Wild Micromammals as Bioindicators of Antibiotic Resistance in Ecopathology in Northern Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Areas
2.1.1. Altitude
2.1.2. Urbanization and Domestic Animal Presence
2.2. Sampling
2.3. Cultural Examination
2.4. Antimicrobial Susceptibility
2.5. Statistical Analysis
3. Results
3.1. Altitude
3.2. Species
3.3. Age and Sex
3.4. Urbanization Levels
3.5. Antibiotics
4. Discussion
Limits of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Artois, M.; Delahay, R.; Guberti, V.; Cheeseman, C. Control of infectious diseases of wildlife in Europe. Vet. J. 2001, 162, 141–152. [Google Scholar] [CrossRef] [PubMed]
- OIE. World Organisation for Animal Health. 2018. Available online: http://www.oie.int/ (accessed on 15 May 2020).
- Patel, J.B.; Richter, S.S. Mechanisms of resistance to antibacterial agents. In Manual of Clinical Microbiology, 11th ed.; American Society for Microbiology: Washington, DC, USA, 2015; pp. 1212–1245. [Google Scholar]
- McVey, E.A.; Montforts, M.H.M.M. Antimicrobial Resistance in the Environment; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front. Microbiol. 2014, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Kim, S.-C.; Carlson, K.H.; Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 2006, 40, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Vittecoq, M.; Godreuil, S.; Prugnolle, F.; Durand, P.; Brazier, L.; Renaud, N.; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M. Antimicrobial resistance in wildlife. J. Appl. Ecol. 2016, 53, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207. [Google Scholar] [CrossRef]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef] [Green Version]
- Gilliver, M.A.; Bennett, M.; Begon, M.; Hazel, S.M.; Hart, C.A. Enterobacteria: Antibiotic resistance found in wild rodents. Nature 1999, 401, 233–234. [Google Scholar] [CrossRef]
- Miller, R.V.; Gammon, K.; Day, M.J. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Can. J. Microbiol. 2009, 55, 37–45. [Google Scholar] [CrossRef]
- Österblad, M.; Norrdahl, K.; Korpimäki, E.; Huovinen, P. Antibiotic resistance: How wild are wild mammals? Nature 2001, 409, 37–38. [Google Scholar] [CrossRef]
- Singer, R.S.; Ward, M.P.; Maldonado, G. Can landscape ecology untangle the complexity of antibiotic resistance? Nat. Rev. Microbiol. 2007, 5, 82. [Google Scholar] [CrossRef]
- Lanfranchi, P.; Ferroglio, E.; Poglayen, G.; Guberti, V. Wildlife veterinarian, conservation and public health. Vet. Res. Com. 2003, 27, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Noss, R.F. Assessing and monitoring forest biodiversity: A suggested framework and indicators. For. Ecol. Manag. 1999, 115, 135–146. [Google Scholar] [CrossRef]
- Lambeck, R.J. Focal Species: A Multi-Species Umbrella for Nature Conservation: Especies Focales: Una Sombrilla Multiespecífica para Conservar la Naturaleza. Conserv. Biol. 1997, 11, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Holt, E.A.; Miller, S.W. Bioindicators: Using organisms to measure environmental impacts. Nat. Educ. Knowl. 2011, 3, 8. [Google Scholar]
- Cole, D.; Drum, D.; Stalknecht, D.; White, D.G.; Lee, M.D.; Ayers, S.; Sobsey, M.; Maurer, J.J. Free-living Canada geese and antimicrobial resistance. Emerg. Infect. Dis. 2005, 11, 935–938. [Google Scholar] [CrossRef]
- Radhouani, H.; Poeta, P.; Goncalves, A.; Pacheco, R.; Sargo, R.; Igrejas, G. Wild birds as biological indicators of environmental pollution: Antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J. Med. Microbiol. 2012, 61, 837–843. [Google Scholar] [CrossRef]
- Furness, L.E.; Campbell, A.; Zhang, L.; Gaze, W.H.; Mcdonald, R.A. Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance. Environ. Res. 2017, 154, 28–34. [Google Scholar] [CrossRef]
- Korn, H. Changes in home range size during growth and maturation of the wood mouse (Apodemus sylvaticus) and the bank vole (Clethrionomys glareolus). Oecologia 1986, 68, 623–628. [Google Scholar] [CrossRef]
- Williams, N.; Sherlock, C.; Jones, T.; Clough, H.; Telfer, S.; Begon, M.; French, N.; Hart, C.; Bennett, M. The prevalence of antimicrobial-resistant Escherichia coli in sympatric wild rodents varies by season and host. J. Appl. Microbiol. 2011, 110, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Boyce, C.C.; Boyce, J.L. Population biology of Microtus arvalis. II. Natal and breeding dispersal of females. J. Anim. Ecol. 1988, 57, 723. [Google Scholar] [CrossRef]
- Mikesic, D.G.; Drickamer, L.C. Factors affecting home-range size in house mice (Mus musculus domesticus) living in outdoor enclosures. Am. Midl. Nat. 1992, 127, 31. [Google Scholar] [CrossRef]
- Gorman, M.L.; Akbarbin, Z.; Ahmad, M. A comparative study of the ecology of woodmice Apodemus sylvaticus in two contrasting habitats: Deciduous woodland and maritime sand-dunes. J. Zool. 1993, 229, 385–396. [Google Scholar] [CrossRef]
- Attuquayefio, D.; Gorman, M.; Wolton, R. Home range sizes in the wood mouse Apodemus sylvaticus: Habitat, sex and seasonal differences. J. Zool. 1986, 210, 45–53. [Google Scholar] [CrossRef]
- Genoud, M. Energetic strategies of shrews: Ecological constraints and evolutionary implications. Mammal. Rev. 1988, 18, 173–193. [Google Scholar] [CrossRef]
- Poli, G.; Dall’Ara, P.; Martino, P.A.; Rosati, S. Microbiologia e Immunologia Veterinaria; Edra: Torino, Italy, 2017. [Google Scholar]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, CLSI standard VET01, 5th ed.; CLSI: Wayne, PA, USA, 2005. [Google Scholar]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, CLSI supplement M100, 28th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infec. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Galani, I.; Kontopidou, F.; Souli, M.; Rekatsina, P.D.; Koratzanis, E.; Deliolanis, J.; Giamarellou, H. Colistin susceptibility testing by Etest and disk diffusion methods. Int. J. Antimicrob. Ag. 2008, 31, 434–439. [Google Scholar] [CrossRef]
- Lewis, J.S.; Bush, K. Antibacterial agents. In Manual of Clinical Microbiology, 11th ed.; American Society for Microbiology: Washington, DC, USA, 2015. [Google Scholar]
- Carignan, V.; Villard, M.A. Selecting indicator species to monitor ecological integrity: A review. Environ. Monit. Assess 2002, 78, 45–61. [Google Scholar] [CrossRef]
- Cairns, J., Jr.; Van der Schalie, W.H. Biological monitoring Part I—Early warning systems. Water Res. 1980, 14, 1179–1196. [Google Scholar] [CrossRef]
- Rapport, D.J. Challenges in the detection and diagnosis of pathological change in aquatic ecosystems. J. Great Lakes Res. 1990, 16, 609–618. [Google Scholar] [CrossRef]
- Gilliver, M.A.; Bennett, M.; Begon, M.; Hazel, S.M.; Hart, C.A. Reply: How wild are wild mammals? Nature 2001, 409, 38. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Updated Advice on the Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health; European Medicines Agency: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Wang, R.L.; Dorp, L.P.; Shaw, P.; Bradley, Q.; Wang, X.; Wang, L.; Jin, Q.; Zhang, Y.; Liu, A. Rieux The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Comm. 2018, 9, 1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site | Altitude (m) | Zones of Altitude | Urbanization and Domestic Animal Presence | Latitude | Longitude |
---|---|---|---|---|---|
A | 43 | 1 | Yes | 44°50′6.95′′ N | 10°17′58.15′′ E |
B | 154 | 2 | Yes | 44°38′59.80′′ N | 10°23′5.81′′ E |
C | 52 | 1 | Yes | 44°50′13.31′′ N | 10°19′9.19′′ E |
D | 42 | 1 | Yes | 44°51′21.76′′ N | 10°19′54.62′′ E |
E | 145 | 2 | No | 44°38′7.51′′ N | 10°24′55.67′′ E |
F | 26 | 1 | No | 44°55′15.36′′ N | 10°27′10.13′′ E |
H | 219 | 2 | Yes | 44°39′17.97′′ N | 10°16′39.99′′ E |
I | 744 | 3 | Yes | 44°30′29.58′′ N | 9°55′14.16′′ E |
K | 623 | 3 | Yes | 44°34′2.15′′ N | 9°53′57.57′′ E |
L | 962 | 3 | No | 44°29′29.92′′ N | 10°16′51.77′′ E |
M | 421 | 2 | No | 44°35′32.25′′ N | 11° 6′42.17′′ E |
N | 164 | 2 | Yes | 44°40′18.31′′ N | 10°19′53.94′′ E |
Antibiotics Classes | Antibiotics | I | R | S | Tot. | Resistance (%) |
---|---|---|---|---|---|---|
Aminoglicosides | Amikacin | 12 | 53 | 13 | 78 | 83% |
Gentamicin | 4 | 64 | 10 | 78 | 87% | |
Penicillins and β-lattamase inhibitors | Amoxicillin + Clavulanic Acid | 4 | 7 | 59 | 70 | 16% |
Penicillins | Ampicillin | 5 | 15 | 49 | 69 | 29% |
Monobactams | Aztreonam | 2 | 10 | 66 | 78 | 15% |
Cephalosporin I° generation | Cephazolin | 3 | 22 | 45 | 70 | 36% |
Cephalosporin III° generation | Cefotaxime | 5 | 9 | 64 | 78 | 18% |
Ceftazidime | 4 | 6 | 68 | 78 | 13% | |
Ceftriaxone | 6 | 3 | 69 | 78 | 12% | |
Fluoroquinolones | Ciprofloxacin | 8 | 3 | 67 | 78 | 14% |
Enrofloxacin | 6 | 6 | 66 | 78 | 15% | |
Phenicols | Chloramphenicol | 2 | 5 | 71 | 78 | 9% |
Polimixins | Colistin | 0 | 74 | 4 | 78 | 95% |
Carbapenems | Imipenem | 1 | 2 | 75 | 78 | 4% |
Penicillin Anti-Pseudomonas | Piperacillin + Tazobactam | 4 | 3 | 71 | 78 | 9% |
Tetracyclines | Tetracycline | 3 | 11 | 64 | 78 | 18% |
Folate inhibitors | Trimethoprim+ Sulfamethoxazole | 7 | 14 | 57 | 78 | 27% |
Antibiotics | I | R | S | Tot. | Resistance (%) |
---|---|---|---|---|---|
Amikacin | 6 | 39 | 8 | 53 | 85% |
Gentamicin | 1 | 44 | 8 | 53 | 85% |
Amoxicillin + Clavulanic Acid | 2 | 4 | 47 | 53 | 11% |
Ampicillin | 2 | 10 | 41 | 53 | 23% |
Aztreonam | 1 | 7 | 45 | 53 | 15% |
Cephazolin | 2 | 10 | 41 | 53 | 23% |
Cefotaxime | 1 | 3 | 49 | 53 | 8% |
Ceftazidime | 1 | 1 | 51 | 53 | 4% |
Ceftriaxone | 2 | 1 | 50 | 53 | 6% |
Ciprofloxacin | 3 | 2 | 48 | 53 | 9% |
Enrofloxacin | 2 | 2 | 49 | 53 | 8% |
Chloramphenicol | 1 | 3 | 49 | 53 | 8% |
Colistin | 0 | 50 | 3 | 53 | 94% |
Imipenem | 1 | 2 | 50 | 53 | 6% |
Piperacillin + Tazobactam | 1 | 0 | 52 | 53 | 2% |
Tetracycline | 1 | 9 | 43 | 53 | 19% |
Trimethoprim+ Sulfamethoxazole | 2 | 6 | 45 | 53 | 15% |
Site | Isolates | MDR | % |
---|---|---|---|
A | 16 | 11 | 68.75% |
B | 7 | 4 | 57.14% |
C | 5 | 0 | 0% |
D | 4 | 2 | 50.00% |
E | 10 | 1 | 10.00% |
F | 1 | 1 | 100% |
H | 4 | 1 | 25.00% |
I | 11 | 7 | 63.64% |
K | 6 | 5 | 83.33% |
L | 5 | 3 | 60.00% |
M | 3 | 2 | 66.67% |
N | 6 | 6 | 100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanardi, G.; Iemmi, T.; Spadini, C.; Taddei, S.; Cavirani, S.; Cabassi, C.S. Wild Micromammals as Bioindicators of Antibiotic Resistance in Ecopathology in Northern Italy. Animals 2020, 10, 1184. https://doi.org/10.3390/ani10071184
Zanardi G, Iemmi T, Spadini C, Taddei S, Cavirani S, Cabassi CS. Wild Micromammals as Bioindicators of Antibiotic Resistance in Ecopathology in Northern Italy. Animals. 2020; 10(7):1184. https://doi.org/10.3390/ani10071184
Chicago/Turabian StyleZanardi, Giovanna, Tiziano Iemmi, Costanza Spadini, Simone Taddei, Sandro Cavirani, and Clotilde Silvia Cabassi. 2020. "Wild Micromammals as Bioindicators of Antibiotic Resistance in Ecopathology in Northern Italy" Animals 10, no. 7: 1184. https://doi.org/10.3390/ani10071184
APA StyleZanardi, G., Iemmi, T., Spadini, C., Taddei, S., Cavirani, S., & Cabassi, C. S. (2020). Wild Micromammals as Bioindicators of Antibiotic Resistance in Ecopathology in Northern Italy. Animals, 10(7), 1184. https://doi.org/10.3390/ani10071184