Obesity-Induced Heart Rate Variability Impairment and Decreased Systolic Function in Obese Male Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Model and Research Protocol
2.2. Physical Examination
2.3. Blood Pressure Evaluation
2.4. Electrocardiographic Evaluation
2.5. Cardiac Function Determination
2.6. Blood Profiles and Oxidative Stress Determination
2.7. Heart Rate Variability (HRV) Determination
2.8. Statistical Analysis
3. Results
3.1. Body Weight and Body Condition Scores of Obese Dogs Were Higher than Non-Obese Dogs
3.2. Obese Dogs Produced More Oxidative Stress (MDA) than Non-Obese Dogs
3.3. Obese Dogs Have Reduced Cardiac Systolic Performance Compared to Non-Obese Dogs
3.4. Obese Dogs Demonstrated Eccentric Hypertrophy of Left Ventricle Compared to Non-Obese Dogs
3.5. Obese Dogs Demonstrated Alteration of Cardiac Sympathovagal Imbalance Compared to Non-Obese Dogs
3.6. No Relevant Differences were Found in ECG Morphology between Obese and Non-Obese Dogs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | Alanine aminotransferase | LVIDd | left ventricular internal diameter at end-diastole |
ALT | Alkaline phosphatase | LVIDs | left ventricular internal diameter at end-systole |
AO | Aortic root | LVPWd | Left ventricular posterior wall at end-diastole |
ASDNN | Average standard deviation of all 5 min R-R intervals | LVPWs | Left ventricular posterior wall at end-systole |
BCS | Body condition score | MCV | Mean corpuscular volume |
BP | Blood pressure | MCHC | Mean corpuscular hemoglobin concentration |
bpm | Beat per minute | MDA | Malondialdehyde |
BUN | Blood urea nitrogen | MEA | Mean electrical axis |
BW | Body weight | Mean NN | Average NN intervals |
ECG | Electrocardiography | mV | Milli-volt |
EF | Ejection fraction | pNN50 | Percentage of successive NN intervals >50 ms |
ESV | End-systolic volume | RBC | Red blood cell |
FS | Fractional shortening | RMSSD | Root mean square of the sum of the squares of differences between adjacent NN intervals |
HF | High frequency | ROS | Reactive oxygen species |
HFnu | High frequency in normalized unit | SDANN | Standard deviation of the averages of NN intervals in 5 min |
HRV | Heart rate variability | SDNN | Standard deviation of all NN intervals |
IVSd | Interventricular septum thickness at end-diastole | SDRR | Standard deviation of all R-R intervals |
IVSs | Interventricular septum thickness at end-systole | TP | Total power |
LA | Left atrium | ULF | Ultra-low frequency |
LF | Low frequency | VLF | Very low frequency |
LFnu | Low frequency in normalized unit | VVTI | Vasovagal tonus index |
LF/HF | Low frequency per high frequency | WBC | White blood cell |
LV | Left ventricular |
References
- German, A.J. The growing problem of obesity in dogs and cats. J. Nutr. 2006, 136, 1940S–1946S. [Google Scholar] [CrossRef] [Green Version]
- Lund, E.M.; Armstrong, P.J.; Kirk, C.A.; Klausner, J.S. Prevalence and risk factors for obesity in adult dogs from private US veterinary practices. Intern J. Appl. Res. Vet. Med. 2006, 4, 177–186. [Google Scholar]
- Piantedosi, D.; Di Loria, A.; Guccione, J.; De Rosa, A.; Fabbri, S.; Cortese, L.; Carta, S.; Ciaramella, P. Serum biochemistry profile, inflammatory cytokines, adipokines and cardiovascular findings in obese dogs. Vet. J. 2016, 216, 72–78. [Google Scholar] [CrossRef]
- German, A.J.; Morgan, L.E. How often do veterinarians assess the bodyweight and body condition of dogs? Vet. Rec. 2008, 163, 503–505. [Google Scholar] [CrossRef]
- Jeusette, I.; Greco, D.; Aquino, F.; Detilleux, J.; Peterson, M.; Romano, V.; Torre, C. Effect of breed on body composition and comparison between various methods to estimate body composition in dogs. Res. Vet. Sci 2010, 88, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Eastland-Jones, R.C.; German, A.J.; Holden, S.L.; Biourge, V.; Pickavance, L.C. Owner misperception of canine body condition persists despite use of a body condition score chart. J. Nutr. Sci. 2014, 3, e45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, L.; Cline, M.G. Perioperative physiology and pharmacology in the obese small animal patient. Vet. Anaesth. Analg. 2015, 42, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Chandler, M.L. Impact of Obesity on Cardiopulmonary Disease. Vet. Clin. North. Am. Small Anim. Pract. 2016, 46, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Manens, J.; Ricci, R.; Damoiseaux, C.; Gault, S.; Contiero, B.; Diez, M.; Clercx, C. Effect of body weight loss on cardiopulmonary function assessed by 6-minute walk test and arterial blood gas analysis in obese dogs. J. Vet. Intern. Med. 2014, 28, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, C.; Suarez, L.; Bautista-Castaño, I.; Juste, M.C.; Carretón, E.; Montoya-Alonso, J.A. Effects of low-fat high-fibre diet and mitratapide on body weight reduction, blood pressure and metabolic parameters in obese dogs. J. Vet. Med. Sci. 2014, 76, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- NetoI, G.B.P.; BrunettoI, M.A.; SousaI, M.G.; CarciofiII, A.C.; CamachoII, A.A. Effects of weight loss on the cardiac parameters of obese dogs. Pesqui. Veterinária Bras. 2010, 30, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Apaijai, N.; Chinda, K.; Palee, S.; Chattipakorn, S.; Chattipakorn, N. Combined vildagliptin and metformin exert better cardioprotection than monotherapy against ischemia-reperfusion injury in obese-insulin resistant rats. PLoS ONE 2014, 9, e102374. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chueainta, P.; Pongkan, W.; Boonyapakorn, C. Clinical applications of heart rate variability in dogs. Vet. Integr. Sci. 2019, 17, 195–220. [Google Scholar]
- Latchman, P.L.; Mathur, M.; Bartels, M.N.; Axtell, R.S.; De Meersman, R.E. Impaired autonomic function in normotensive obese children. Clin. Auton. Res. 2011, 21, 319–323. [Google Scholar] [CrossRef]
- Ates, F.; Topal, E.; Kosar, F.; Karincaoglu, M.; Yildirim, B.; Aksoy, Y.; Aladag, M.; Harputluoglu, M.M.M.; Demirel, U.; Alan, H.; et al. The relationship of heart rate variability with severity and prognosis of cirrhosis. Dig. Dis. Sci. 2006, 51, 1614–1618. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, M.; Moissl, U.; Garzotto, F.; Cruz, D.N.; Clementi, A.; Brendolan, A.; Tetta, C.; Gatti, E.; Signorini, M.G.; Cerutti, S.; et al. Effects of fluid overload on heart rate variability in chronic kidney disease patients on hemodialysis. BMC Nephrol. 2014, 15, 26. [Google Scholar] [CrossRef] [Green Version]
- Freitas, I.M.G.; Miranda, J.A.; Mira, P.A.C.; Lanna, C.M.M.; Lima, J.R.P.; Laterza, M.C. Cardiac autonomic dysfunction in obese normotensive children and adolescents. Rev. Paul Pediatr. 2014, 32, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.E.; Vesterholm, S.; Ludvigsen, T.P.; Häggström, J.; Pedersen, H.D.; Moesgaard, S.G.; Olsen, L.H. Holter monitoring in clinically healthy Cavalier King Charles Spaniels, Wire-haired Dachshunds, and Cairn Terriers. J. Vet. Intern. Med. 2011, 25, 460–468. [Google Scholar] [CrossRef]
- Doxey, S.; Boswood, A. Differences between breeds of dog in a measure of heart rate variability. Vet. Rec 2004, 154, 713–717. [Google Scholar] [CrossRef]
- Katayama, M.; Kubo, T.; Mogi, K.; Ikeda, K.; Nagasawa, M.; Kikusui, T. Heart rate variability predicts the emotional state in dogs. Behav. Process. 2016, 128, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Zupan, M.; Buskas, J.; Altimiras, J.; Keeling, L.J. Assessing positive emotional states in dogs using heart rate and heart rate variability. Physiol. Behav. 2016, 155, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Manzo, A.; Ootaki, Y.; Ootaki, C.; Kamohara, K.; Fukamachi, K. Comparative study of heart rate variability between healthy human subjects and healthy dogs, rabbits and calves. Lab. Anim. 2009, 43, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chompoosan, C.; Buranakarl, C.; Chaiyabutr, N.; Chansaisakorn, W. Decreased sympathetic tone after short-term treatment with enalapril in dogs with mild chronic mitral valve disease. Res. Vet. Sci. 2014, 96, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Alvarez, J.; Boswood, A.; Moonarmart, W.; Hezzell, M.J.; Lotter, N.; Elliott, J. Longitudinal electrocardiographic evaluation of dogs with degenerative mitral valve disease. J. Vet. Intern. Med. 2014, 28, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Bogucki, S.; Noszczyk-Nowak, A. Short-term heart rate variability in dogs with sick sinus syndrome or chronic mitral valve disease as compared to healthy controls. Pol. J. Vet. Sci. 2017, 20, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Pirintr, P.; Saengklub, N.; Limprasutr, V.; Sawangkoon, S.; Kijtawornrat, A. Sildenafil improves heart rate variability in dogs with asymptomatic myxomatous mitral valve degeneration. J. Vet. Med. Sci. 2017, 79, 1480–1488. [Google Scholar] [CrossRef] [Green Version]
- Chintala, K.K.; Krishna, B.H. Heart rate variability in overweight health care students: Correlation with visceral fat. J. Clin. Diagn. Res. 2015, 9, CC06–CC08. [Google Scholar] [CrossRef]
- Khan, N.I.; Naz, L.; Yasmeen, G. Obesity: An independent risk factor for systemic oxidative stress. Pak. J. Pharm. Sci. 2006, 19, 62–65. [Google Scholar]
- Pongkan, W.; Pintana, H.; Sivasinprasasn, S.; Jaiwongkam, T.; Chattipakorn, S.C.; Chattipakorn, N. Testosterone deprivation accelerates cardiac dysfunction in obese male rats. J. Endocrinol. 2016, 229, 209–220. [Google Scholar] [CrossRef]
- Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int. J. Mol. Sci. 2013, 14, 10497–10538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurgueira, S.A.; Lawrence, J.; Coull, B.; Murthy, G.G.; Gonzalez-Flecha, B. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ. Health Perspect. 2002, 110, 749–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoden, C.R.; Lawrence, J.; Godleski, J.J.; Gonzalez-Flecha, B. N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol Sci. 2004, 79, 296–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samniang, B.; Shinlapawittayatorn, K.; Chunchai, T.; Pongkan, W.; Kumfu, S.; Chattipakorn, S.C.; KenKnight, B.H.; Chattipakorn, N. Vagus Nerve Stimulation Improves Cardiac Function by Preventing Mitochondrial Dysfunction in Obese-Insulin Resistant Rats. Sci. Rep. 2016, 6, 19749. [Google Scholar] [CrossRef]
- Auroprajna, P.; Naik, B.M.; Sahoo, J.P.; Keerthi, G.S.; Pavanya, M.; Pal, G.K. Association of Sympathovagal Imbalance With Cognitive Impairment in Type 2 Diabetes in Adults. Can. J. Diabetes 2018, 42, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Nelin, T.D.; Joseph, A.M.; Gorr, M.W.; Wold, L.E. Direct and indirect effects of particulate matter on the cardiovascular system. Toxicol. Lett. 2012, 208, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Pongkan, W.; Takatori, O.; Ni, Y.; Xu, L.; Nagata, N.; Chattipakorn, S.C.; Soichiro, U.; Kaneko, S.; Takamura, M.; Sugiura, M.; et al. beta-Cryptoxanthin exerts greater cardioprotective effects on cardiac ischemia-reperfusion injury than astaxanthin by attenuating mitochondrial dysfunction in mice. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Tanajak, P.; Pongkan, W.; Chattipakorn, S.C.; Chattipakorn, N. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats. Diab. Vasc. Dis. Res. 2018. [Google Scholar] [CrossRef]
- Pramodh, V.; Kumar, M.P.; Krishna Prasad, B.A. Heart Rate Variability in overweight individuals. IOSR J. Dent. Med. Sci. 2014, 13, 41–45. [Google Scholar] [CrossRef]
- Baaldwin, K.; Bartges, J.; Buffington, T.; Freeman, L.M.; Grabow, M.; Legred, J.; Ostwald, D., Jr. AAHA nutritional assessment guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2010, 46, 285–296. [Google Scholar] [CrossRef]
- Acierno, M.J.; Brown, S.; Coleman, A.E.; Jepson, R.E.; Papich, M.; Stepien, R.L.; Syme, H.M. ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. J. Vet. Intern. Med. 2018, 32, 1803–1822. [Google Scholar] [CrossRef] [PubMed]
- Cornell, C.C.; Kittleson, M.D.; Torre, P.D.; Häggström, J.; Lombard, C.W.; Pedersen, H.D.; Vollmar, A.; Wey, A. Allometric scaling of M-mode cardiac measurements in normal adult dogs. J. Vet. Intern. Med. 2004, 18, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Bogucki, S.; Noszczyk-Nowak, A. Short-term heart rate variability (HRV) in healthy dogs. Pol. J. Vet. Sci. 2015, 18, 307–312. [Google Scholar] [CrossRef] [PubMed]
- von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Fordee, R.; Minero, M.; Mohrg, E.; Prunierh, A.; et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—a review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef]
- Lima, A.H.R.D.A.; Forjaz, C.L.D.M.; Silva, G.Q.D.M.; Meneses, A.L.; Silva, A.J.M.R.; Ritti-Dias, R.M. Acute effect of resistance exercise intensity in cardiac autonomic modulation after exercise. Arq. Bras. Cardiol. 2011, 96, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Kenneth, S.; Edward, A.; Keith, W. Duncan and Prasses’s Veterinary Laboratory Medicine Clinical Pathology, 4th ed.; Lowa State Press: Iowa City, IA, USA, 2003. [Google Scholar]
- Santilli, R.; Moise, N.S.; Pariaut, R.; Perego, M. Electrocardioggraphy of the Dog and Cat: Diagnosis of Arrhythmias, 2nd ed.; Edra S.p.a.: Milan, Italy, 2018; p. 347. [Google Scholar]
- Vincent, H.K.; Taylor, A.G. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes. (Lond.) 2006, 30, 400–418. [Google Scholar] [CrossRef] [Green Version]
- Reimann, M.J.; Häggström, J.; Møller, J.E.; Lykkesfeldt, J.; Falk, T.; Olsen, L.H. Markers of Oxidative Stress in Dogs with Myxomatous Mitral Valve Disease are Influenced by Sex, Neuter Status, and Serum Cholesterol Concentration. J. Vet. Intern. Med. 2017, 31, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Verk, B.; Nemec Svete, A.; Salobir, J.; Rezar, V.; Domanjko Petric, A. Markers of oxidative stress in dogs with heart failure. J. Vet. Diagn. Investig. 2017, 29, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Beigh, S.A.; Soodan, J.S.; Bhat, A.M. Sarcoptic mange in dogs: Its effect on liver, oxidative stress, trace minerals and vitamins. Vet. Parasitol. 2016, 227, 30–34. [Google Scholar] [CrossRef]
- Anderson, E.J.; Katunga, L.A.; Willis, M.S. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin. Exp. Pharmacol. Physiol. 2012, 39, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Mehlman, E.; Bright, J.M.; Jeckel, K.; Porsche, C.; Veeramachaneni, D.N.R.; Frye, M. Echocardiographic evidence of left ventricular hypertrophy in obese dogs. J. Vet. Intern. Med. 2013, 27, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Alpert, M.A.; Lambert, C.R.; Panayiotou, H.; Terry, B.E.; Cohen, M.V.; Massey, C.V.; Hashimi, M.W.; Mukerji, V. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am. J. Cardiol. 1995, 76, 1194–1197. [Google Scholar] [CrossRef]
- Verwaerde, P.; Sénard, J.M.; Galinier, M.; Rouge, P.; Massabuau, P.; Galitzky, J.; Berlan, M.; Lafontan, M.; Montastruc, J.L. Changes in short-term variability of blood pressure and heart rate during the development of obesity-associated hypertension in high-fat fed dogs. J. Hypertens. 1999, 17, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Tropf, M.; Nelson, O.L.; Lee, P.M.; Weng, H.Y. Cardiac and Metabolic Variables in Obese Dogs. J. Vet. Intern. Med. 2017, 31, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Apaijai, N.; Pintana, H.; Chattipakorn, S.C.; Chattipakorn, N. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br. J. Pharmacol. 2013, 169, 1048–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palatini, P. Elevated heart rate as a predictor of increased cardiovascular morbidity. J. Hypertens. Suppl. 1999, 17, S3–S10. [Google Scholar] [PubMed]
- Davy, K.P.; Orr, J.S. Sympathetic nervous system behavior in human obesity. Neurosci. Biobehav. Rev. 2009, 33, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5, 415–418. [Google Scholar] [CrossRef]
- Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science 1998, 281, 1309–1312. [Google Scholar] [CrossRef]
- Vincent, A.M.; Russell, J.W.; Low, P.; Feldman, E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 2004, 25, 612–628. [Google Scholar] [CrossRef]
- Pongkan, W.; Pintana, H.; Jaiwongkam, T.; Kredphoo, S.; Sivasinprasasn, S.; Chattipakorn, S.C.; Chattipakorn, N. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats. J. Endocrinol. 2016, 231, 81–95. [Google Scholar] [CrossRef] [PubMed]
Parameters | Normal Weight (n = 15) | Obese (n = 15) |
---|---|---|
Age | 4.79 ± 0.5 (5, 2.0–8.0) | 4.12 ± 0.33 (4.0, 1.8–8.0) |
Body weight (Kg) | 3.33 ± 0.41 (2.7, 1.6–7.2) | 4.70 ± 0.33 * (4.8, 2.6–7.8) |
Body condition score | 4.44 ± 0.13 (4, 4.0–5.0) | 7.20 ± 0.11 * (7, 7.0–8.0) |
Systolic blood pressure (mmHg) | 127 ± 4.55 (120, 106–165) | 122 ± 6.14 (108, 97–166) |
Diastolic blood pressure (mmHg) | 77 ± 3.44 (59, 56–100) | 68 ± 2.96 (61, 56–85) |
Mean arterial blood pressure (mmHg) | 100 ± 4.28 (80, 74–130) | 90 ± 5.88 (75, 71–147) |
Heart rate (beats/min) | 129 ± 7.40 (120, 72–180) | 128 ± 3.87 (122, 84–174) |
Pulse rate (beats/min) | 129 ± 7.40 (120, 72–180) | 128 ± 3.87 (122, 84–174) |
Respiratory rate (beats/min) | 40 ± 4.41 (30, 24–80) | 37 ± 3.80 (24, 24–52) |
Rectal Temperature (°F) | 101.7 ± 0.14 (101.2, 100.8–102.6) | 101.8 ± 0.19 (101.4, 100.2–102.6) |
Parameters | Normal Weight Group (n = 15) | Obese Group (n = 15) | Normal Range [46] | ||
---|---|---|---|---|---|
Packed cell volume (%) | 45.40 ± 1.14 | (46, 38–52) | 49.89 ± 0.94 * | (49, 44–57) | 35–57 |
Hemoglobin (g/dI) | 14.88 ± 0.45 | (14.8, 11.7–17.6) | 16.76 ± 0.34 | (16.6, 14.0–18.6) | 11.9–18.1 |
RBC count (×106 cells/µL) | 6.13 ± 0.16 | (6.01, 5.13–7.13) | 6.97 ± 0.16 * | (6.9, 5.7–8.3) | 4.95–7.87 |
MCV (fL) | 73.37 ± 0.53 | (73, 69.8–76.7) | 72.68 ± 0.46 | (72.8, 68.8–76.7) | 60–77 |
MCHC (g/dI) | 33.15 ± 0.25 | (33.4, 30.4–34.3) | 33.34 ± 0.3 | (33.6, 31.3–35.5) | 32.0–36.3 |
WBC count (×103 cells/µL) | 13.62 ± 0.95 | (14.2, 6.43–17.8) | 12.18 ± 0.96 | (11.5, 8.2–22.2) | 5–14.1 |
Segmented neutrophil (×103 cells/µL) | 9.29 ± 0.64 | (10.12, 4.4–12.4) | 7.74 ± 0.52 | (7.49, 4.9–12.6) | 2.9–12 |
Lymphocyte (×103 cells/µL) | 2.18 ± 0.12 | (2.25, 0.37–4.45) | 2.85 ± 0.56 | (2.4, 1.2–10.2) | 0.4–2.9 |
Monocyte (×103 cells/µL) | 1.07 ± 0.06 | (1.17, 0.2–0.7) | 0.83 ± 0.08 | (0.91, 0.01–1.2) | 0.1–1.4 |
Eosinophil (×103 cells/µL) | 0.80 ± 0.12 | (0.92, 0.16–1.47) | 0.59 ± 0.07 | (0.6, 0.28–1.1) | 0–1.3 |
Basophil (×103 cells/µL) | 0.04 ± 0.01 | (0.03, 0–0.1) | 0.04 ± 0.02 | (0.02, 0.01–0.16) | 0–0.14 |
Platelet count (×103 cells/µL) | 378.00 ± 27.9 | (396, 231–560) | 250.27 ± 31.5 | (216, 66–452) | 211–621 |
BUN (mg/dI) | 17.41 ± 1.67 | (17.85, 10.6–28.6) | 18.25 ± 1.69 | (17.4, 8.4–31.6) | 8–28 |
Creatinine (mg/dI) | 0.9 ± 4.55 | (0.83, 0.6–1.22) | 1.03 ± 0.07 | (0.99, 0.71–1.83) | 0.5–1.7 |
ALT (U/L) | 50.27 ± 4.55 | (47, 23–77) | 82.71 ± 12.03 | (76.5, 32–163) | 10–109 |
ALP (U/L) | 36.33 ± 4.17 | (33, 18–69) | 72.13 ± 15.11 | (46, 23–204) | 1–114 |
Total protein (g/dI) | 7.65 ± 0.17 | (7.6, 6.7–8.9) | 7.43 ± 0.23 | (7.3, 6.1–10) | 5.4–7.5 |
Albumin (g/dI) | 2.99 ± 0.10 | (2.9, 2.5–3.7) | 3.4 ± 0.08 * | (2.4, 2.7–3.8) | 2.3–3.1 |
MDA (nmol/mL) | 77.50 ± 4.23 | (78.75, 42.5–115) | 155.83 ± 12.8 * | (122.5, 95–307.5) | – |
M-Mode Parameters | Normalized Value | 95% Prediction Interval (cm) [42] | |||
---|---|---|---|---|---|
Normal Weight Group (n = 15) | Obese Group (n = 15) | ||||
LVIDd (cm) | 1.20 ± 0.09 | (1.15, 0.69–1.63) | 1.35 ± 0.05 * | (1.37, 1.03–1.47) | 1.27–1.85 |
LVIDs (cm) | 0.64 ± 0.04 | (0.62, 0.42–0.83) | 0.81 ± 0.03 * | (0.8, 0.52–0.96) | 0.71–1.26 |
IVSd (cm) | 0.46 ± 0.01 | (0.46, 0.36–0.54) | 0.46 ± 0.02 | (0.45, 0.36–0.68) | 0.29–0.59 |
IVSs (cm) | 0.68 ± 0.02 | (0.68, 0.56–0.85) | 0.63 ± 0.02 | (0.63, 0.49–0.75) | 0.43–0.79 |
LVPWd (cm) | 0.56 ± 0.02 | (0.57, 0.41–0.72) | 0.47 ± 0.02 * | (0.45, 0.36–0.58) | 0.29–0.60 |
LVPWs (cm) | 0.76 ± 0.02 | (0.73, 0.61–0.84) | 0.66 ± 0.02 * | (0.68, 0.54–0.77) | 0.48–0.87 |
AO diameter (cm) | 0.70 ± 0.02 | (0.69, 0.72–1.5) | 0.71 ± 0.01 | (0.7, 0.62–0.78) | 0.63–0.96 |
LA diameter (cm) | 0.81 ± 0.03 | (0.83, 0.63–1.04) | 0.81 ± 0.03 | (0.80, 0.6–1.0) | 0.59–0.97 |
Echocardiographic Parameters | Normal Weight Group (n = 15) | Obese Group (n = 15) | ||
---|---|---|---|---|
LA/AO | 1.17 ± 0.03 | (1.17, 0.91–1.38) | 1.17 ± 0.05 | (1.19, 0.82–1.54) |
EDV (mL) | 10.37 ± 2.2 | (6.54, 1.78–35.44) | 16.88 ± 0.94 * | (15.4, 8.22–25.7) |
EF (%) | 80.33 ± 1.84 | (81.49, 61.4–90.5) | 71.30 ± 1.51 * | (72.1, 60.4–82.55) |
ESV (mL) | 2.13 ± 0.49 | (1.2, 0.32–6.68) | 462 ± 0.58 * | (3.84, 1.45–11.0) |
FS (%) | 47.60 ± 1.82 | (47.5, 29.33–57.6) | 39.38 ± 1.43 * | (39.7, 30.8–48.3) |
IVS% (%) | 51.19 ± 4.41 | (46.6, 20.5–80.28) | 34.45 ± 4.38 * | (33.9, 11.4–73.7) |
IVS/LVPW | 0.90 ± 0.04 | (0.89, 0.63–1.38) | 1.08 ± 0.05 | (0.93, 0.7–1.63) |
LV mass (g) | 18.57 ± 2.18 | (15.9, 10.28–32.47) | 28.04 ± 2.06 * | (26.3, 18.9–42.3) |
LV mass index (g/m2) | 84.64 ± 4.50 | (78.7, 64.03–119.0) | 97.45 ± 4.06 * | (94.8, 75.2–131.0) |
LVPW% (%) | 36.87 ± 3.54 | (34.66, 18.6–74.12) | 39.96 ± 5.18 | (33.5, 12.4–77.8) |
M-Mode Parameters | Normal Weight Group | Obese Group | 95% Prediction Interval (cm) [42] | ||
---|---|---|---|---|---|
Chihuahua (n = 9) | Pomeranian (n = 6) | Chihuahua (n = 8) | Pomeranian (n = 7) | ||
LVIDd (cm) | 1.14 ± 0.06 (1.12, 0.69–1.36) | 1.24 ± 0.12 (1.37, 0.94–1.5) | 1.34 ± 0.03 * (1.35, 1.21–1.44) | 1.35 ± 0.05 † (1.39, 1.03–1.47) | 1.27–1.85 |
LVIDs (cm) | 0.61 ± 0.04 (0.61, 0.46–0.82) | 0.67 ± 0.07 (0.74, 0.42–0.83) | 0.75 ± 0.03 * (0.72, 0.7–0.89) | 0.86 ± 0.05 † (0.85, 0.8–0.96) | 0.71–1.26 |
IVSd (cm) | 0.46 ± 0.01 (0.46, 0.4–0.53) | 0.46 ± 0.03 (0.46, 0.36–0.54) | 0.45 ± 0.02 (0.45, 0.38–0.52) | 0.48 ± 0.03 (0.46, 0.37–0.68) | 0.29–0.59 |
IVSs (cm) | 0.68 ± 0.02 (0.68, 0.6–0.75) | 0.71 ± 0.05 (0.7, 0.56–0.85) | 0.65 ± 0.02 (0.63, 0.56–0.72) | 0.61 ± 0.04 (0.57, 0.49–0.75) | 0.43–0.79 |
LVPWd (cm) | 0.56 ± 0.03 (0.53, 0.44–0.72) | 0.56 ± 0.04 (0.59, 0.41–0.64) | 0.48 ± 0.02 * (0.45, 0.43–0.58) | 0.46 ± 0.03 † (0.44, 0.36–0.57) | 0.29–0.60 |
LVPWs (cm) | 0.75 ± 0.02 (0.75, 0.67–0.84) | 0.76 ± 0.02 (0.76, 0.71–0.81) | 0.66 ± 0.03 * (0.65, 0.57–0.77) | 0.63 ± 0.03 † (0.64, 0.54–0.76) | 0.48–0.87 |
AO diameter (cm) | 0.71 ± 0.03 (0.71, 0.59–0.88) | 0.67 ± 0.02 (0.69, 0.58–0.74) | 0.73 ± 0.02 (0.74, 0.64–0.78) | 0.68 ± 0.01 (0.67, 0.62–0.74) | 0.63–0.96 |
LA diameter (cm) | 0.82 ± 0.04 (0.86, 0.63–1.04) | 0.80 ± 0.04 (0.82, 0.69–0.84) | 0.84 ± 0.03 (0.83, 0.73–0.94) | 0.81 ± 0.05 (0.75, 0.7–1.0) | 0.59–0.97 |
Echocardiographic Parameters | Normal Weight Group | Obese Group | ||
---|---|---|---|---|
Chihuahua (n = 9) | Pomeranian (n = 6) | Chihuahua (n = 8) | Pomeranian (n = 7) | |
LA/AO | 1.16 ± 0.04 (1.16, 0.91–1.38) | 1.19 ± 0.05 (1.21, 1.0–1.32) | 1.17 ± 0.05 (1.21, 0.97–1.33) | 1.17 ± 0.08 (1.14, 0.82–1.54) |
EDV (mL) | 8.10 ± 1.43 (6.54, 4.3–16.3) | 11.8 ± 3.48 (13.2, 3.31–19.23) | 14.24 ± 1.34 * (12.9, 12.11–22.13) | 17.98 ± 1.89 (16.4, 14.7–25.7) |
EF (%) | 79.83 ± 2.73 (81.5, 61.43–90.45) | 81.16 ± 2.14 (81.61, 72.7–87.2) | 76.10 ± 2.73 (77.98, 61.18–82.5) | 70.20 ± 2.44 † (69.5, 60.4–82.35) |
ESV (mL) | 1.56 ± 0.43 (1.1, 0.69–4.76) | 3.28 ± 1.02 (3.26, 0.38–6.68) | 3.36 ± 0.35 * (3.35, 2.17–5.07) | 4.85 ± 0.87 (4.74, 1.45–10.1) |
FS (%) | 46.37 ± 2.69 (47.0, 29.33–57.65) | 48.03 ± 2.12 (48.23, 39.7–53.62) | 42.34 ± 2.69 (43.07, 31.28–49.33) | 36.47 ± 1.54 † (37.1, 30.8–42.9) |
IVS% (%) | 45.95 ± 4.78 (44.13, 29.47–75.1) | 56.70 ± 7.92 (57.39, 30.93–80.28) | 41.32 ± 2.08 (43.5, 33.95–45.3) | 28.85 ± 4.80 † (27.5, 11.4–47.8) |
IVS/LVPW | 0.88 ± 0.03 (0.89, 0.72–1.07) | 0.92 ± 0.12 (0.86, 0.75–1.38) | 0.92 ± 0.06 (0.91, 0.7–1.16) | 1.10 ± 0.10 (1.13, 0.78–1.63) |
LV mass (g) | 15.90 ± 1.89 (14.35, 9.65–27.3) | 21.88 ± 4.29 (27.35, 10.77–29.75) | 26.73 ± 2.66 * (24.5, 20.25–40.88) | 29.09 ± 3.16 (25.13, 19.75–42.3) |
LV mass index (g/m2) | 76.80 ± 4.27 (75.18, 59.6–96.8) | 92.16 ± 9.21 (94.09, 64.03–124.0) | 96.65 ± 3.83 * (96.7, 81.8–113.5) | 99.26 ± 7.83 (97.47, 71.12–124.6) |
LVPW% (%) | 35.88 ± 3.71 (38.5, 18.6–53.5) | 38.35 ± 7.36 (32.5, 24.43–74.12) | 38.43 ± 8.52 (31.48, 12.38–72.03) | 41.30 ± 6.75 (39.36, 22.74–77.8) |
Parameters | Normal Weight Group (n = 15) | Obese Group (n = 15) | ||
---|---|---|---|---|
Mean NN | 638.90 ± 45.24 | (602.50, 491–968) | 511.44 ± 33.90 * | (567.00, 302–615) |
SDNN | 167.20 ± 12.76 | (165.00, 100–236) | 93.11 ± 8.68 * | (92.00, 52–141) |
SDANN | 113.70 ± 18.71 | (108.00, 45–255) | 41.89 ± 8.68 * | (36.00, 12–97) |
ASDNN | 127.30 ± 9.92 | (127.00, 77–196) | 81.00 ± 6.41 * | (85.00, 44–106) |
RMSSD | 62.50 ± 5.93 | (57.50, 35–105) | 44.67 ± 4.93 * | (45.00, 20–66) |
pNN50 | 39.05 ± 4.57 | (37.05, 15.1–66.7) | 25.40 ± 5.12 | (24.4, 2.8–48.3) |
Parameters | Normal Weight Group (n = 15) | Obese Group (n = 15) |
---|---|---|
VLF (ms2) | 3512.93 ± 536.43 (3984.11, 1384.71–5546.59) | 5206.53 ± 1162.33 (4495.12, 1922.03–14030.22) |
LF (ms2) | 2253.93 ± 352.19 (1820.26, 1079.48–3994.45) | 2735.11 ± 382.74 (2532.76, 1537.51–5094.60) |
HF (ms2) | 1428.65 ± 203.51 (1578.19, 501.33–2314.43) | 1081.14 ± 100.56 (1187.22, 569.50–1393.20) |
LF/HF ratio | 1.69 ± 0.18 (1.74, 0.65–2.51) | 2.58 ± 0.31 * (2.44, 1.37–4.69) |
ECG Parameters | Normal Weight Group (n = 15) | Obese Group (n = 15) | Normal Range in Dogs [47] |
---|---|---|---|
Heart rate (bpm) | 130 ± 6.58 (120, 80–180) | 127 ± 5.87 (134.5, 100–160) | 60 to170 |
P wave amplitude (mV) | 0.20 ± 0.01 (0.2, 0.1–0.3) | 0.22 ± 0.01 (0.2, 0.1–0.3) | <0.4 |
P wave duration (s) | 0.04 ± 0.01 (0.04, 0.04–0.04) | 0.04 ± 0.01 (0.04, 0.04–0.04) | <0.04 |
PR interval (s) | 0.08 ± 0.01 (0.08, 0.06–0.1) | 0.08 ± 0.01 (0.08, 0.06–0.1) | 0.06 to 0.13 |
R amplitude (mV) | 1.20 ± 0.09 (1.20, 0.7–1.8) | 1.50 ± 0.09 * (1.4, 1.0–2.15) | >0.5 mV but <3 mV |
QRS duration (s) | 0.05 ± 0.01 (0.04, 0.04–0.08) | 0.06 ± 0.01 (0.06, 0.04–0.08) | <0.07 |
ST segment (mV) | 0.12 ± 0.02 (0.1, 0–0.2) | 0.09 ± 0.03 (0.05, 0.02–0.25) | Elevation or depression > ±0.2 mV from baseline |
T wave amplitude (mV) | 0.20 ± 0.04 (0.15, 0.1–0.5) | 0.27 ± 0.03 (0.25, 0.05–0.4) | < ±0.5 to 1 mV in all lead |
QT wave interval (s) | 0.18 ± 0.01 (0.2, 0.1–0.2) | 0.18 ± 0.01 (0.18, 0.16–0.24) | 0.15 to 0.24 |
Mean electrical axis (degrees) | −71.92 ± 5.84 (75, 30–105) | −58.60 ± 3.70 (59, 40–85) | From −45° to −147° |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pongkan, W.; Jitnapakarn, W.; Phetnoi, W.; Punyapornwithaya, V.; Boonyapakorn, C. Obesity-Induced Heart Rate Variability Impairment and Decreased Systolic Function in Obese Male Dogs. Animals 2020, 10, 1383. https://doi.org/10.3390/ani10081383
Pongkan W, Jitnapakarn W, Phetnoi W, Punyapornwithaya V, Boonyapakorn C. Obesity-Induced Heart Rate Variability Impairment and Decreased Systolic Function in Obese Male Dogs. Animals. 2020; 10(8):1383. https://doi.org/10.3390/ani10081383
Chicago/Turabian StylePongkan, Wanpitak, Wannida Jitnapakarn, Warunee Phetnoi, Veerasak Punyapornwithaya, and Chavalit Boonyapakorn. 2020. "Obesity-Induced Heart Rate Variability Impairment and Decreased Systolic Function in Obese Male Dogs" Animals 10, no. 8: 1383. https://doi.org/10.3390/ani10081383
APA StylePongkan, W., Jitnapakarn, W., Phetnoi, W., Punyapornwithaya, V., & Boonyapakorn, C. (2020). Obesity-Induced Heart Rate Variability Impairment and Decreased Systolic Function in Obese Male Dogs. Animals, 10(8), 1383. https://doi.org/10.3390/ani10081383