Exercise Training Protocols in Rabbits Applied in Cardiovascular Research
Abstract
:Simple Summary
Abstract
1. Introduction
2. Exercise Training Protocols in Rabbits
2.1. Studies on the Effects of Acute Exercise in Rabbits
2.2. Protocols for Exercise Training in Rabbits
2.2.1. Treadmill Training Protocols
- (a)
- Continuous training protocols
- (b)
- Interval training protocols
2.2.2. Voluntary Training Protocols
2.2.3. Training Protocols on Rotating Wheel
3. Special Considerations When Applying Rabbit Training Protocols
4. Effects of Acute Exercise and Training on Rabbits and Clinical Utility
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Wisloff, U.; Kemi, O.J. Animal models in the study of exercise-induced cardiac hypertrophy. Physiol. Res. 2010, 59, 633–644. [Google Scholar]
- Arias-Mutis, O.J.; Marrachelli, V.G.; Ruiz-Saurí, A.; Alberola, A.; Morales, J.M.; Such-Miquel, L.; Monleon, D.; Chorro, F.J.; Such, L.; Zarzoso, M. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbi. PLoS ONE 2017, 12, e0178315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Fairus, A.; Ima-Nirwana, S. Animal models of metabolic syndrome: A review. Nutr. Metab. 2016, 13, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias-Mutis, Ó.J.; Genovés, P.; Calvo, C.J.; Díaz, A.; Parra, G.; Such-Miquel, L.; Such, L.; Alberola, A.; Chorro, F.J.; Zarzoso, M. An Experimental Model of Diet-Induced Metabolic Syndrome in Rabbit: Methodological Considerations, Development, and Assessmen. J. Vis. Exp. 2018, 134, e57117. [Google Scholar] [CrossRef] [PubMed]
- Billman, G.E. A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: Implications for future anti-arrhythmic drug development. Pharmacol. Ther. 2006, 111, 808–835. [Google Scholar] [CrossRef]
- Carroll, J.F.; Dwyer, T.M.; Grady, A.W.; Reinhart, G.A.; Montani, J.P.; Cockrell, K.A.; Meydrech, E.F.; Mizelle, H.L. Hypertension, cardiac hypertrophy, and neurohumoral activity in a new animal model of obesity. Am. J. Physiol. 1996, 271 Pt 2, H373–H378. [Google Scholar] [CrossRef]
- Jones, J.H. Resource Book for the Design of Animal Exercise Protocols. Am. J. Vet. Res. 2007, 68, 583. [Google Scholar] [CrossRef]
- De Bono, J.P.; Adlam, D.; Paterson, D.J.; Channon, K.M. Novel quantitative phenotypes of exercise training in mouse models. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Abreu, P.; Diogenes, S.V.; Leal-Cardoso, J.H.; Ceccatto, V.M. Anaerobic threshold employed on exercise training prescription and performance assessment for laboratory rodents: A short review. Life Sci. 2016, 151, 1–6. [Google Scholar] [CrossRef]
- Kemi, O.J.; Haram, P.M.; Loennechen, J.P.; Osnes, J.B.; Skomedal, T.; Wisløff, U.; Ellingsen, Ø. Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc. Res. 2005, 67, 161–172. [Google Scholar] [CrossRef]
- Haram, P.M.; Kemi, O.J.; Lee, S.J.; Bendheim, M.Ø.; Al-Share, Q.Y.; Waldum, H.L.; Gilligan, L.J.; Koch, L.G.; Britton, S.L.; Najjar, S.M.; et al. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc. Res. 2009, 81, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasenfuss, G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc. Res. 1998, 39, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, P.A.M.; Perilhão, M.S.; Da Silva, A.A.; Serra, A.J.; Júnior, A.F.; Bocalini, D.S. Cardiac Remodeling and Physical Exercise: A Brief Review about Concepts and Adaptations. Int. J. Sports Sci. 2016, 6, 52–61. [Google Scholar]
- Nerbonne, J.M.; Kass, R.S. Molecular Physiology of Cardiac Repolarization. Physiol. Rev. 2005, 85, 1205–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lengyel, C.; Virág, L.; Kovács, P.P.; Kristóf, A.; Pacher, P.; Kocsis, E.; Koltay, Z.M.; Nánási, P.P.; Tóth, M.; Kecskeméti, V.; et al. Role of slow delayed rectifier K+-current in QT prolongation in the alloxan-induced diabetic rabbit hear. Acta Physiol. 2008, 192, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, C.; Iost, N.; Virág, L.; Varró, A.; Lathrop, D.A.; Papp, J.G. Pharmacological block of the slow component of the outward delayed rectifier current (IKs) fails to lengthen rabbit ventricular muscle QTc and action potential duration. Br. J. Pharmacol. 2001, 132, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Torres-Jacome, J.; Gallego, M.; Rodríguez-Robledo, J.M.; Sanchez-Chapula, J.A.; Casis, O. Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes. Acta Physiol. 2008, 132, 101–110. [Google Scholar] [CrossRef]
- Such, L.; Alberola, A.M.; Such-Miquel, L.; López, L.; Trapero, I.; Pelechano, F.; Gómez-Cabrera, M.C.; Tormos, A.; Millet, J.; Chorro, F.J. Effects of chronic exercise on myocardial refractoriness: A study on isolated rabbit hear. Acta Physiol. 2008, 193, 331–339. [Google Scholar] [CrossRef]
- Zarzoso, M.; Such-Miquel, L.; Parra, G.; Brines-Ferrando, L.; Such, L.; Chorro, F.J.; Guerrero, J.; Guill, A.; O’Connor, J.E.; Alberola, A. The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity. Eur. J. Appl. Physiol. 2012, 112, 2185–2193. [Google Scholar] [CrossRef] [Green Version]
- Noujaim, S.F.; Stuckey, J.A.; Ponce-Balbuena, D.; Ferrer-Villada, T.; López-Izquierdo, A.; Pandit, S.; Calvo, C.J.; Grzeda, K.R.; Berenfeld, O. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. FASEB J. 2010, 24, 4302–4312. [Google Scholar] [CrossRef] [Green Version]
- Gaustad, S.E.; Rolim, N.; Wisløff, U. A valid and reproducible protocol for testing maximal oxygen uptake in rabbits. Eur. J. Prev. Cardiol. 2010, 17, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Waqar, A.B.; Koike, T.; Yu, Y.; Inoue, T.; Aoki, T.; Liu, E.; Fan, J. High-fat diet without excess calories induces metabolic disorders and enhances atherosclerosis in rabbits. Atherosclerosis 2010, 213, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Lozano, W.M.; Arias-Mutis, O.J.; Calvo, C.J.; Chorro, F.J.; Zarzoso, M. Diet-Induced Rabbit Models for the Study of Metabolic Syndrom. Animals 2019, 9, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, H.; Pierce, G.N. Metabolic and physiological response of the rabbit to continuous and intermittent treadmill exercise. Can. J. Physiol. Pharmacol. 1990, 68, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Shave, R.; Howatson, G.; Dickson, D.; Young, L. Exercise-induced cardiac remodeling: Lessons from humans, horses, and dogs. Vet. Sci. 2017, 4, 9. [Google Scholar] [CrossRef]
- Seo, D.Y.; Lee, S.R.; Kim, N.; Ko, K.S.; Rhee, B.D.; Han, J. Humanized animal exercise model for clinical implication. Pflug. Arch. Eur. J. Physiol. 2014, 466, 1673–1687. [Google Scholar] [CrossRef]
- Milani-Nejad, N.; Janssen, P.M.L. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol. Ther. 2014, 141, 235–249. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, K.; Bell, L.; Mittelstadt, S.; Clifford, P.S. Effect of dynamic exercise on renal sympathetic nerve activity in conscious rabbits. J. Appl. Physiol. 1993, 74, 2099–2104. [Google Scholar] [CrossRef]
- O’Hagan, K.P.; Casey, S.M.; Clifford, P.S. Muscle chemoreflex increases renal sympathetic nerve activity during exercise. J. Appl. Physiol. 1997, 82, 1818–1825. [Google Scholar] [CrossRef]
- Mueller, P.J.; O’Hagan, K.P.; Skogg, K.A.; Buckwalter, J.B.; Clifford, P.S. Renal hemodynamic responses to dynamic exercise in rabbits. J. Appl. Physiol. 1998, 85, 1605–1614. [Google Scholar] [CrossRef]
- Yang, A.L.; Jen, C.J.; Chen, H. Effects of high-cholesterol diet and parallel exercise training on the vascular function of rabbit aortas: A time course study. J. Appl. Physiol. 2003, 95, 1194–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.L.; Irvine, S.; Reid, I.A.; Patel, K.P.; Zucker, I.H. Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: A role for angiotensin I. Circulation 2000, 102, 1854–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.L.; Ding, Y.; Agnew, C.; Schultz, H.D. Exercise training improves peripheral chemoreflex function in heart failure rabbits. J. Appl. Physiol. 2008, 105, 782–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Tang, Q.; Zhu, L.; Huang, R.; Huang, L.; Koleini, M.; Zou, D. Effects of treatment of treadmill combined with electro-acupuncture on tibia bone mass and substance PExpression of rabbits with sciatic nerve injury. PLoS ONE 2016, 11, e0164652. [Google Scholar] [CrossRef] [PubMed]
- Such, L.; Rodriguez, A.; Alberola, A.; Lopez, L.; Ruiz, R.; Artal, L.; Pons, I.; Pons, M.L.; Garcia, C.; Chorro, F.J. Intrinsic changes on automatism, conduction, and refractoriness by exercise in isolated rabbit hear. J. Appl. Physiol. 2002, 92, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Valles, S.L.; Soler, C.; Mauricio, M.D. Chronic exercise impairs nitric oxide pathway in rabbit carotid and femoral arteries. J. Physiol. 2018, 596, 4361–4374. [Google Scholar] [CrossRef]
- Jen, C.J.; Chan, H.P.; Chen, H. Chronic exercise improves endothelial calcium signaling and vasodilatation in hypercholesterolemic rabbit femoral artery. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1219–1224. [Google Scholar] [CrossRef] [Green Version]
- Szabó, A.; Romvári, R.; Fébel, H.; Bogner, P.; Szendrõ, Z. Effects of physical training on the muscle fatty acid profile of meat type rabbits. Krmiva 2003, 45, 125–128. [Google Scholar]
- De Moraes, R.; Gioseffi, G.; Nóbrega, A.C.L.; Tibiriçá, E. Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits. J. Appl. Physiol. 2004, 97, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Polyák, A.J.; Kui, P.; Morvay, N.; Leprán, I.; Ágoston, G.; Varga, A.; Nagy, N.; Baczkó, I.; Farkas, A.; Papp, G.; et al. Long-term endurance training-induced cardiac adaptation in new rabbit and dog animal models of the human athlete’s hear. Rev. Cardiovasc. Med. 2018, 19, 135–142. [Google Scholar]
- Chen, C.Y.; Hsu, H.C.; Lee, B.C.; Lin, H.J.; Chen, Y.H.; Huang, H.C.; Ho, Y.L.; Chen, M.F. Exercise training improves cardiac function in infarcted rabbits: Involvement of autophagic function and fatty acid utilization. Eur. J. Heart Fail. 2010, 12, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabó, A.; Romvári, R.; Fébel, H.; Bogner, P.; Szendrõ, Z. Training-induced alterations of the fatty acid profile of rabbit muscles. Acta Vet. Hung. 2002, 50, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Videman, T.; Eronen, I. Effects of Treadmill Running on Glycosaminoglycans in Articular Cartilage of Rabbits. Int. J. Sports Med. 1984, 5, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Friman, C.; Eronen, I.; Videman, T. Effects of Treadmill Running on Plasma Glycosaminoglycans in Adult Rabbits. Int. J. Sports Med. 1986, 7, 330–332. [Google Scholar] [CrossRef]
- Hexeberg, E.; Westby, J.; Hessevik, I.; Hexeberg, S. Effects of endurance training on left ventricular performance: A study in anaesthetized rabbits. Acta Physiol. Scand. 1995, 154, 479–488. [Google Scholar] [CrossRef]
- Carroll, J.F.; Kiser, C.K. Exercise training in obesity lowers blood pressure independent of weight change. Med. Sci. Sports Exerc. 2002, 34, 596–601. [Google Scholar]
- Liu, J.L.; Kulakofsky, J.; Zucker, I.H. Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. J. Appl. Physiol. 2002, 92, 2403–2408. [Google Scholar] [CrossRef]
- Yang, A.L.; Chen, H. Chronic exercise reduces adhesion molecules/iNOS expression and partially reverses vascular responsiveness in hypercholesterolemic rabbit aorta. Atherosclerosis 2003, 169, 11–17. [Google Scholar] [CrossRef]
- Szabó, A.; Romvári, R.; Bogner, P.; Fébel, H.; Szendro, Z. Metabolic changes induced by regular submaximal aerobic exercise in meat-type rabbits. Acta Vet. Hung. 2003, 51, 503–512. [Google Scholar] [CrossRef]
- Pliquett, R.U.; Cornish, K.G.; Patel, K.P.; Schultz, H.D.; Peuler, J.D.; Zucker, I.H. Amelioration of depressed cardiopulmonary reflex control of sympathetic nerve activity by short-term exercise training in male rabbits with heart failure. J. Appl. Physiol. 2003, 95, 1883–1888. [Google Scholar] [CrossRef] [Green Version]
- Carroll, J.F. Isolated heart responsiveness to β-stimulation after exercise training in obesity. Med. Sci. Sports Exerc. 2003, 35, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Becker, V.; González-Serratos, H.; Álvarez, R.; Bäermann, M.; Irles, C.; Ortega, A. Effect of endurance exercise on the Ca2+ pumps from transverse tubule and sarcoplasmic reticulum of rabbit skeletal muscle. J. Appl. Physiol. 2004, 97, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jen, C.J.; Liu, Y.F.; Chen, H. Short-term exercise training improves vascular function in hypercholesterolemic rabbit femoral artery. Chin. J. Physiol. 2005, 48, 79–85. [Google Scholar] [PubMed]
- De Moraes, R.; Gioseffi, G.; Lopes N do, N.; Gomes, M.B.; Nóbrega, A.C.L.; Tibiriçá, E. Exercise training protects the renal circulation against high glucose challenge. Fundam. Clin. Pharmacol. 2005, 19, 537–543. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, R.; Valente, R.H.; Leon, I.R.; Trugilho, M.R.; Nóbrega, A.C.L.; Perales, J.; Tibirica, E. Chronic dynamic exercise increases apolipoprotein A-I expression in rabbit renal cortex as determined by proteomic technology. Br. J. Sports Med. 2008, 42, 386–388. [Google Scholar] [CrossRef]
- Gao, L.; Wang, W.; Liu, D.; Zucker, I.H. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 2007, 115, 3095–3102. [Google Scholar] [CrossRef] [Green Version]
- Marcus, N.J.; Pügge, C.; Mediratta, J.; Schiller, A.M.; Del Rio, R.; Zucker, I.H.; Schultz, H.D. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H259–H266. [Google Scholar] [CrossRef] [Green Version]
- Jover, B.; McGrath, B.P.; Ludbrook, J. Haemodynamic and Metabolic Responses of Laboratory Rabbits to Near-Maximal Treadmill Exercise. Clin. Exp. Pharmacol. Physiol. 1987, 14, 811–823. [Google Scholar] [CrossRef]
- Faris, I.B.; Jamieson, G.G.; Ludbrook, J. Effect of exercise on gain of the carotid-sinus reflex in rabbits. Clin. Sci. 1982, 63, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.J.; Yang, Y.C.; Lu, F.H.; Lin, T.S.; Chen, J.J.; Yeh, T.L.; Wu, C.H.; Wu, J.S. Altered Cardiac Autonomic Function May Precede Insulin Resistance in Metabolic Syndrome. Am. J. Med. 2010, 123, 432–438. [Google Scholar] [CrossRef]
- DiCarlo, S.; Bishop, V. Exercise training attenuates baroreflex regulation of nerve activity in rabbits. Am. J. Physiol. 1988, 255, H974–H979. [Google Scholar] [CrossRef] [PubMed]
Author | Exercise Protocol | |||||||
---|---|---|---|---|---|---|---|---|
Breed | Age | Adaptation | Equipment | Inclination | Type | Speed | Duration | |
Meng et al. [24] | NZW | 7 weeks old | 3 weeks | Treadmill | 2° | Continuous | 15–20 m/min | 3, 5 min, or until exhausted |
Intermittent | Moderate 40–50 m/min or high 70 m/min | 30 s of moderate work followed by 30 s of rest or 15 s of high work followed by 30 s of rest. | ||||||
O‘Hagan et al. [28] | NZW | NR | 2–5 weeks | Treadmill | 0° | Intermittent | 7 m/min | 5 min one or two bouts, 30 min of rest between bouts |
0° | Intermittent | 12 m/min | 2 min one or two bouts, 30 min of rest between bouts | |||||
O‘Hagan et al. [29] | NZW | NR | 5 weeks once or twice per week | Treadmill | 12° | Intermittent | 10–12 m/min | Two 3–5 min bouts, 45 min of rest between bouts |
Mueller et al. [30] | NZW | NR | 1–2 times a week | Treadmill | 10° | Continuous | 15 m/min | One or two 2–5 min bouts |
Gaustad et al. [21] | NZW | 12 weeks old | NR | Treadmill | 0° | Continuous | 1.8 m/min every 2 min until exhaustion | 4 min to exhaustion with rest of at least 24 min |
5° | ||||||||
10° | ||||||||
15° | ||||||||
20° |
Author | Exercise Protocol | |||||||
---|---|---|---|---|---|---|---|---|
Breed | Age | Adaptation | Equipment | Intensity | Duration | Frequency | Period | |
Videman et al. [43] | Californian | 39 weeks old | NR | Treadmill | 9 m/min with 20° of inclination | Until exhaustion | 3 times/day | 30 days |
Friman et al. [44] | NR | NR | NR | Treadmill | 9 m/min with 20° of inclination | Until exhaustion | 3 times/day | 30 days |
Hexeberg et al. [45] | NR | NR | NR | Treadmill | 8.3–20 m/min | 15–60 min/day | 5 days/week | 10 weeks |
Carroll et al. [46] | NZW | 15–17 weeks old | 1 week | Treadmill | 16.1–21.4 m/min | 7–8 min until 50–60 min/day at the last weeks | 5 days/week | 12 weeks |
Szabó et al. [42] | Pannon White | NR | 1 week | Treadmill | 3–6 m/min | Voluntary until complete 0.6–0.8 km/day | 2 times/day | 8 weeks |
Liu et al. [47] | NZW | NR | 1 week | Wheel | 15–18 m/min | 40 min/day | 6 days/week | 4 weeks |
Such et al. [35] | NZW | NR | 4 days | Treadmill | 30 m/min | 30 min/day | 5 days/week | 6 weeks |
Jen et al. [37] | NZW | NR | 1 week | Treadmill | 14.7 m/min | 10 until 60 min/day at the last weeks | 5 days/week | 8 weeks |
Yang et al. [48] | NZW | NR | 1 week | Treadmill | 14.7 m/min | 5–10 min until 60 min/day70% of MEC | 5 days/week | 8 weeks |
Szabó et al. [49] | Pannon White | 4 weeks old | 1 week | Treadmill | 3–9 m/min | Voluntary until complete 1.2–1.6 km/day | 2 times/day | 4 weeks |
Yang et al. [31] | NZW | NR | 1 week | Treadmill | 14.7 m/min | 30–40 min/day | 5 days/week | 6 weeks |
Pliquett et al. [50] | NZW | NR | NR | Treadmill | 18–20 m/min | 40 min/day | 6 days/week | 3 weeks |
Carroll et al. [51] | NZW | 15–17 weeks old | NR | Treadmill | 16.1–21.4 m/min | 30 min until 50–60 min at 10 weeks | 5 days/week | 12 weeks |
Becker et al. [52] | NZW | NR | NR | Treadmill | 11–27 m/min | 30 min/day | 5 days/week | 8 weeks |
De Moraes et al. [39] | NZW | NR | 2 weeks | Treadmill | 18 m/min | 60 min/day | 5 days/week | 12 weeks |
Jen et al. [53] | NZW | NR | NR | Treadmill | 14.7 m/min | 40 min/day | 5 day/week | 6 weeks |
De Moraes et al. [54] | NZW | NR | 2 weeks | Treadmill | 18 m/min | 60 min/day | 5 days/week | 12 weeks |
De Moraes et al. [55] | NZW | NR | 2 weeks | Treadmill | 18 m/min | 60 min/day | 5 day/week | 12 weeks |
Gao et al. [56] | NZW | NR | NR | Treadmill | 15–18 m/min | 40 min/day | 6 days/week | 4 weeks |
Li et al. [33] | NZW | NR | 1 week | Treadmill | 15–18 m/min | 30–40 min/day | 6 days/week | 5 weeks |
Chen et al. [41] | NZW | NR | 2 weeks | Treadmill | 8.3–16.7 m/min | 10–30 min/day | 5 days/week | 4 weeks |
Zarzoso et al. [19] | NZW | NR | 4 days | Treadmill | 20 m/min | 30 min/day | 5 days/week | 6 weeks |
Marcus et al. [57] | NZW | NR | NR | Treadmill | 8–13 m/min | 30 min/day | 5 days/week | 5 weeks |
Wang et al. [34] | NZW | 11–12 weeks old | 3 days | Treadmill | 10–20 m/min | 20 min/day | 6 days/week | 4 weeks |
Polyák et al. [40] | NZW | 47 weeks old | 2 weeks | Treadmill | 4.2–5 m/min with 3–7° of inclination | 20 min/day | 5 days/week | 16 weeks |
Marchio et al. [36] | NZW | NR | 4 days | Treadmill | 20 m/min | 30 min/day | 5 days/week | 6 weeks |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, W.M.; Parra, G.; Arias-Mutis, O.J.; Zarzoso, M. Exercise Training Protocols in Rabbits Applied in Cardiovascular Research. Animals 2020, 10, 1263. https://doi.org/10.3390/ani10081263
Lozano WM, Parra G, Arias-Mutis OJ, Zarzoso M. Exercise Training Protocols in Rabbits Applied in Cardiovascular Research. Animals. 2020; 10(8):1263. https://doi.org/10.3390/ani10081263
Chicago/Turabian StyleLozano, Wilson M., Germán Parra, Oscar J. Arias-Mutis, and Manuel Zarzoso. 2020. "Exercise Training Protocols in Rabbits Applied in Cardiovascular Research" Animals 10, no. 8: 1263. https://doi.org/10.3390/ani10081263
APA StyleLozano, W. M., Parra, G., Arias-Mutis, O. J., & Zarzoso, M. (2020). Exercise Training Protocols in Rabbits Applied in Cardiovascular Research. Animals, 10(8), 1263. https://doi.org/10.3390/ani10081263