The Milk Thistle Seed Cakes and Hempseed Cakes are Potential Feed for Poultry
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Silybum marianum (L.)
1.2. Cannabis sativa
2. The Seed Cakes as a Feed
2.1. Chemical Composition of Seed Cakes
2.2. Seed Cakes in Broiler Diets
2.3. Seed Cakes in Hens Diets
3. The Milk Thistle and Hemp Seed Bioactive Substances Effects on Metabolism and Performance
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Blackshaw, R.E.; Marwat, K.B. Biology of milk thistle (Silybum marianum) and the management options for growers in north-western Pakistan. Weed Biol. Manag. 2009, 9, 99–105. [Google Scholar] [CrossRef]
- Křen, V.; Walterová, D. Silybin and silymarin—New effects and applications. Biomed. Pap. 2005, 149, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Kroll, D.J.; Shaw, H.S.; Oberlies, N.H. Milk thistle nomenclature: Why it matters in cancer research and pharmacokinetic studies. Integr. Cancer 2007, 6, 110–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luper, S. A review of plants used in the treatment of liver disease: Part 1. Altern. Med. Rev. 1998, 3, 410–421. [Google Scholar] [PubMed]
- Saller, R.; Meier, R.; Brignoli, R. The use of silymarin in the treatment of liver diseases. Drugs 2001, 61, 2035–2063. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.S.; Holečková, V.; Petrásková, L.; Biedermann, D.; Valentová, K.; Buchta, M.; Křen, V. The silymarin composition and why does it matter. Food Res. Int. 2017, 100, 339–353. [Google Scholar] [CrossRef]
- Padua, L.S.; Bunyaprafatsara, N.; Lemmens, R.H.M.J. Medicinal and poisonous plants. In Plant Resources of South-East Asia; Valkenburg, J.L.C.H., Bunyapraphatsara, M., Eds.; Backhuys Publishers: New Delhi, India, 1999; pp. 167–175. [Google Scholar]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Gunstone, F.D.; Harwood, J.L. Occurence and characterisation of oils and fats. In The Lipid Handbook with CD-Rom.; Gunstone, F.D., Harwood, J.L., Dijkstra, A.J., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 37–141. [Google Scholar]
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The composition of hempseed oil and its potential as an important source of nutrition. J. Nutraceuticals Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef] [Green Version]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the quality of protein from hemp seed and hemp seed products through the use of the protein digestibility-corrected amino acid score method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Hampson, A.J.; Grimaldi, M.; Lolic, M.; Wink, D.; Rosenthal, R.; Axelrod, J. Neuroprotective antioxidants from marijuana. Ann. NY Acad. Sci. 2000, 899, 274–282. [Google Scholar] [CrossRef]
- Koch, J.E. Delta 9-THC stimulates food intake in Lewis rats: Effects on chow, high-fat and sweet high-fat diets. Pharm. Biochem. Behav. 2001, 68, 539–543. [Google Scholar] [CrossRef]
- Potter, D.J.; Clark, P.; Brown, M.B. Potency of Δ9–THC and other cannabinoids in cannabis in England in 2005: Implications for psychoactivity and pharmacology. J. Forensic Sci. 2008, 53, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohmann, A.G.; Suplita, R.L. Endocannabinoid mechanisms of pain modulation. Aaps. J. 2006, 8, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Rea, K.; Roche, M.; Finn, D.P. Supraspinal modulation of pain by cannabinoids: The role of GABA and glutamate. Br. J. Pharm. 2007, 152, 633–648. [Google Scholar] [CrossRef] [Green Version]
- Jhaveri, M.D.; Elmes, S.J.R.; Richardson, D.; Barrett, D.A.; Kendall, D.A.; Mason, R.; Chapman, V. Evidence for a novel functional role of cannabinoid CB2 receptors in the thalamus of neuropathic rats. Eur. J. Neurosci. 2008, 27, 1722–1730. [Google Scholar] [CrossRef] [Green Version]
- Lamontagne, D.; Lepicier, P.; Lagneux, C.; Bouchard, J.F. The endogenous cardiac cannabinoid system: A new protective mechanism. Arch. Mal. Coeur Vaiss. 2006, 99, 242–246. [Google Scholar]
- Crippa, J.A.S.; Derenusson, G.N.; Ferrari, T.B.; Wichertana, L.; Duran, F.L.; Martin-Santos, R.; Filho, A.S. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: A preliminary report. J. Psychopharmacol. 2011, 25, 121–130. [Google Scholar] [CrossRef]
- Mortati, K.; Dworetzky, B.; Devinsky, O. Marijuana: An effective antiepileptic treatment in partial epilepsy? A case report and review of the literature. Rev. Neurol. Dis. 2007, 4, 103–106. [Google Scholar]
- Alvarado, R.I.N.; Sánchez, R.M.; Del, C.; Salcedo, V.V. Therapeutic properties of cannabinoid drugs and marijuana in several disorders: A narrative review. Salud. Ment. 2017, 40, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Horváth, B.; Mukhopadhyay, P.; Haskó, G.; Pacher, P. The endocannabinoid system and plant derived cannabinoids in diabetes and diabetic complications. Am. J. Pathol. 2012, 180, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Silver, R. The endocannabinoid system of animals. Animals 2019, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Malek, T.R. The biology of interleukin-2. Ann. Rev. Immunol. 2008, 26, 453–479. [Google Scholar] [CrossRef] [PubMed]
- Bihl, F.; Germain, C.; Luci, C.; Braud, V.M. Mechanisms of NK cell activation: CD4+ T cells enter the scene. Cell. Mol. Life Sci. 2011, 68, 3457–3467. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, D.J.; Marnett, L.J. Cannabinoids, endocannabinoids, and cancer. Cancer Metastasis Rev. 2011, 30, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Sarfaraz, S.; Adhami, V.M.; Syed, D.N.; Afaq, F.; Mukhtar, H. Cannabinoids for cancer treatment: Progress and promise. Cancer Res. 2008, 68, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Mcalliste, S.D.; Rigel, T.C.; Horowitz, M.P.; Garcia, A.; Desprez, P.Y. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer 2007, 6, 2921–2927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Marzo, V.; Piscitelli, F.; Mechoulam, R. Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. In Diabetes—Perspectives in Drug Therapy; Schwanstecher, M., Ed.; Springer: Berlin, Germany, 2011; pp. 75–104. [Google Scholar]
- Aizpurua-Olaizola, O.; Elezgarai, I.; Rico-Barrio, I.; Zarandona, I.; Etxebarria, N.; Usobiaga, A. Targeting the endocannabinoid system: Future therapeutic strategies. Drug. Discov. Today 2017, 22, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Engeli, S.; Bohnke, J.; Feldpausch, M.; Gorzelniak, K.; Janke, J.; Batkai, S.; Pacher, P.; Harvey-White, J.; Luft, F.C.; Sharma, A.M.; et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005, 54, 2838–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Marzo, V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia 2008, 51, 1356–1367. [Google Scholar] [CrossRef] [Green Version]
- Tam, J.; Vemuri, V.K.; Liu, J.; Bátkai, S.; Mukhopadhyay, B.; Godlewski, G.; Osei-Hyiaman, D.; Ohnuma, S.; Ambudkar, S.V.; Pickel, J.; et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J. Clin. Invest. 2010, 120, 2953–2966. [Google Scholar] [CrossRef] [Green Version]
- Šťastník, O.; Jůzl, M.; Karásek, F.; Fernandová, D.; Mrkvicová, E.; Pavlata, L.; Nedomová, Š.; Vyhnánek, T.; Trojan, V.; Doležal, P. The effect of hempseed expellers on selected quality indicators of broiler chicken’s meat. Acta Vet. Brno 2019, 88, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Šťastník, O.; Mrkvicová, E.; Pavlata, L.; Roztočilová, A.; Umlášková, B.; Anzenbacherová, E. Performance, biochemical profile and antioxidant activity of hens supplemented with addition of milk thistle (Silybum marianum) seed cakes in diet. Acta Univ. Agric. Silvc. Mendel. Brun. 2019, 67, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, A.; Esquivel-Soto, J.; Esquivel-Chirino, C.; García-Luna, Y.; González-Rubio, M.; Gayosso-De-Lucio, J.A.; Morales-González, J.A. Hepatoprotective effect of silymarin. World J. Hepatol. 2014, 6, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Kosina, P.; Dokoupilová, A.; Janda, K.; Sládková, K.; Silberová, P.; Pivodová, V.; Ulrichová, J. Effect of Silybum marianum fruit constituents on the health status of rabbits in repeated 42 day fattening experiment. Anim. Feed Sci. Tech. 2017, 223, 128–140. [Google Scholar] [CrossRef]
- Křížová, L.; Watzková, J.; Třináctý, J.; Richter, M.; Buchta, M. Rumen degradability and whole tract digestibility of flavonolignans from milk thistle (Silybum marianum) fruit expeller in dairy cows. Czech J. Anim. Sci. 2011, 56, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Suchý, P.; Straková, E.; Kummer, V.; Herzig, I.; Písaříková, V.; Blechová, R.; Mašková, J. Hepatoprotective effects of milk thistle (Silybum marianum) seed cakes during the chicken broiler fattening. Acta Vet. Brno 2008, 77, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Schiavone, A.; Righi, F.; Quarantelli, A.; Bruni, R.; Serventi, P.; Fusari, A. Use of Silybum marianum fruit extract in broiler chicken nutrition: Influence on performance and meat quality. J. Anim. Physiol. Nutr. 2007, 91, 256–262. [Google Scholar] [CrossRef]
- Khan, U.R.; Durrani, F.R.; Chand, N.; Anwar, H. Influence of feed supplementation with cannabis sativa on quality of broilers carcass. Pak. Vet. J. 2010, 30, 34–38. [Google Scholar]
- Neijat, M.; Gakhar, N.; Neufeld, J.; House, J.D. Performance, egg quality, and blood plasma chemistry of laying hens fed hempseed and hempseed oil. Poult. Sci. 2014, 93, 2827–2840. [Google Scholar] [CrossRef]
- Eriksson, M.; Wall, H. Hemp seed cake in organic broiler diets. Anim. Feed Sci. Tech. 2012, 171, 205–213. [Google Scholar] [CrossRef]
- Halle, I.; Schöne, F. Influence of rapeseed cake, linseed cake and hemp seed cake on laying performance of hens and fatty acid composition of egg yolk. J. Verbrauch Lebensm 2013, 8, 185–193. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.; Di Francia, A. High fiber cakes from mediterranean multipurpose oilseeds as protein sources for ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šťastník, O.; Jůzl, M.; Karásek, F.; Štenclová, H.; Nedomová, Š.; Pavlata, L.; Mrkvicová, E.; Doležal, P.; Jarošová, A. The effect of feeding milk thistle seed cakes on quality indicators of broiler chickens meat. Potravinarstvo 2016, 10, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Stastnik, O.; Karasek, F.; Stenclova, H.; Trojan, V.; Vyhnanek, T.; Pavlata, L.; Mrkvicova, E. The effect of hempseed cakes on broiler chickens peroformance parameters. In Proceedings of the 22nd International PhD Students Conference Location, Mendel University, Brno, Czech Republic, 11–12 November 2015; pp. 157–160. [Google Scholar]
- Stastnik, O.; Detvanova, L.; Karasek, F.; Stenclova, H.; Kalhotka, L.; Pavlata, L.; Mrkvicova, E. The Influence of Milk Thistle Seed Cakes on Broiler Chickens Performance Parameters. In Proceedings of the 22nd International PhD Students Conference Location, Mendel University, Brno, Czech Republic, 11–12 November 2015; pp. 152–156. [Google Scholar]
- Hashemi Jabali, N.S.; Mahdavi, A.H.; Ansari Mahyari, S.; Sedghi, M.; Akbari Moghaddam Kakhki, R. Effects of milk thistle meal on performance, ileal bacterial enumeration, jejunal morphology and blood lipid peroxidation in laying hens fed diets with different levels of metabolizable energy. J. Anim. Physiol. N 2017, 101, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zarei, A.; Morovat, M.; Chamani, M.; Sadeghi, A.A.; Dadvar, P. Effect of in ovo feeding and dietary feeding of Silybum marianum extract on performance, immunity and blood cation anion balance of broiler chickens exposed to high temperatures. Iran. J. Appl. Anim. Sci. 2016, 6, 697–705. [Google Scholar]
- Tedesco, D.; Steidler, S.; Galletti, S.; Tameni, M.; Sonzogni, O.; Ravarotto, L. Efficacy of silymarin-phospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chickens. Poult. Sci. 2004, 83, 1839–1843. [Google Scholar] [CrossRef]
- Skřivan, M.; Englmaierová, M.; Taubner, T.; Skřivanová, E. Effects of dietary hemp seed and flaxseed on growth performance, meat fatty acid compositions, liver tocopherol concentration and bone strength of cockerels. Animals 2020, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Silversides, F.G.; Lefrancois, M.R. The effect of feeding hemp seed meal to laying hens. Br. Poult. Sci. 2005, 46, 231–235. [Google Scholar] [CrossRef]
- Gakhar, N.; Goldberg, E.; Jing, M.; Gibson, R.; House, J.D. Effect of feeding hemp seed and hemp seed oil on laying hen performance and egg yolk fatty acid content: Evidence of their safety and efficacy for laying hen diets. Poult. Sci. 2012, 91, 701–711. [Google Scholar] [CrossRef]
- Kalantar, M.; Salary, J.; Sanami, M.N.; Khojastekey, M.; Matin, H.R.H. Dietary supplementation of Silybum marianum or curcuma spp on health characteristics and broiler chicken performance. Glob. J. Anim. Sci. Res. 2014, 2, 58–63. [Google Scholar]
- Lichovnikova, M.; Kalhotka, L.; Adam, V.; Klejdus, B.; Anderle, V. The effects of red grape pomace inclusion in grower diet on amino acid digestibility, intestinal microflora, and sera and liver antioxidant activity in broilers. Turk. J. Vet. Anim. Sci. 2015, 39, 406–412. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Aviagen Group. Broiler Nutrition Specifications. Available online: http://en.aviagen.com/ross-308 (accessed on 20 May 2020).
- González-Alvarado, J.M.; Jiménez-Moreno, E.; Lázaro, R.; Mateos, G.G. Effect of type of cereal, heat processing of the cereal, and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poult. Sci. 2007, 86, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Mateos, G.G.; Jimenez-Moreno, E.; Serrano, M.P.; Lazaro, R.P. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Albiker, D.; Bieler, R.; Zweifel, R. Crude fibre in layer feed influences performance and plumage of LSL Hybrid. In Proceedings of the 20th European Symposium on Poultry Nutrition (ESPN), Prague, Czech Republic, 24–27 August 2015. [Google Scholar]
- Lohmann Tierczucht. Management Guide. Available online: http://www.ltz.de/en/downloads/management-guides.php#anchor_0955c6a8_Accordion-1-Cage (accessed on 20 May 2020).
- Honzík, Z. Vláknina ve výživě nosnic: Význam výběru správného zdroje vlákniny. Drůbežář 2015, 2, 18–20. [Google Scholar]
- Miranda, C.L.; Stevens, J.F.; Ivanov, V.; Mccall, M.; Frei, B.; Deinzer, M.L.; Buhler, D.R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem. 2000, 48, 3876–3884. [Google Scholar] [CrossRef]
- Blevins, S.; Siegel, P.; Blodgett, D.; Ehrich, M.; Saunders, G.; Lewis, R. Effects of silymarin on gossypol toxicosis in divergent lines of chickens. Poult. Sci. 2010, 89, 1878–1886. [Google Scholar] [CrossRef]
- Gyenis, J.; Suto, Z.; Romvari, R.; Horn, P. Tracking the development of serum biochemical parameters in two laying hen strains—A comparative study. Arch. Tierz. 2006, 49, 593–606. [Google Scholar] [CrossRef]
- Gawel, A.; Kotonski, B.; Madej, J.; Mazurkiewicz, M. Effect of silimarin on chicken and turkey broilers’ rearing and the production indices of reproduction hen flocks. Med. Weter 2003, 59, 517–520. [Google Scholar]
- Schönfeld, J.V.; Weisbrod, B.; Müller, M. Silibinin, a plant extract with antioxidant and membrane stabilizing properties, protects exocrine pancreas from cyclosporin A toxicity. Cell. Mol. Life Sci. 1997, 53, 917–920. [Google Scholar] [CrossRef]
- Gažák, R.; Walterová, D.; Křen, V. Silybin and silymarin-new and emerging applications in medicine. Curr. Med. Chem. 2007, 14, 315–338. [Google Scholar] [CrossRef]
- Chand, N.; Din Muhammad, F.R.; Durrani, M.; Sahibzada, S. Protective effects of milk thistle (Silybum marianum) against aflatoxin B1 in broiler chicks. Asian Austral. J. Anim. 2011, 24, 1011–1018. [Google Scholar] [CrossRef]
- Makki, O.F.; Afzali, N.; Omidi, A. Effect of different levels of Silymarin (Silybum marianum) on growth rate, carcass variables and liver morphology of broiler chickens contaminated with aflatoxin B1. Poult. Sci. J. 2013, 1, 105–116. [Google Scholar]
- Harr, K.E. Clinical chemistry of companion avian species: A review. Vet. Clin. Pathol 2002, 31, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Wellington, K.; Jarvis, B. Silymarin: A review of its clinical properties in the management of hepatic disorder. BioDrugs 2001, 15, 465–489. [Google Scholar] [CrossRef]
- Alassi, S.B.; Allaw, A.A. Effect of adding of the milk thistle (Silybum marianum) seed powder in the traits of biochemical blood of the quail. Plant. Arch. 2020, 20, 962–964. [Google Scholar]
- Afzali, N.; Barani, M.; Hosseini Vashan, S.J. The effect of different levels of extruded hempseed (Cannabis sativa L.) on performance, plasma lipid profile and immune response of broiler chicks. In Proceedings of the 20th European Symposium on Poultry Nutrition (ESPN), Prague, Czech Republic, 24–27 August 2015; p. 196. [Google Scholar]
- Barani, M.; Afzali, N.; Hosseini Vashan, S.J. The effect of hempseed (Cannabis sativa L.) on performance, some blood biochemical parameters and immune response of broiler chickens. In Proceedings of the 20th European Symposium on Poultry Nutrition (ESPN), Prague, Czech Republic, 24–27 August 2015; p. 198. [Google Scholar]
- Palade, L.; Habeanu, M.; Marin, D.; Chedea, V.; Pistol, G.; Grosu, I.; Gheorghe, A.; Ropota, M.; Taranu, I. Effect of dietary hemp seed on oxidative status in sows during late gestation and lactation and their offspring. Animals 2019, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Kosina, P.; Maurel, P.; Ulrichova, J.; Dvorak, Z. Effect of silybin and its glycosides on the expression of cytochromes P450 1A2 and 3A4 in primary cultures of human hepatocytes. J. Biochem. Mol. Toxicol. 2005, 19, 149–153. [Google Scholar] [CrossRef]
- Sonnenbichler, J.; Zetl, I. Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers. Prog. Clin. Biol. Res. 1986, 213, 319–331. [Google Scholar]
- Oskoueian, E.; Abdullah, N.; Idrus, Z.; Ebrahimi, M.; Goh, Y.M.; Shakeri, M.; Oskoueian, A. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes. BMC Complement. Altern. Med. 2014, 14, 368. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef] [Green Version]
Nutrient | Milk Thistle Seed Cakes | Hempseed Cakes |
---|---|---|
Gross energy (MJ/kg) | 20.30 [35] | 20.40 * |
Crude protein (g/kg) | 217.00 [35] | 298.04 [34] |
Ether extract (g/kg) | 100.70 [35] | 96.94 [34] |
Crude ash (g/kg) | 68.00 [35] | 72.46 [34] |
Crude fiber (g/kg) | 292.40 [35] | 325.53 [34] |
ADF (g/kg) | 413.80 [35] | 420.64 * |
NDF (g/kg) | 455.40 [35] | 478.11 * |
β-carotene (mg/kg) | 6.47 * | 18.72 [34] |
Cyanidine-3-glucoside (mg/kg) | 129.83 * | 46,62 [34] |
Cannabidiol (mg/kg) | - | 170 [34] |
Tetrahydrocannabinol | - | non-detectable |
Cannabinol | - | non-detectable |
Taxifolin (mg/kg) | 580 [35] | - |
Silychristin (mg/kg) | 3638 [35] | - |
Silydianin (mg/kg) | 2520 [35] | - |
Silybin B (mg/kg) | 6673 [35] | - |
Silybin A (mg/kg) | 1473 [35] | - |
Isosilybin (mg/kg) | 565 [35] | - |
Animals | Exp. Duration | Type and Dose of Additive | Active Substances Concentration | Main Effect | Ref. | |
---|---|---|---|---|---|---|
Species | n | |||||
Hens, Bovans Brown | 30 | 11 weeks (77 days) | Milk thistle seed cakes at 7% | Flavonolignans 37.3 mg/kg | higher number of eggs, more egg mass, higher antioxidant activity in the experimental group. | [35] |
Rabbits, HYLA | 360 | 42 days | Silybum marianum fruit 0.2% or 1% | Flavonolignans 4% | Mild effect on performance parameters. | [37] |
Holstein cows | 3 | 13 days | Milk thistle fruit expeller at 150 g/day/cow | 4.10 ± 0.10 mass percentage of the silymarin complex | Animals receiving the milk thistle expeller had a higher content of plasma conjugated silybin. | [38] |
Broiler chickens, ROSS 308 | 180 | 22, 43 and 52 days | Silybum marianum seed cakes 0.2% or 1% | 2.95% of silymarin | Lower cholesterol, AST, ALT in exp. Groups. | [39] |
Broiler chickens, ROSS 508 | 180 | 60 days | 40 ppm and 80 ppm of a silymarin | Taxifolin—4.65%; Silychristin + Silydianin—28.21%; Silybin isomers—45.47%; Isosilybin isomers—21.7% | Silymarin at the tested doses did not affect growth performances but slightly affected slaughtering yields negatively. | [40] |
Broiler chickens, ROSS 308 | 150 | 25 days | Milk thistle seed cakes at 5% and 15% | Flavonolignans 37.3 mg/kg | The milk thistle seed cakes do not worsen the sensory characteristic of breast or thigh meat of broilers and reflects optimal sensory quality traits. | [46] |
Leghorn hens, Hy-Line W-36 | 200 | 70 days | Milk thistle meal 15%, 30%, 60% | 470.64 mg gallic acid equivalent/g of the sample | Milk thistle meal has antioxidant effect, beneficial effects on ileal pathogenic bacteria, intestinal histological alterations and production and reduction of serum MDA | [49] |
Broiler chickens, ROSS 308 | 360 eggs and 240 chickens | 1–21 days and 22–42 days | 100 mg/L and 200 mg/L in ovo and (or) 100 mg/kg of Silybum marianum extract in diet | Silymarin (≥80%) and Silybin isomers (≥30%) | Dietary feeding of the extract to broiler chickens increased immunity response under elevated temperatures, but in ovo feeding of the extract had no impact on immunity. | [50] |
Broiler chickens | 21 | 35 days | Aflatoxin B1 at 0.8 mg/kg of feed + silymarin phytosome at 600 mg/kg | Silymarin phytosome | Silymarin might be used in chickens to prevent the effects of aflatoxin B1 in contaminated feed. | [51] |
Animals | Exp. Duration | Type and Dose of Additive | Active Substances Concentration | Main Effect | Ref. | |
---|---|---|---|---|---|---|
Species | n | |||||
Broiler chickens, ROSS 308 | 150 | 25 days | Hempseed cakes 5% and 15% | 170 mg/kg of CBD | Hempseed cakes affect the colour and odor of broiler chicken’s meat, which is positive for the consumers. | [34] |
Lohmann LSL-Classic | 48 | 12 weeks (84 days) | Hempseed 10%, 20% or 30%; hempseed oil 4.5% or 9% | Only nutrient composition | Hempseed and hempseed oil are tolerated by hens and may suggest protective effect in liver damage. | [42] |
Broiler chickens, ROSS 308 | 1200 | 70 days | Hempseed cake 100 and 200 g/kg | Average level of THC (1–1.5 g/kg dry weight) | It was not affected total performance parameters, mortality or microbiological measures. | [43] |
Laying hens | 216 | 168 days | Hempseed cake 50, 100 or 150 g/kg | The THC and CBD content was below the detection limit of 0.005%. | Up to 10% of hempseed cake do not negatively influenced the laying hens performance and provide the possibility of the enrichment of yolk fat with n-3 type PUFA. | [44] |
Broiler chickens, ROSS 308 | 540 | 35 days | Hempseed 30, 40 and 50 g/kg in diets | Only nutrient and fatty acids composition | Hempseed in diet increases tibia strength. The dietary supplementation with 40 g/kg hempseed and 60 g/kg extruded flaxseed improves bird’s performance, meat and bone quality and deposition of α-tocopherol in the liver. | [52] |
Hens, DeKalb | 102 | 4 weeks(28 days) | Hempseed meal 50, 100 and 200 g/kg | Only nutrient content | No differences were found for egg production, feed consumption, feed conversion ratio, body weight or egg quality. | [53] |
Hens, Bovans White | 48 | 12 weeks(84 days) | Hempseed oil 4%, 8% and 12%; Hempseed 10% and 20% | Only nutrient and fatty acids composition | Up to a maximum level of 20% hempseeds and 12% hempseed oil does not affect laying hens’ performance and leads to the enrichment of the n-3 fatty acid content of eggs. | [54] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stastnik, O.; Pavlata, L.; Mrkvicova, E. The Milk Thistle Seed Cakes and Hempseed Cakes are Potential Feed for Poultry. Animals 2020, 10, 1384. https://doi.org/10.3390/ani10081384
Stastnik O, Pavlata L, Mrkvicova E. The Milk Thistle Seed Cakes and Hempseed Cakes are Potential Feed for Poultry. Animals. 2020; 10(8):1384. https://doi.org/10.3390/ani10081384
Chicago/Turabian StyleStastnik, Ondrej, Leos Pavlata, and Eva Mrkvicova. 2020. "The Milk Thistle Seed Cakes and Hempseed Cakes are Potential Feed for Poultry" Animals 10, no. 8: 1384. https://doi.org/10.3390/ani10081384
APA StyleStastnik, O., Pavlata, L., & Mrkvicova, E. (2020). The Milk Thistle Seed Cakes and Hempseed Cakes are Potential Feed for Poultry. Animals, 10(8), 1384. https://doi.org/10.3390/ani10081384