Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield, Quality and Composition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Design
2.3. Variables Analysed
2.4. Statistical Analysis
3. Results
3.1. Body Weight and Milk Performance
3.2. Milk Mineral Profile
3.3. Milk Fatty Acid Profile
3.4. Plasmatic Metabolites Profile
4. Discussion
4.1. Body Weight and Milk Performance
4.2. Milk Mineral Profile
4.3. Milk Fatty Acid Profile
4.4. Plasmatic Metabolites Profile
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 1 July 2020).
- Camacho, M.E.; Martínez, M.; León, J.M.; Quiroz, J.; Pleguezuelo, J.; Delgado, J.V. Advances in the breeding program of the Murciano-Granadina dairy goat breed. Ital. J. Anim. Sci. 2010, 6, 56. [Google Scholar] [CrossRef]
- León, J.M.; Macciotta, N.P.P.; Gama, L.T.; Barba, C.; Delgado, J.V. Characterization of the lactation curve in Murciano-Granadina dairy goats. Small Rumin. Res. 2012, 107, 76–84. [Google Scholar] [CrossRef]
- González-Arrojo, A.; Soldado, A.; Vicente, F.; Fernández Sánchez, M.L.; Sanz-Medel, A.; de la Roza-Delgado, B. Changes on levels of essential trace elements in selenium naturally enriched milk. J. Food Nutr. Res. 2016, 4, 303–308. [Google Scholar]
- Halmemies-Beauchet-Filleau, A.; Shingfield, K.J.; Simpura, I.; Kokkonen, T.; Jaakkola, S.; Toivonen, V. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J. Dairy Sci. 2017, 100, 305–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goula, A.M.; Lazarides, H.N. Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. J. Food Eng. 2015, 167, 45–50. [Google Scholar] [CrossRef]
- Wernli, C.; Thames, I. Utilización del forraje residual del cultivo de alcachofa (Cynara scolymus, L.) como ensilaje. Efecto del grado de picado y la aplicación de aditivos sobre su conservación. Av. Prod. Anim. 1989, 14, 79–89. (In Spanish) [Google Scholar]
- Ros, M.; Pascual, J.A.; Ayuso, M.; Morales, A.B.; Miralles, J.R.; Solera, C. Estrategias Sostenibles Para Un Manejo Integral de los Residuos y Subproductos Orgánicos de la Industria Agroalimentaria. Proyecto Life+ Agrowaste; CEBAS-CSIC, CTC y AGRUPAL: Murcia, España, 2012. (In Spanish) [Google Scholar]
- Wiedenhoeft, M.H.; Barton, B.A. Management and Environment Effects on Brassica Forage Quality. Agron. J. 1907, 86, 227–232. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Schader, C.; Muller, A.; El-Hage Scialabba, N.; Hecht, J.; Isensee, A.; Erb, K.H.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F.; et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Hernández, F.; Pulgar, M.A.; Cid, J.M.; Moreno, R.; Ocio, E. Valoración nutritiva de residuos de cosecha de alcachofa (Cynara scolymus L.): Hojas desecadas al sol y planta completa ensilada. Arch. Zootec. 1992, 41, 257–264. [Google Scholar]
- Megías, M.D.; Meneses, M.; Madrid, J.; Hernández, F.; Martínez-Teruel, A.; Cano, J.A. Nutritive, fermentative and environmental characteristics of silage of two industrial broccoli (Brassica oleracea, var. Itálica) by-products for ruminant feed. Int. J. Agric. Biol. 2014, 16, 307–313. [Google Scholar]
- Meneses, M.; Martínez-Marín, A.L.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. Ensilability, in vitro and in vivo values of the agro-industrial by-products of artichoke and broccoli. Environ. Sci. Pollut. R. 2020, 27, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Monllor, P.; Romero, G.; Muelas, R.; Sandoval-Castro, C.A.; Sendra, E.; Díaz, J.R. Ensiling process in commercial bales of horticultural by-products from artichoke and broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef] [PubMed]
- Marsico, G.; Ragni, M.; Vicenti, A.; Caputi Jambrenghi, A.; Tateo, A.; Giannico, F.; Vonghia, G. The quality of meat from lambs and kids reared on feeds based on artichoke (Cynara scolymus L.) bracts. Acta Hortic. 2005, 681, 489–494. [Google Scholar] [CrossRef]
- Jaramillo, D.P.; Buffa, M.N.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci. 2010, 93, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Salman, F.M.; El-Nomeary, Y.A.A.; Abedo, A.A.; Abd El-Rahman, H.H.; Mohamed, M.I.; Ahmed, S.M. Utilization of artichoke (Cynara scolymus) by-products in sheep feeding. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 624–630. [Google Scholar]
- Muelas, R.; Monllor, P.; Romero, G.; Sayas-Barberá, E.; Navarro, C.; Díaz, J.R.; Sendra, E. Milk technological properties as affected by including artichoke by-products silages in the diet of dairy goats. Foods 2017, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Monllor, P.; Romero, G.; Sendra, E.; Atzori, A.S.; Díaz, J.R. Short-term effect of the inclusion of silage artichoke by-products in diets of dairy goats on milk quality. Animals 2020, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Monllor, P.; Romero, G.; Atzori, A.S.; Sandoval-Castro, C.A.; Ayala-Burgos, A.J.; Roca, A.; Sendra, E.; Díaz, J.R. Composition, mineral and fatty acid profiles of milk from goats fed with different proportions of broccoli and artichoke plant by-products. Foods 2020, 9, 700. [Google Scholar] [CrossRef]
- Fernández, C.; Sánchez-Séiquer, P.; Navarro, M.J.; Garcés, C. Modeling the voluntary dry matter intake in Murciano-Granadina dairy goats. In Sustainable Grazing, Nutritional Utilization and Quality of Sheep and Goat Products; Molina, A.E., Ben, S.H., Biala, K., Morand-Fehr, P., Eds.; CIHEAM: Zaragoza, Spain, 2005; pp. 395–399. [Google Scholar]
- Nudda, A.; Correddu, F.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effects of diets containing grape seed, linseed, or both on milk production traits, liver and kidney activities, and immunity of lactating dairy ewes. J. Dairy Sci. 2015, 98, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Spigarelli, C.; Zuliani, A.; Battini, M.; Mattiello, S.; Bovolenta, S. Welfare assessment on pasture: A review on animal-based measures for ruminants. Animals 2020, 10, 609. [Google Scholar]
- INRA. Alimentation des Bovins, Ovins et Caprins; Jarrige, R., Ed.; INRA: Paris, France, 1988. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Cunniff, P., Ed.; Association of Official Analytical Chemists: Washington, WA, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary neutral detergent fibre and nonstarch polysacacharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [PubMed]
- Kim, D.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar]
- Feng-Xia, L.; Fu, S.-F.; Bi, X.-F.; Chen, F.; Liao, X.-J.; Hu, X.-S.; Wu, J. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. 1988, 23, 103–116. [Google Scholar]
- Kramer, J.K.G.; Fellner, V.; Dugan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar]
- Gravert, H.O. Dairy Cattle Production; Elsevier Science: New York, NY, USA, 1987; p. 234. [Google Scholar]
- Schau, E.M.; Fet, A.M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 2008, 13, 255–265. [Google Scholar]
- Romeu-Nadal, M.; Morera-Pons, S.; Casteltratamiento, A.I.; López-Sabater, M.C. Comparison of two methods for the extraction of fat from human milk. Anal. Chim. Acta 2004, 513, 457–461. [Google Scholar]
- Nudda, A.; McGuire, M.A.; Battacone, G.; Pulina, G. Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar]
- Lock, A.; Garnsworthy, P. Seasonal variation in milk conjugated linoleic acid and D9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Garcés, R.; Boza, J.; Acevedo, P.; Brandl, E.; Bruckmaier, R.M.; López, J.L. Persistence index and description of first 100 days of the lactation curve of primiparous and multiparous Saanen goats maintained in confinement. Agric. Téc. 2004, 64, 319–326. [Google Scholar]
- Huhtanen, P.; Rinne, M.; Nousiainen, J. Evaluation of the factors affecting silage intake of dairy cows: A revision of the relative silage dry-matter intake index. Animal 2007, 1, 758–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, R.A.; Narciso, C.D.; Bisinotto, R.S.; Perdomo, M.C.; Ballou, M.A.; Dreher, M.; Santos, J.E.P. Effects of feeding polyphenols from pomegranate extract on health, growth, nutrient digestion, and immunocompetence of calves. J. Dairy Sci. 2010, 93, 4280–4291. [Google Scholar] [CrossRef]
- Decandia, M.; Sitzia, M.; Cabiddu, A.; Kababya, D.; Molle, G. The use of polyethylene glycol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Rumin. Res. 2000, 38, 157–164. [Google Scholar] [CrossRef]
- Criscioni, P.; Fernández, C. Effect of rice bran as a replacement for oat grain in energy and nitrogen balance, methane emissions, and milk performance of Murciano-Granadina goats. J. Dairy Sci. 2016, 99, 280–290. [Google Scholar] [CrossRef]
- Safayi, S.; Nielsen, M.O. Intravenous supplementation of acetate, glucose or essential amino acids to an energy and protein deficient diet in lactating dairy goats: Effects on milk production and mammary nutrient extraction. Small Rumin. Res. 2013, 112, 162–173. [Google Scholar] [CrossRef]
- Bickerstaffe, R.; Annison, E.F.; Linzell, J.L. Metabolism of glucose, acetate, lipids and amino-acids in lactating dairy-cows. J. Agric. Sci. 1974, 82, 71–85. [Google Scholar] [CrossRef]
- Lough, D.S.; Prigge, E.C.; Hoover, W.H.; Varga, G.A. Utilization of ruminally infused acetate or propionate and abomasally infused casein by lactating goats. J. Dairy Sci. 1983, 66, 756–762. [Google Scholar] [CrossRef]
- Strzałkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyżewski, J.; Horbańczuk, K.; Pyzel, B.; Słoniewska, D.; Horbańczuk, J.O. The concentration of free fatty acids in goat milk as related to the stage of lactation, age and somatic cell count. Anim. Sci. Pap. Rep. 2010, 28, 389–395. [Google Scholar]
- Corrales, J.C.; Sánchez, A.; Luengo, C.; Poveda, J.B.; Contreras, A. Effect of clinical contagious agalactia on the bulk tank milk somatic cell count in Murciano-Granadina goat herds. J. Dairy Sci. 2004, 87, 3165–3171. [Google Scholar] [CrossRef] [Green Version]
- Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R.F. Comparative nutrient profiling of retail goat and cow milk. Nutrients 2019, 11, 2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currò, S.; De Marchi, M.; Claps, S.; Salzano, A.; De Palo, P.; Manuelian, C.L.; Neglia, G. Differences in the detailed milk mineral composition of Italian local and Saanen goat breeds. Animals 2019, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Trancoso, I.M.; Trancoso, M.A.; Martins, A.P.L.; Roseiro, L.B. Chemical composition and mineral content of goat milk from four indigenous Portuguese breeds in relation to one foreign breed. Int. J. Dairy Technol. 2010, 63, 516–522. [Google Scholar] [CrossRef]
- Dunshea, F.; Walker, G.; Williams, R.; Doyle, P. Mineral and citrate concentrations in milk are affected by seasons, stage of lactation and management practices. Agriculture 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Teter, A.; Kędzierska-Matysek, M.; Barłowska, J.; Król, J.; Brodziak, A. Nutritional value and coagulation properties of milk from local cow breeds, including the selected macro- and micronutrients and trace elements. Mljekarstvo 2020, 70, 210–220. [Google Scholar] [CrossRef]
- Patel, M.; Wredle, E.; Bertilsson, J. Effect of dietary proportion of grass silage on milk fat with emphasis on odd- and branched-chain fatty acids in dairy cows. J. Dairy Sci. 2013, 96, 390–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlaeminck, V.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Martín-García, A.I. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
- Sanz-Ceballos, L.; Ramos-Morales, E.; de la Torre-Adarve, G.; Díaz-Castro, J.; Pérez-Martínez, L.; Sanz-Sampelayo, M.R. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2008, 22, 322–329. [Google Scholar] [CrossRef]
- Chilliard, Y.; Lamberet, G. Biochemical Characteristics of Goat Milk Lipids and Lipolytic System. In A Comparison with Cows and Human Milk; Effect of Lipid Supplementation; Institut Technique des Produits Laitiers Caprins (ITPLC): Surgères, France, 2001; pp. 71–114. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Hamzaoui, S.; Salama, A.A.K.; Caja, G.; Albanell, E.; Such, X. Respuestas Metabólicas de Cabras Lecheras en Condiciones de Estrés Térmico al Inicio de la Lactación; XVI Jornadas sobre Producción Animal (AIDA): Zaragoza, Spain, 2015; Volume 1, pp. 230–232. (In Spanish) [Google Scholar]
- Grummer, R.R. Impact of changes in organic nutrients metabolism on feeding the transition cow. J. Anim. Sci. 1995, 73, 2820–2833. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Blümmel, M.; Becker, K. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J. Sci. Food. Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Zhong, R.; Xiao, W.; Ren, G.; Zhou, D.; Tan, C.; Tan, Z.; Han, X.; Tang, S.; Zhou, C.; Wang, M. Dietary tea catechin inclusion changes plasma biochemical parameters, hormone concentrations and glutathione redox status in goats. Asian Australas J. Anim. Sci. 2011, 24, 1681–1689. [Google Scholar] [CrossRef]
- Hussain, Q.; Havrevoll, O.; Eik, L.O.; Ropstad, E. Effects of energy intake on plasma glucose, non-esterified fatty acids and acetoacetate concentration in pregnant goats. Small Rumin. Res. 1996, 21, 89–96. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals 2020, 10, 1–25. [Google Scholar]
- Rivas, J.; Rossini, M.; Colmenares, O.; Salvador, A.; Morantes, M.; Valerio, D. Effect of lactation on the metabolic profile of Canarian goats in the Tropic. In Proceedings of the IV Symposium of Animal Production ALPA-Ecuador, Quevedo, Ecuador, 13–15 November 2014; pp. 125–132. [Google Scholar]
- Villa, N.A.; Ceballos, A.; Cerón, D.; Serna, C.A. Valores bioquímicos sanguíneos en hembras Brahman bajo condiciones de pastoreo. Pesqui. Agropecu. Bras. 1999, 34, 2339–2343. (In Spanish) [Google Scholar] [CrossRef]
- Ríos, C.; Marín, M.P.; Catafau, M.; Wittwer, F. Concentraciones sanguíneas de ß-hidroxibutirato, NEFA, colesterol y urea en cabras lecheras de tres rebaños con sistemas intensivos de producción y su relación con el balance nutricional. Arch. Med. Vet. 2006, 38, 19–23. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Posada, S.L.; Noguera, R.R.; Bedoya, O. Perfil metabólico de cabras lactantes de las razas Saanen y Alpina. Livestock Res. Rural Dev. 2012, 10, 24. (In Spanish) [Google Scholar]
- Ruas, J.; Torres, C.; Borges, L.; Neto, A.; Machado, V.; Borges, A. Efeito da suplementação protéica a pasto sobre eficiência reprodutiva e concentrações sanguíneas de colesterol, glicose e uréia, em vacas Nelore. R. Bras. Zootec. 2000, 29, 2043–2050. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Guedon, L.; Saumande, J.; Desbals, B. Relationships between calf birth weight, prepartum concentrations of plasma energy metabolites and resumption of ovulation postpartum in limousine suckled beef cows. Theriogenology 1999, 52, 779–789. [Google Scholar] [CrossRef]
- Wood, P.D. Algebraic model of the lactation curve in cattle. Nature 1967, 216, 164–165. [Google Scholar] [CrossRef]
- Merck and Co. Inc. El Manual Merck de Veterinaria, 4th ed.; Océano/Centrum: Barcelona, Spain, 1993; p. 2092. [Google Scholar]
- Rapetti, L.; Bava, L. Feeding management of dairy goats in intensive systems. In Dairy Goats Feeding and Nutrition; Cannas, A., Pulina, G., Eds.; CABI Editorial: Wallingford, UK, 2008; p. 221. [Google Scholar]
Item | Diets | ||
---|---|---|---|
C | BB | AP | |
Ingredients (g/100 g DM) | |||
Alfalfa hay | 37.4 | 12.0 | - |
Oat | 16.0 | 32.0 | 13.5 |
Barley | 8.00 | 3.00 | 6.40 |
Corn | 9.0 | 3.00 | 8.00 |
Dried sugar beet pulp | 7.50 | 3.00 | 6.50 |
Sunflower meal | 3.40 | 1.00 | 3.00 |
Peas | 3.00 | 1.00 | 2.30 |
Cottonseed | 3.00 | 1.00 | 2.30 |
Soybean meal 44% | 4.50 | 1.00 | 11.0 |
Corn DDGS | 3.00 | 1.00 | 2.50 |
Sunflower seeds | 2.00 | 1.00 | 2.00 |
Beans | 1.40 | 0.500 | 1.10 |
Wheat | 1.00 | 0.300 | 1.00 |
Soy hulls | 0.500 | 0.200 | 0.400 |
Silage | - | 40.0 | 40.0 |
Cost (EUR/kg DM) | 0.28 | 0.26 | 0.26 |
Chemical Composition | |||
DM (g/kg FM) | 893 | 336 | 450 |
g/kg DM | |||
OM | 935 | 904 | 901 |
EE | 41.9 | 39.1 | 35.2 |
CP | 162 | 164 | 164 |
NDF | 376 | 354 | 381 |
ADF | 243 | 227 | 238 |
ADL | 56,5 | 48.0 | 49,3 |
TP | 3,65 | 4,93 | 3,28 |
IVDMD | 744 | 737 | 668 |
1 ME (Mcal/kg DM) | 2.37 | 2.36 | 2.29 |
VFA and Fermentative Metabolites (g/kg DM) | |||
Lactate | 0.00 | 40.8 | 49.4 |
Acetate | 0.00 | 9.50 | 1.39 |
Ethanol | 0.00 | 9.22 | 1.58 |
Ammonia N | 0.03 | 0.410 | 0.09 |
Mineral Profile | Diets | ||
---|---|---|---|
C | BB | AP | |
Na (g/kg DM) | 1.41 | 5.65 | 7.33 |
Mg (g/kg DM) | 2.56 | 2.61 | 2.58 |
K (g/kg DM) | 16.2 | 20.9 | 14.2 |
Ca (g/kg DM) | 8.66 | 10.30 | 10.00 |
P (g/kg DM) | 3.36 | 3.88 | 4.18 |
S (g/kg DM) | 3.36 | 4.42 | 2.85 |
Se (mg/kg DM) | 0.11 | 0.20 | 0.13 |
Zn (mg/kg DM) | 40.6 | 49.8 | 38.7 |
Cu (mg/kg DM) | 7.61 | 5.58 | 7.44 |
Fe (mg/kg DM) | 175 | 266 | 272 |
Mn (mg/kg DM) | 36.4 | 44.1 | 40.5 |
Fatty acid profile (g/100g total fatty acids) | |||
C6:0 | 0.048 | 0.121 | 0.108 |
C12:0 | 0.150 | 0.086 | 0.100 |
C14:0 | 0.349 | 0.374 | 0.441 |
C16:0 | 15.9 | 18.1 | 18.4 |
C16:1 c9 | 0.31 | 0.328 | 0.341 |
C18:0 | 3.17 | 3.16 | 3.10 |
C18:1 c9 | 24.4 | 36.1 | 22.7 |
C18:1 c11 | 1.04 | 2.38 | 1.04 |
C18:2n6 | 46.9 | 28.9 | 43.7 |
C18:3n3 | 5.03 | 6.09 | 5.40 |
C20:0 | 0.461 | 0.717 | 0.914 |
C20:1n9 | 0.310 | 0.447 | 0.346 |
C22:0 | 0.526 | 0.804 | 1.17 |
C23:0 | 0.123 | 0.663 | 0.139 |
C24:0 | 0.383 | 0.580 | 0.662 |
SFA | 21.8 | 25.5 | 25.6 |
MUFA | 26.1 | 39.3 | 24.6 |
PUFA | 52.0 | 35.2 | 49.8 |
Variable | n | Diets | Significance | |||||
---|---|---|---|---|---|---|---|---|
C | BB | AP | SEM | Diet | Week | Diet × Week | ||
BW (kg) | 24 | 43.5 a | 41.5 b | 42.1 ab | 0.50 | ** | ** | ** |
Milk yield (kg/day) | 24 | 2.11 ab | 1.91 b | 2.21 a | 0.098 | * | *** | *** |
FCM (kg/day) | 24 | 2.40 | 2.29 | 2.47 | 0.098 | n.s. | *** | *** |
FPCM (kg/day) | 24 | 2.21 | 2.07 | 2.27 | 0.087 | n.s. | *** | *** |
Fat (%) | 24 | 4.49 b | 5.02 a | 4.40 b | 0.157 | ** | *** | *** |
UDM (%) | 24 | 8.05 ab | 8.39 a | 7.79 b | 0.199 | * | *** | ** |
TS (%) | 24 | 13.5 ab | 13.9 a | 13.2 b | 0.21 | * | *** | ** |
NFTS (%) | 24 | 8.82 | 8.73 | 8.68 | 0.071 | n.s. | *** | *** |
Protein (%) | 24 | 3.55 a | 3.35 b | 3.42 ab | 0.059 | * | *** | * |
True protein (%) | 24 | 3.29 a | 3.12 b | 3.18 ab | 0.052 | * | *** | * |
Casein (%) | 24 | 2.86 | 2.76 | 2.77 | 0.048 | n.s. | *** | n.s. |
Whey protein (%) | 24 | 0.431 a | 0.356 b | 0.404 a | 0.0119 | *** | *** | ** |
Lactose (%) | 24 | 4.42 | 4.47 | 4.41 | 0.028 | n.s. | *** | *** |
Ash (%) | 24 | 1.00 | 1.03 | 0.99 | 0.018 | n.s. | *** | * |
Milk urea (mg/L) | 24 | 797 a | 745 b | 793 a | 15.5 | * | *** | *** |
SCC (Log10 cell/mL) | 24 | 5.73 a | 5.55 b | 5.53 b | 0.062 | * | *** | ** |
Variable | n | Diets | Significance | |||||
---|---|---|---|---|---|---|---|---|
C | BB | AP | SEM | Diet | Week | Diet × Week | ||
Na (mg/kg) | 15 | 378 a | 359 b | 331 c | 5.1 | *** | *** | *** |
Mg (mg/kg) | 15 | 135 | 138 | 132 | 3.6 | n.s | *** | *** |
P (mg/kg) | 15 | 1025 | 992 | 988 | 63.0 | n.s. | *** | ** |
S (mg/kg) | 15 | 394 | 381 | 380 | 17.8 | n.s. | *** | ** |
K (mg/kg) | 15 | 1601 | 1557 | 1627 | 35.2 | n.s. | *** | *** |
Ca (mg/kg) | 15 | 1208 b | 1267 a | 1200 b | 26.1 | *** | *** | * |
Mn (µg/kg) | 15 | 46.5 a | 43.3 a | 31.2 b | 2.18 | *** | *** | n.s. |
Fe (µg/kg) | 15 | 301 a | 301 a | 277 b | 15.7 | n.s. | *** | *** |
Cu (µg/kg) | 15 | 72.4 | 55.7 | 63.0 | 5.0 | n.s. | *** | ** |
Se (µg/kg) | 15 | 17.2 a | 14.4 b | 14.2 b | 0.540 | *** | *** | *** |
Zn (µg/kg) | 15 | 3246 | 3017 | 3443 | 213 | n.s. | ** | ** |
Fatty Acids | n | Diets | Significance | |||||
---|---|---|---|---|---|---|---|---|
C | BB | AP | SEM | Diet | Week | Diet × Week | ||
C4:0 | 15 | 1.34 a | 1.31 b | 1.38 a | 0.019 | * | *** | *** |
C6:0 | 15 | 1.86 | 1.76 | 1.88 | 0.047 | n.s. | ** | * |
C7:0 | 15 | 0.028 | 0.030 | 0.028 | 0.002 | n.s. | *** | *** |
C8:0 | 15 | 2.41 b | 2.30 c | 2.49 a | 0.024 | *** | *** | *** |
4-methyloctanoic acid | 15 | 0.019 | 0.017 | 0.020 | 0.001 | n.s. | * | * |
4-ethyloctanoic acid | 15 | 0.015 | 0.017 | 0.018 | 0.002 | n.s. | * | n.s. |
C9:0 | 15 | 0.042 b | 0.048 a | 0.040 b | 0.002 | ** | ** | *** |
C10:0 | 15 | 8.10 b | 8.14 ab | 8.35 a | 0.075 | * | * | *** |
C10:1 c9 | 15 | 0.027 b | 0.033 a | 0.027 ab | 0.002 | * | *** | n.s. |
C11:0 | 15 | 0.236 c | 0.259 b | 0.278 a | 0.004 | *** | *** | *** |
C12:0 | 15 | 3.74 | 3.83 | 3.81 | 0.033 | n.s. | *** | *** |
C12:1 c9 | 15 | 0.013 | 0.015 | 0.015 | 0.002 | n.s. | n.s. | n.s. |
iso C13:0 | 15 | 0.014 b | 0.015 b | 0.020 a | 0.001 | *** | n.s. | n.s. |
anteiso C13:0 | 15 | 0.040 b | 0.041 ab | 0.045 a | 0.001 | * | *** | *** |
iso C14:0 | 15 | 0.052 c | 0.066 b | 0.087 a | 0.003 | *** | *** | ** |
C14:0 | 15 | 8.49 b | 8.73 a | 8.82 a | 0.044 | *** | *** | n.s. |
iso C15:0 | 15 | 0.156 b | 0.158 b | 0.191 a | 0.003 | *** | *** | *** |
anteiso C15:0 | 15 | 0.247 b | 0.220 c | 0.265 a | 0.003 | *** | ** | ** |
C14:1 c9 | 15 | 0.124 c | 0.142 b | 0.153 a | 0.002 | *** | *** | *** |
C15:0 | 15 | 0.751 c | 0.912 a | 0.872 b | 0.006 | *** | *** | *** |
C15:1 | 15 | 0.083 ab | 0.075 b | 0.090 a | 0.003 | ** | *** | *** |
iso C16:0 | 15 | 0.202 b | 0.240 a | 0.233 a | 0.004 | *** | *** | ** |
C16:0 | 15 | 23.9 c | 26.5 a | 24.8 b | 0.10 | *** | *** | *** |
C16:1 t4 | 15 | 0.022 b | 0.035 a | 0.029 ab | 0.004 | * | * | *** |
C16:1 t5 | 15 | 0.026 | 0.036 | 0.031 | 0.004 | n.s. | *** | *** |
C16:1 t6-7 | 15 | 0.061 | 0.036 | 0.042 | 0.010 | n.s. | n.s. | n.s. |
C16:1 t9 | 15 | 0.182 a | 0.087 c | 0.126 b | 0.009 | *** | * | * |
C16:1 t10 | 15 | 0.020 | 0.025 | 0.025 | 0.003 | n.s. | *** | *** |
C16:1 t11-12 | 15 | 0.066 | 0.058 | 0.059 | 0.004 | n.s. | ** | * |
C16:1 c7 | 15 | 0.228 | 0.240 | 0.238 | 0.006 | n.s. | * | *** |
C16:1 c9 | 15 | 0.497 b | 0.666 a | 0.667 a | 0.015 | *** | *** | n.s. |
C16:1 c10 | 15 | 0.032 ab | 0.026 b | 0.034 a | 0.003 | * | *** | ** |
C16:1 c11 | 15 | 0.023 ab | 0.020 b | 0.028 a | 0.002 | * | n.s. | * |
3,7,11,15-Tetramethyl-16:0 | 15 | 0.056 | 0.025 | 0.029 | 0.018 | n.s. | n.s. | * |
Cyclo C17:0 | 15 | 0.050 b | 0.081 a | 0.077 a | 0.003 | *** | *** | ** |
iso C17:0 | 15 | 0.341 b | 0.305 c | 0.363 a | 0.005 | *** | *** | ** |
anteiso C17:0 | 15 | 0.325 b | 0.347 a | 0.328 b | 0.004 | *** | *** | ** |
C17:0 | 15 | 0.594 b | 0.714 a | 0.762 a | 0.020 | *** | *** | *** |
C17:1 c6-7 | 15 | 0.045 a | 0.037 b | 0.043 a | 0.002 | * | ** | *** |
C17:1 c8 | 15 | 0.019 b | 0.035 a | 0.017 b | 0.004 | ** | n.s. | n.s. |
C17:1 c9 | 15 | 0.143 c | 0.212 b | 0.234 a | 0.006 | *** | *** | *** |
Delta C17:2 | 15 | 0.021 | 0.023 | 0.024 | 0.002 | n.s. | n.s. | n.s. |
isoC18:0 | 15 | 0.042 | 0.044 | 0.046 | 0.003 | n.s. | n.s. | n.s. |
C18:0 | 15 | 14.1 a | 13.4 b | 12.4 c | 0.10 | *** | *** | *** |
C18:1 t4 | 15 | 0.035 | 0.029 | 0.029 | 0.002 | n.s. | *** | ** |
C18:1 t5 | 15 | 0.034 a | 0.027 b | 0.027 b | 0.002 | * | *** | ** |
C18:1 t6-8 | 15 | 0.417 a | 0.286 b | 0.296 b | 0.008 | *** | *** | *** |
C18:1 t9 | 15 | 0.408 a | 0.288 c | 0.324 b | 0.008 | *** | *** | *** |
C18:1 t10 | 15 | 0.572 a | 0.318 c | 0.411 b | 0.013 | *** | *** | *** |
C18:1 t11 (vaccenic) | 15 | 2.13 a | 0.83 c | 1.18 b | 0.050 | *** | *** | *** |
C18:1 t12 | 15 | 0.550 a | 0.388 c | 0.427 b | 0.011 | *** | *** | *** |
C18:1 t13-14 | 15 | 0.963 | 0.973 | 0.553 | 0.165 | n.s. | *** | *** |
C18:1 c9 | 15 | 18.9 b | 19.5 b | 20.2 a | 0.21 | *** | *** | *** |
C18:1 c11 | 15 | 0.451 b | 0.570 a | 0.555 ab | 0.038 | * | ** | ** |
C18:1 c12 | 15 | 0.518 a | 0.429 c | 0.474 b | 0.015 | *** | *** | ** |
C18:1 c13 | 15 | 0.120 | 0.101 | 0.102 | 0.007 | n.s. | n.s. | n.s. |
C18:1 c14 | 15 | 0.493 a | 0.415 b | 0.388 c | 0.009 | *** | *** | *** |
C18:1 c15 | 15 | 0.246 a | 0.227 b | 0.220 b | 0.004 | *** | *** | *** |
C18:1 c16 | 15 | 0.023 a | 0.017 b | 0.019 ab | 0.002 | * | * | ** |
C18:2 t8,c13 | 15 | 0.138 | 0.133 | 0.139 | 0.002 | n.s. | *** | ** |
C18:2 t9,c12 | 15 | 0.027 | 0.029 | 0.032 | 0.003 | n.s. | *** | ** |
C18:2 t9,12 | 15 | 0.021 | 0.018 | 0.021 | 0.002 | n.s. | n.s. | ** |
C18:2 t10,14 | 15 | 0.070 a | 0.033 b | 0.039 b | 0.004 | *** | n.s. | * |
C18:2 t11,c15 | 15 | 0.048 | 0.036 | 0.046 | 0.004 | n.s. | *** | * |
C18:2 t11,15 | 15 | 0.012 | 0.008 | 0.010 | 0.003 | n.s. | n.s. | n.s. |
C18:2 t12,c15 | 15 | 0.030 | 0.033 | 0.030 | 0.003 | n.s. | n.s. | n.s. |
C18:2 c9,t12 | 15 | 0.121 a | 0.109 b | 0.117 a | 0.002 | *** | * | n.s. |
C18:2 c9,t13 | 15 | 0.321 a | 0.299 c | 0.311 b | 0.003 | *** | *** | *** |
C18:2 c12,15 | 15 | 0.026 | 0.026 | 0.024 | 0.002 | n.s. | ** | ** |
C18:2n6 | 15 | 2.58 a | 2.01 b | 2.57 a | 0.047 | *** | *** | *** |
C18:2 t9,c11 | 15 | 0.048 | 0.042 | 0.057 | 0.003 | *** | n.s. | * |
C18:2 c9,t11 (rumenic) | 15 | 0.843 a | 0.443 c | 0.619 b | 0.018 | *** | *** | *** |
C18:2 t10,c12 | 15 | 0.029 | 0.030 | 0.036 | 0.004 | n.s. | n.s. | n.s. |
C18:2 t12,14 | 15 | 0.020 | 0.022 | 0.021 | 0.003 | n.s. | ** | n.s. |
C18:3n3 | 15 | 0.193 b | 0.170 c | 0.238 a | 0.004 | *** | *** | ** |
C18:3n6 | 15 | 0.029 b | 0.024 b | 0.036 a | 0.002 | *** | n.s. | *** |
C20:0 | 15 | 0.241 c | 0.270 b | 0.314 a | 0.004 | *** | ** | *** |
C20:1 c5 | 15 | 0.021 | 0.017 | 0.019 | 0.002 | n.s. | n.s. | n.s. |
C20:1 c9 | 15 | 0.015 b | 0.016 b | 0.021 a | 0.002 | * | * | n.s. |
C20:1 c11 | 15 | 0.052 a | 0.040 b | 0.048 a | 0.002 | *** | *** | ** |
C20:1 c15 | 15 | 0.016 | 0.017 | 0.020 | 0.003 | n.s. | n.s. | n.s. |
C20:2n6 | 15 | 0.038 | 0.037 | 0.038 | 0.003 | n.s. | ** | n.s. |
C20:3n6 | 15 | 0.021 | 0.016 | 0.016 | 0.003 | n.s. | * | ** |
C20:3n9 | 15 | 0.079 b | 0.075 b | 0.104 a | 0.004 | *** | n.s. | ** |
C20:4n6 | 15 | 0.142 b | 0.139 b | 0.166 a | 0.004 | *** | * | * |
C22:0 | 15 | 0.033 | 0.031 | 0.035 | 0.003 | n.s. | n.s. | n.s. |
C22:2n6 | 15 | 0.021 b | 0.042 a | 0.023 b | 0.005 | ** | * | n.s. |
C23:0 | 15 | 0.023 b | 0.034 ab | 0.039 a | 0.005 | * | * | n.s. |
C24:0 | 15 | 0.031 b | 0.043 ab | 0.052 a | 0.005 | ** | *** | ** |
Variable | n | Diets | Significance | |||||
---|---|---|---|---|---|---|---|---|
C | BB | AP | SEM | Diet | Week | Diet × Week | ||
SFA | 15 | 67.4 c | 69.7 a | 67.9 b | 0.12 | *** | *** | *** |
MUFA | 15 | 27.5 a | 26.2 c | 27.1 b | 0.14 | *** | *** | *** |
PUFA | 15 | 4.89 a | 3.81 b | 4.73 a | 0.067 | *** | *** | *** |
UFA | 15 | 32.4 a | 30.1 c | 31.8 b | 0.12 | *** | *** | *** |
OBCFA | 15 | 3.35 c | 3.71 b | 3.95 a | 0.038 | *** | *** | *** |
∑CLA | 15 | 0.954 a | 0.547 c | 0.752 b | 0.019 | *** | *** | *** |
SFA/UFA | 15 | 2.08 c | 2.33 a | 2.14 b | 0.013 | *** | *** | *** |
SCFA | 15 | 13.9 b | 13.7 b | 14.3 a | 0.13 | ** | *** | * |
MCFA | 15 | 40.8 c | 44.2 a | 42.8 b | 0.13 | *** | *** | n.s. |
LCFA | 15 | 45.3 a | 42.1 c | 42.9 b | 0.20 | *** | *** | * |
n3 | 15 | 0.193 b | 0.170 c | 0.238 a | 0.004 | *** | *** | ** |
n6 | 15 | 2.83 a | 2.27 b | 2.84 a | 0.047 | *** | *** | *** |
AI | 15 | 2.02 c | 2.29 a | 2.12 b | 0.015 | *** | *** | *** |
TI | 15 | 3.05 b | 3.39 a | 3.04 b | 0.016 | *** | *** | *** |
DI C14:0 | 15 | 0.015 c | 0.016 b | 0.017 a | 0.000 | *** | *** | *** |
DI C16:0 | 15 | 0.048 b | 0.046 c | 0.051 a | 0.001 | *** | *** | *** |
DI C18:0 | 15 | 1.84 b | 1.85 b | 2.12 a | 0.010 | *** | *** | ** |
Variable | n | Diets | Significance | |||||
---|---|---|---|---|---|---|---|---|
C | BB | AP | SEM | Diet | Week | Diet × Week | ||
Glucose (mg/dL) | 24 | 50.8 a | 51.2 a | 47.6 b | 0.66 | *** | *** | *** |
Cholesterol (mg/dL) | 24 | 100.8 a | 91.9 b | 86.1 b | 2.94 | *** | *** | *** |
Urea (mg/dL) | 24 | 45.7 a | 40.4 b | 44.0 a | 1.14 | ** | *** | *** |
BHB (mmol/L) | 24 | 0.456 a | 0.356 b | 0.450 a | 0.028 | * | *** | *** |
NEFA (mmol/L) | 24 | 0.585 b | 0.856 a | 0.868 a | 0.048 | *** | *** | *** |
Haematocrit (%) | 24 | 30.4 a | 28.2 b | 29.3 ab | 0.47 | ** | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monllor, P.; Muelas, R.; Roca, A.; Atzori, A.S.; Díaz, J.R.; Sendra, E.; Romero, G. Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield, Quality and Composition. Animals 2020, 10, 1670. https://doi.org/10.3390/ani10091670
Monllor P, Muelas R, Roca A, Atzori AS, Díaz JR, Sendra E, Romero G. Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield, Quality and Composition. Animals. 2020; 10(9):1670. https://doi.org/10.3390/ani10091670
Chicago/Turabian StyleMonllor, Paula, Raquel Muelas, Amparo Roca, Alberto S. Atzori, José Ramón Díaz, Esther Sendra, and Gema Romero. 2020. "Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield, Quality and Composition" Animals 10, no. 9: 1670. https://doi.org/10.3390/ani10091670
APA StyleMonllor, P., Muelas, R., Roca, A., Atzori, A. S., Díaz, J. R., Sendra, E., & Romero, G. (2020). Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield, Quality and Composition. Animals, 10(9), 1670. https://doi.org/10.3390/ani10091670