 |
Chloramphenicol | 15.38 | 16.15 | 68.47 |
Polymyxin B | 3.7 | - | 96.3 |
Trimethoprim/Sulfamethoxazole | 46.85 | - | 53.15 |
Antibiotic | Resistant | Intermediate | Susceptible | ||||||
---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2015 | 2016 | 2017 | 2015 | 2016 | 2017 | |
Ampicillin | 53.3 | 50 | 60 | - | - | - | 46.7 | 50 | 40 |
Amoxicillin/Clavulanic Acid | 10.35 | 25 | 12 | - | - | 8 | 89.65 | 75 | 80 |
Cephalexin | - | 16.4 | 22.9 | 4.8 | - | 6.25 | 95.2 | 83.6 | 70.85 |
Cefpodoxime | - | 4.9 | 2.1 | - | - | 2.1 | 100 | 95.1 | 95.8 |
Piperacillin | 9.52 | 19.7 | 33.3 | 19 | 6.5 | 10.4 | 71.48 | 73.8 | 56.3 |
Imipenem | 4.7 | 5.1 | 10 | - | - | 4 | 95.3 | 94.9 | 86 |
Gentamicin | 3.33 | 16.4 | 10.4 | - | - | - | 96.67 | 83.6 | 89.6 |
Tobramycin | 3.33 | 9.9 | 8.4 | - | 1.65 | 2.1 | 96.67 | 88.5 | 89.5 |
Amikacin | - | 9.7 | 6.25 | - | - | - | 100 | 90.3 | 93.75 |
Enrofloxacin | 38.1 | 11.47 | 16.67 | 4.76 | 1.64 | 4.16 | 57.14 | 86.89 | 79.17 |
Marbofloxacin | 33.33 | 11.47 | 14.6 | - | - | 2.1 | 66.67 | 88.53 | 83.3 |
Tetracycline | 38.1 | 39 | 64.6 | - | 3.4 | - | 61.9 | 57.6 | 35.4 |
Nitrofurantoin | 14.3 | - | 10.42 | - | 4.9 | 20.83 | 85.7 | 95.1 | 68.75 |
Chloramphenicol | 14.3 | 9.8 | 22.9 | 4.7 | 6.6 | 33.35 | 81 | 83.6 | 43.75 |
Polymyxin B | - | - | 6.12 | - | - | - | 100 | 100 | 93.88 |
Trimethoprim/Sulfamethoxazole | 41.9 | 48.4 | 48 | - | - | - | 58.1 | 51.6 | 52 |
Antibiotic | Age | Resistant | Intermediate | Susceptible | Chi-Squared (χ2) | p-Value |
---|---|---|---|---|---|---|
Ampicillin | chicks | 46.9 | - | 53.1 | 3.404 | 0.065 |
rest | 63.9 | - | 36.1 | |||
Amoxicillin/Clavulanic Acid | chicks | 2.45 | 2.45 | 95.1 | 7.308 | 0.007 * |
rest | 16.7 | 3.3 | 80 | |||
Cephalexin | chicks | 11.6 | 1.3 | 87.1 | 2.274 | 0.132 |
rest | 23.1 | 5.8 | 71.1 | |||
Cefpodoxime | chicks | 1.28 | - | 98.72 | 0.871 | 0.351 |
rest | 5.77 | 1.93 | 92.3 | |||
Piperacillin | chicks | 13.9 | 8.9 | 77.2 | 8.235 | 0.004 * |
rest | 37.25 | 11.75 | 51 | |||
Imipenem | chicks | 3.8 | 1.3 | 94.9 | 1.942 | 0.163 |
rest | 11.8 | 1.9 | 86.3 | |||
Gentamicin | chicks | 12.8 | - | 87.2 | 0.060 | 0.807 |
rest | 9.83 | - | 90.17 | |||
Tobramycin | chicks | 6.4 | 2.6 | 91 | 0.124 | 0.724 |
rest | 9.8 | - | 90.2 | |||
Amikacin | chicks | 6.34 | - | 93.66 | 0.012 | 0.914 |
rest | 7.69 | - | 92.31 | |||
Enrofloxacin | chicks | 19.2 | 1.3 | 79.5 | 0.108 | 0.743 |
rest | 15.38 | 5.77 | 78.85 | |||
Marbofloxacin | chicks | 17.9 | - | 82.1 | 0.192 | 0.662 |
rest | 13.47 | 1.93 | 84.6 | |||
Tetracycline | chicks | 36.36 | 1.3 | 62.34 | 10.099 | 0.001 * |
rest | 66.66 | 1.96 | 31.38 | |||
Nitrofurantoin | chicks | 5.12 | 6.42 | 88.46 | 0.050 | 0.823 |
rest | 7.7 | 15.38 | 76.92 | |||
Chloramphenicol | chicks | 7.7 | 14.1 | 78.2 | 7.448 | 0.006 * |
rest | 27 | 19.2 | 53.8 | |||
Polymyxin B | chicks | 4.35 | - | 95.65 | 0.059 | 0.809 |
rest | 2.85 | - | 97.15 | |||
Trimethoprim/ Sulfamethoxazole | chicks | 45.68 | - | 54.32 | 3.404 | 0.065 |
rest | 48.38 | - | 51.62 |
Antibiotic | Species * | Resistant | Intermediate | Susceptible |
---|---|---|---|---|
Ampicillin | E. coli | 51.3 | - | 48.7 |
Salmonella | 22.22 | - | 77.78 | |
Others | 85 | - | 15 | |
Amoxicillin/Clavulanic Acid | E. coli | 6.2 | 2.8 | 91 |
Salmonella | - | - | 100 | |
Others | 25 | 5 | 70 | |
Cephalexin | E. coli | 7.8 | 1 | 91.2 |
Salmonella | 88.89 | - | 11.11 | |
Others | 26.3 | 15.8 | 57.9 | |
Cefpodoxime | E. coli | 3.9 | - | 96.1 |
Salmonella | - | - | 100 | |
Others | - | 5.26 | 94.74 | |
Piperacillin | E. coli | 19.4 | 11.6 | 69 |
Salmonella | 22.22 | 11.11 | 66.67 | |
Others | 44.44 | - | 55.56 | |
Imipenem | E. coli | 4.9 | - | 95.1 |
Salmonella | - | 11.11 | 88.89 | |
Others | 21 | 5.3 | 73.7 | |
Gentamicin | E. coli | 5.45 | - | 94.55 |
Salmonella | 100 | - | - | |
Others | 5 | - | 95 | |
Tobramycin | E. coli | 2.7 | 1.8 | 95.5 |
Salmonella | 77.78 | - | 22.22 | |
Others | 5 | - | 95 | |
Amikacin | E. coli | 1 | - | 99 |
Salmonella | 88.89 | - | 11.11 | |
Others | - | - | 100 | |
Enrofloxacin | E. coli | 19 | 2.9 | 78.1 |
Salmonella | - | - | 100 | |
Others | 15.8 | 5.3 | 78.9 | |
Marbofloxacin | E. coli | 18.6 | - | 81.4 |
Salmonella | - | - | 100 | |
Others | 10.5 | 5.3 | 84.2 | |
Tetracycline | E. coli | 45.5 | 2 | 52.5 |
Salmonella | 25 | - | 75 | |
Others | 73.7 | - | 26.3 | |
Nitrofurantoin | E. coli | 2.95 | 5.88 | 91.17 |
Salmonella | - | 22.22 | 77.78 | |
Others | 26.3 | 26.3 | 47.4 | |
Chloramphenicol | E. coli | 14.7 | 16.7 | 68.6 |
Salmonella | - | - | 100 | |
Others | 26.3 | 21 | 52.7 | |
Polymyxin B | E. coli | 5 | - | 95 |
Salmonella | - | - | 100 | |
Others | - | - | 100 | |
Trimethoprim/Sulfamethoxazole | E. coli | 50 | - | 50 |
Salmonella | - | - | 100 | |
Others | 50 | - | 50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Donázar, J.A.; Rosales, R.S.; Morales, M.; Tejedor-Junco, M.T. Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals 2020, 10, 970. https://doi.org/10.3390/ani10060970
Suárez-Pérez A, Corbera JA, González-Martín M, Donázar JA, Rosales RS, Morales M, Tejedor-Junco MT. Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals. 2020; 10(6):970. https://doi.org/10.3390/ani10060970
Chicago/Turabian StyleSuárez-Pérez, Alejandro, Juan Alberto Corbera, Margarita González-Martín, José Antonio Donázar, Rubén Sebastián Rosales, Manuel Morales, and María Teresa Tejedor-Junco. 2020. "Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)" Animals 10, no. 6: 970. https://doi.org/10.3390/ani10060970
APA StyleSuárez-Pérez, A., Corbera, J. A., González-Martín, M., Donázar, J. A., Rosales, R. S., Morales, M., & Tejedor-Junco, M. T. (2020). Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals, 10(6), 970. https://doi.org/10.3390/ani10060970