Carcass Composition, Meat Quality and Sensory Quality of Gentile di Puglia Light Lambs: Effects of Dietary Supplementation with Oregano and Linseed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Diet
2.2. Chemical Composition of Feed
2.3. Physical Parameters of Longissimus lumborum Muscle
2.4. Chemical Composition and Fatty Acid Analyses of Longissimus Lumborum Muscle
2.5. Sensorial Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Performance In Vivo and Post-Mortem of Lambs
3.2. Slaughtering and Carcass Traits of Lambs
3.3. Physical Characteristics of Longissimus Lumborum Muscle of Lambs
3.4. Chemical Composition of Longissimus Lumborum Muscle of Lambs
3.5. Fatty Acid Composition of Longissimus Lumborum Muscle of Lambs
3.6. Sensory Analysis of Longissimus Lumborum Muscle of Lambs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mascheroni, E. Zootecnia Speciale; UTET: Torino, Italy, 1927. [Google Scholar]
- AIA (Italian Breeders Association). Allevamenti Italiani Ovini; REDA: Roma, Italy, 1961. [Google Scholar]
- EUROPEAN COMMISSION. Council Regulation of 30 September 2000 on support for rural development form the European Agricultural Guidance and Guarantee Fund, 1257/99/EC. In Official Journal of the European Commission; EUROPEAN COMMISSION: Brussels, Belgium, 2004; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:153:0030:0081:EN:PDF (accessed on 21 December 2020).
- ASSONAPA. Available online: www.assonapa.it (accessed on 4 January 2021).
- Wyness, L.; Weichselbaum, E.; O’Connor, A.; Williams, E.B.; Benelam, B.; Riley, H.; Stanner, S. Red meat in the diet: An update. Nutr. Bull. 2011, 36, 34–77. [Google Scholar] [CrossRef]
- Givens, D.I. The role of animal nutrition in improving the nutritive value of animal-derived foods in relation to chronic disease. Proc. Nutr. Soc. 2005, 64, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.A. Nutritional manipulation of the fatty acid composition of sheep meat: A review. J. Agric. Sci. 2007, 145, 419–434. [Google Scholar] [CrossRef]
- Giannico, F.; Colonna, M.A.; Coluccia, A.; Crocco, D.; Vonghia, G.; Cocca, C.; Jambrenghi, A.C. Extruded linseed and linseed oil as alternative to soybean meal and soybean oil in diets for fattening lambs. Ital. J. Anim. Sci. 2009, 8, 495–497. [Google Scholar] [CrossRef]
- Colonna, M.A.; Giannico, F.; Coluccia, A.; Di Bello, G.; Vonghia, G.; Caputi Jambrenghi, A. Dietary supplementation with extruded linseed and linseed oil in lamb feeding: Productive performances and meat quality traits. Progr. Nutr. 2011, 13, 111–124. [Google Scholar]
- Toteda, F.; Facciolongo, A.; Ragni, M.; Vicenti, A. Effect of suckling type and PUFA use on productive performances, quanti-qualitative characteristics of meat and fatty acid profile in lamb. Prog. Nutr. 2011, 13, 125–134. [Google Scholar]
- Facciolongo, A.; Lestingi, A.; Colonna, M.; Nicastro, F.; De Marzo, D.; Toteda, F. Effect of diet lipid source (linseed vs. soybean) and gender on performance, meat quality and intramuscular fatty acid composition in fattening lambs. Small Rumin. Res. 2018, 159, 11–17. [Google Scholar] [CrossRef]
- Rotondi, P.; Colonna, M.A.; Marsico, G.; Giannico, F.; Ragni, M.; Facciolongo, A.M. Dietary Supplementation with Oregano and Linseed in Garganica Suckling Kids: Effects on Growth Performances and Meat Quality. Pak. J. Zool. 2018, 50, 1421. [Google Scholar] [CrossRef]
- Tarricone, S.; Giannico, F.; Ragni, M.; Colonna, M.A.; Rotondi, P.; Cosentino, C.; Tufarelli, V.; Laudadio, V. Effects of dietary extruded linseed (Linum usitatissimum L.) and oregano (Origanum vulgare) on growth traits, carcass composition and meat quality of Grigia di Potenza suckling kids. Intern. J. Agric. And Biol. 2021, in press. [Google Scholar]
- Ragni, M.; Toteda, F.; Tufarelli, V.; Laudadio, V.; Facciolongo, A.M.; Dipalo, F.; Vicenti, A. Feeding of extruded flaxseed (Linum usitatissimum L.) and pasture in Podolica young bulls: Effects on growth traits, meat quality and fatty acid composition. Pak. J. Zool. 2014, 46, 1101–1109. [Google Scholar]
- Tarricone, S.; Colonna, M.; Giannico, F.; Facciolongo, A.; Jambrenghi, A.C.; Ragni, M. Effects of dietary extruded linseed (Linum usitatissimum L.) on performance and meat quality in Podolian young bulls. S. Afr. J. Anim. Sci. 2019, 49, 781. [Google Scholar] [CrossRef] [Green Version]
- Tarricone, S.; Colonna, M.; Giannico, F.; Ragni, M.; Lestingi, A.; Facciolongo, A. Effect of an extruded linseed diet on meat quality traits in Nero Lucano pigs. S. Afr. J. Anim. Sci. 2020, 49, 1093–1103. [Google Scholar] [CrossRef]
- Wood, J.; Richardson, R.; Nute, G.; Fisher, A.; Campo, M.; Kasapidou, E.; Sheard, P.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.M.A.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of dietary supplementation with polyphenols on meat quality in Saanen goat kids. BMC Veter- Res. 2018, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, C.; Colonna, M.; Musto, M.; Dimotta, A.; Freschi, P.; Tarricone, S.; Ragni, M.; Paolino, R. Effects of dietary supplementation with extruded linseed and oregano in autochthonous goat breeds on the fatty acid profile of milk and quality of Padraccio cheese. J. Dairy Sci. 2021, 104, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, A. Fruit-based natural antioxidants in meat and meat products: A re-view. Crit. Rev. Food Sci. Nutr. 2015, 55, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Vital, A.C.P.; Guerrero, A.; Kempinski, E.M.B.C.; Monteschio, J.D.O.; Sary, C.; Ramos, T.R.; Campo, M.D.M.; Prado, I.N.D. Consumer profile and acceptability of cooked beef steaks with edible and active coating containing oregano and rosemary essential oils. Meat Sci. 2018, 143, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufarelli, V.; Casalino, E.; D’alessandro, A.G.; Laudadio, V.; Tufarelli, E.C.V. Dietary Phenolic Compounds: Biochemistry, Metabolism and Significance in Animal and Human Health. Curr. Drug Metab. 2018, 18, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.; Skandamis, P.; Coote, P.; Nychas, G.-J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanishlieva-Maslarova, N.V. Inhibiting oxidation. In Antioxidants in Food: Practical Applications; Pokorny, J., Yanishlieva, N., Gordon, M., Eds.; Woodhead Publishing Limited, CRC Press: Cambridge, UK, 2001; pp. 22–70. [Google Scholar]
- Bampidis, V.; Christodoulou, V.; Florou-Paneri, P.; Christaki, E.; Spais, A.; Chatzopoulou, P. Effect of dietary dried oregano leaves supplementation on performance and carcass characteristics of growing lambs. Anim. Feed. Sci. Technol. 2005, 121, 285–295. [Google Scholar] [CrossRef]
- Simitzis, P.; Deligeorgis, S.; Bizelis, J.; Dardamani, A.; Theodosiou, I.; Fegeros, K. Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Sci. 2008, 79, 217–223. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; The National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Lestingi, A.; Facciolongo, A.; Jambrenghi, A.; Ragni, M.; Toteda, F. The use of peas and sweet lupin seeds alone or in association for fattening lambs: Effects on performance, blood parameters and meat quality. Small Rumin. Res. 2016, 143, 15–23. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemistry. Official Methods of Analysis of the AOAC, 17th ed.; Association of Official Ana-lytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Sauvant, D.; Perez, J.M.; Tran, G. Table od Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish, 1st ed.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2004. [Google Scholar]
- Šicklep, M.; Candek-Potokar, M. Pork color measurements as affected by bloom time and measurement location. J. Muscle Foods 2007, 18, 78–87. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Christie, W.W. Lipid Analysis-Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon: Oxford, UK, 1982; p. 270. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Colonna, M.A.; Rotondi, P.; Selvaggi, M.; Jambrenghi, A.C.; Ragni, M.; Tarricone, S. Sustainable Rearing for Kid Meat Production in Southern Italy Marginal Areas: A Comparison among Three Genotypes. Sustainability 2020, 12, 6922. [Google Scholar] [CrossRef]
- Landim, A.V.; Castanheira, M.; Fioravanti, M.C.S.; Pacheco, A.; Cardoso, M.T.M.; Louvandini, H.; McManus, C.; Pimentel, C. Physical, chemical and sensorial parameters for lambs of different groups, slaughtered at different weights. Trop. Anim. Heal. Prod. 2011, 43, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS/STAT 9.13 User’s Guide; Statistical Analysis System Inst.: Cary, NC, USA, 2004. [Google Scholar]
- Lestingi, A.; Colonna, M.; Marsico, G.; Tarricone, S.; Facciolongo, A. Effects of legume seeds and processing treatment on growth, carcass traits and blood constituents of fattening lambs. S. Afr. J. Anim. Sci. 2019, 49, 799. [Google Scholar] [CrossRef] [Green Version]
- Facciolongo, A.M.; Rubino, G.; Zarrilli, A.; Vicenti, A.; Ragni, M.; Toteda, F. Alternative protein sources in lamb feeding 1. Effects on productive performances, carcass characteristics and energy and protein metabolism. Progr. in Nutr. 2014, 16, 105–115. [Google Scholar]
- Colonna, M.A.; Giannico, F.; Marsico, G.; Vonghia, G.; Ragni, M.; Jambrenghi, A.C. Effect of pea (Pisum sativum L.) as alter-native to soybean meal on the productive performances and meat quality traits of Merino crossbred lamb types. Progr. Nutr. 2014, 16, 39–51. [Google Scholar]
- Marcon, H.; Souza, C.F.; Baldissera, M.D.; Alba, D.F.; Favaretto, J.A.; Santos, D.S.; Borges, L.; Kessler, J.D.; Vedovatto, M.; Bianchi, A.E.; et al. Effect of curcumin dietary supplementation on growth performance, physiology, carcass characteristics and meat quality in lambs. Ann. Anim. Sci. 2020. [Google Scholar] [CrossRef]
- Pena-Bermudez, Y.A.; Lobo, R.R.; Rojas-Moreno, D.A.; Poleti, M.D.; De Amorim, T.R.; Rosa, A.F.; Pereira, A.S.C.; Pinheiro, R.S.B.; Bueno, I.C.S. Effects of Feeding Increasing Levels of Yerba Mate on Lamb Meat Quality and Antioxidant Activity. Animals 2020, 10, 1458. [Google Scholar] [CrossRef] [PubMed]
- Rant, W.; Radzik-Rant, A.; Świątek, M.; Niżnikowski, R.; Szymańska, Ż.; Bednarczyk, M.; Orłowski, E.; Morales-Villavicencio, A.; Ślęzak, M. The effect of aging and muscle type on the quality characteristics and lipid oxidation of lamb meat. Arch. Anim. Breed. 2019, 62, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Marino, R.; Caroprese, M.; Annicchiarico, G.; Ciampi, F.; Ciliberti, M.G.; Della Malva, A.; Santillo, A.; Sevi, A.; Albenzio, M. Effect of Diet Supplementation with Quinoa Seed and/or Linseed on Immune Response, Productivity and Meat Quality in Merinos Derived Lambs. Animals 2018, 8, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusaro, I.; Giammarco, M.; Chincarini, M.; Vaintrub, M.O.; Palmonari, A.; Mammi, L.M.E.; Formigoni, A.; Di Giuseppe, L.; Vignola, G. Effect of Ewe Diet on Milk and Muscle Fatty Acid Composition of Suckling Lambs of the Protected Geographical Origin Abbacchio Romano. Animals 2019, 10, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miltko, R.; Majewska, M.P.; Bełżecki, G.; Kula, K.; Kowalik, B. Growth performance, carcass and meat quality of lambs supplemented different vegetable oils. Asian-Australas. J. Anim. Sci. 2019, 32, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Facciolongo, A.M.; De Marzo, D.; Ragni, M.; Lestingi, A.; Toteda, F. Use of alternative protein sources for finishing lambs. 2. Effects on chemical and physical characteristics and fatty acid composition of meat. Progr. Nutr. 2015, 17, 165–173. [Google Scholar]
- Atti, N.; Methlouthi, N.; Saidi, C.; Mahouachi, M. Effects of extruded linseed on muscle physicochemical characteristics and fatty acid composition of lambs. J. Appl. Anim. Res. 2013, 41, 404–409. [Google Scholar] [CrossRef]
- WHO/FAO (World Health Organization/Food and Agriculture Organization). Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Gómez-Cortés, P.; Frutos, P.; Mantecon, A.R.; Juarez, M.; De La Fuente, M.; Hervás, G. Milk Production, Conjugated Linoleic Acid Content, and In Vitro Ruminal Fermentation in Response to High Levels of Soybean Oil in Dairy Ewe Diet. J. Dairy Sci. 2008, 91, 1560–1569. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef]
- Borton, R.J.; Loerch, S.C.; McClure, K.E.; Wulf, D.M. Comparison of characteristics of lambs fed concentrate or grazed on ryegrass to traditional or heavy slaughter weights. I. Production, carcass, and organoleptic characteristics1. J. Anim. Sci. 2005, 83, 679–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resconi, V.; Campo, M.; I Furnols, M.F.; Montossi, F.; Sanudo, C. Sensory evaluation of castrated lambs finished on different proportions of pasture and concentrate feeding systems. Meat Sci. 2009, 83, 31–37. [Google Scholar] [CrossRef] [PubMed]
Ingredients (% As-fed Basis) | Dietary Treatment 1 | ||
---|---|---|---|
C | L | L + O | |
Corn | 31.00 | 31.00 | 30.40 |
Faba bean | 10.00 | 8.50 | 8.50 |
Wheat bran | 10.00 | 10.00 | 10.00 |
Barley | 9.00 | 9.00 | 9.00 |
Wheat flour shorts | 9.00 | 9.00 | 9.00 |
Sunflower meal | 8.00 | 7.50 | 7.50 |
Dehulled soybean | 6.00 | 6.00 | 6.00 |
Sugar beet pulp | 6.00 | 6.00 | 6.00 |
Soybean hulls | 4.00 | 4.00 | 4.00 |
Molasses | 3.00 | 3.00 | 3.00 |
Vitamin-mineral premix | 3.00 | 3.00 | 3.00 |
Soybean oil | 1.00 | - | - |
Extruded linseed | - | 3.00 | 3.00 |
Oregano (dried inflorescences) | - | - | 0.60 |
Variable | Dietary Treatment 1 | ||
---|---|---|---|
C | L | L + O | |
Chemical composition (% on DM basis) | |||
Crude protein | 15.51 | 15.60 | 15.61 |
Ether extract | 3.66 | 3.70 | 3.71 |
Ash | 3.41 | 3.49 | 3.56 |
Crude fiber | 7.91 | 7.92 | 8.32 |
NDF 2 | 21.19 | 21.24 | 21.15 |
ADF 2 | 9.58 | 9.56 | 9.53 |
ADL 2 | 1.79 | 1.86 | 1.85 |
ME (MJ) | 10.16 | 10.18 | 10.05 |
Fatty acid composition (% FA methyl esters) | |||
C16:0 (palmitic) | 9.23 | 7.47 | 7.39 |
C18:0 (stearic) | 1.18 | 3.55 | 4.08 |
C18:1 n-9, cis 9 (oleic) | 17.78 | 18.76 | 17.99 |
C18:2 n-6 (linoleic) | 15.16 | 22.15 | 20.42 |
C18:3 n-3 (α-linolenic) | 4.65 | 31.00 | 30.68 |
C22:5 n-3 (DPA) | 0.46 | 0.17 | 0.27 |
C22:6 n-3 (DHA) | 0.29 | 0.28 | 0.28 |
Descriptor | Definition |
---|---|
Lamb flavor a | Mixed experience of olfactory, gustatory, and tactile sensations perceived during the tasting. Flavor intensity of cooked lamb. |
Succulence b | The first perception of the quantity of liquid liberated by the sample of meat in the mouth. |
Tenderness c | The force required to compress a piece of meat between the molar teeth, evaluated at the first bite |
Juiciness d | Perception of the amount of liquid released from the meat sample in the mouth after fifth bite. |
Overall acceptance e | Sum of quality attributes that will contribute to determining the degree of product acceptance by panelists. |
Item | Dietary Treatment 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
C | L | L + O | |||
Initial—20 d BW 3 (kg) | 9.39 | 9.81 | 9.42 | 0.923 | 0.911 |
40 d BW (kg) | 13.86 | 13.93 | 13.91 | 1.557 | 0.335 |
60 d BW (kg) | 19.53 | 19.03 | 19.30 | 2.220 | 0.125 |
Average daily BW gain 20–40 (kg/d) | 0.223 | 0.206 | 0.224 | 0.044 | 0.074 |
Average daily BW gain 40–60 (kg/d) | 0.258 | 0.232 | 0.245 | 0.054 | 0.985 |
Average daily BW gain 20–60 (kg/d) | 0.241 | 0.219 | 0.235 | 0.042 | 0.051 |
Feed conversion ratio | 4.32 | 4.17 | 4.64 | 0.202 | 0.061 |
Item | Dietary Treatment 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
C | L | L + O | |||
Final BW (kg) | 19.65 | 19.13 | 19.30 | 2.234 | 0.564 |
Slaughter weight (kg) | 18.82 | 18.51 | 18.75 | 2.099 | 0.432 |
PV netto (kg) | 17.44 | 16.85 | 17.34 | 1.992 | 0.617 |
Skin + fleece (%) | 13.13 | 13.24 | 13.84 | 0.867 | 0.265 |
Hot Carcass dressing (%) 3 | 67.72 | 67.09 | 67.94 | 2.457 | 0.745 |
Cold Carcass dressing (%) 3 | 65.73 | 64.75 | 65.82 | 2.800 | 0.889 |
Right half carcass (kg) | 11.60 | 11.15 | 11.75 | 1.524 | 0.513 |
Meat cuts (%) 4 | |||||
Neck | 5.77 | 6.01 | 6.04 | 0.463 | 0.078 |
Shoulder | 15.34 | 15.83 | 15.41 | 0.785 | 0.124 |
Leg | 25.67 | 26.33 | 26.38 | 1.040 | 0.525 |
Steaks | 12.59 | 12.60 | 12.12 | 0.666 | 0.105 |
Abdominal region | 4.19 a | 3.86 ab | 3.77 b | 0.343 | 0.034 |
Loin | 5.72 | 5.89 | 5.85 | 0.373 | 0.066 |
Brisket | 7.83 | 7.65 | 7.69 | 0.407 | 0.071 |
Offal | 8.69 | 8.23 | 8.16 | 0.930 | 0.494 |
Item | Dietary Treatment 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
C | L | L + O | |||
Leg (kg) | 0.66 | 0.69 | 0.65 | 0.133 | 0.085 |
Lean (%) | 48.24 b | 48.04 b | 54.27 a | 3.953 | 0.026 |
Dissectible fat (%) | 15.96 ab | 16.42 a | 12.88 b | 4.219 | 0.047 |
Bone (%) | 35.80 | 35.55 | 32.84 | 5.005 | 0.085 |
Loin (kg) | 2.96 | 2.90 | 3.07 | 0.415 | 0.546 |
Lean (%) | 66.88 | 68.34 | 68.69 | 1.866 | 0.081 |
Dissectible fat (%) | 9.43 | 8.00 | 7.71 | 1.805 | 0.149 |
Bone (%) | 23.69 | 23.66 | 23.59 | 1.466 | 0.142 |
Item | Dietary Treatment 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
C | L | L + O | |||
pH1 # | 6.56 | 6.53 | 6.55 | 0.159 | 0.052 |
pH24 ## | 5.32 b | 5.40 ab | 5.47 a | 0.089 | 0.023 |
L* | 41.40 | 41.86 | 40.26 | 2.771 | 0.761 |
a* | 9.73 ab | 9.41 b | 10.42 a | 1.013 | 0.049 |
b* | 11.67 | 11.36 | 11.37 | 1.279 | 0.963 |
WBS, kg/cm2 | 2.03 | 2.40 | 2.19 | 0.534 | 0.776 |
T-BARS (mg MDA/kg meat) | 0.318 | 0.382 | 0.371 | 0.122 | 0.066 |
Item | Dietary Treatment 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
C | L | L + O | |||
Moisture | 75.06 | 75.67 | 74.91 | 0.638 | 0.084 |
Protein | 19.17 | 19.05 | 19.55 | 0.652 | 0.070 |
Lipid | 3.68 | 3.60 | 3.50 | 0.838 | 0.055 |
Ash | 1.13 | 1.12 | 1.15 | 0.067 | 0.095 |
Item | Dietary Treatment 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
C | L | L + O | |||
Total Fatty acids (g/100 g muscle) | 3.26 | 3.18 | 3.10 | 0.241 | 0.304 |
C10:0 (capric) | 0.37 | 0.36 | 0.31 | 0.220 | 0.256 |
C12:0 (lauric) | 3.52 a | 3.00 ab | 2.87 b | 0.592 | 0.044 |
C14:0 (myristic) | 3.42 A | 2.33 B | 2.74 AB | 0.758 | 0.005 |
C15:0 | 0.07 | 0.08 | 0.05 | 0.115 | 0.074 |
C16:0 (palmitic) | 23.92 | 23.16 | 22.00 | 2.850 | 0.075 |
C17:0 | 0.56 B | 1.56 Aa | 0.80 b | 0.415 | 0.003 |
C18:0 (stearic) | 14.94 | 13.96 | 14.81 | 1.492 | 0.063 |
C20:0 | 1.07 | 1.81 | 1.46 | 0.613 | 0.535 |
∑ SFA | 50.99 a | 48.70 b | 47.38 b | 2.279 | 0.039 |
C14:1 | 0.50 | 0.69 | 0.45 | 0.492 | 0.456 |
C15:1 | 0.08 | 0.09 | 0.10 | 0.076 | 0.189 |
C16:1 n7 (palmitoleic) | 1.58 a | 0.56 b | 1.52 ab | 0.326 | 0.048 |
C17:1 | 0.17 | 0.28 | 0.14 | 0.160 | 0.401 |
C18:1 n9 trans (elaidic) | 3.16 | 3.02 | 3.31 | 1.444 | 0.155 |
C18:1 n9 cis (oleic) | 34.71 | 34.72 | 34.60 | 2.461 | 0.087 |
∑ MUFA | 40.48 | 39.43 | 40.62 | 2.801 | 0.062 |
C18:2 n6 c9 c12 (linoleic) | 5.99 B | 7.82 A | 8.06 A | 1.124 | 0.005 |
CLA c9, t11 | 0.86 | 0.97 | 0.87 | 0.229 | 0.218 |
CLA t10, c12 | 0.32 | 0.34 | 0.39 | 0.238 | 0.165 |
C18:3n3 (α-linolenic) | 0.41 B | 0.70 A | 0.71 A | 0.071 | 0.001 |
C20:4 n6 (ARA) | 0.17 | 0.12 | 0.13 | 0.073 | 0.316 |
C20:5 n3 (EPA) | 0.09 B | 0.21 A | 0.19 A | 0.024 | 0.003 |
C22:5 n3 (DPA) | 0.01 | 0.05 | 0.13 | 0.186 | 0.240 |
C22:6 n3 (DHA) | 0.30 | 0.50 | 0.62 | 0.410 | 0.155 |
∑ PUFA | 8.53 B | 11.86 A | 11.99 A | 1.431 | 0.007 |
∑ UFA | 49.01 b | 51.30 ab | 52.62 a | 2.279 | 0.032 |
n-6 | 7.32 B | 9.14 A | 9.45 A | 1.075 | 0.001 |
n-3 | 0.90 b | 2.26 a | 1.85 ab | 1.059 | 0.034 |
n-6/n-3 | 8.70 A | 5.24 B | 5.51 B | 2.152 | 0.002 |
A.I. | 0.85 a | 0.70 b | 0.69 b | 0.113 | 0.031 |
T.I. | 1.58 a | 1.29 b | 1.29 b | 0.218 | 0.029 |
Item | Dietary Treatment 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
C | L | L + O | |||
Judge (n) | 41 | 41 | 41 | ||
Meat Flavor | 4.90 ab | 4.56 b | 5.56 a | 2.243 | 0.048 |
Succulence | 4.80 B | 5.21 AB | 5.87 A | 1.788 | 0.008 |
Tenderness | 6.95 B | 6.82 B | 7.73 A | 1.548 | 0.007 |
Juiciness | 6.22 B | 6.37 B | 7.41 A | 1.506 | 0.006 |
Overall acceptance | 7.21 | 7.20 | 7.32 | 1.196 | 0.078 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarpa, G.; Tarricone, S.; Ragni, M. Carcass Composition, Meat Quality and Sensory Quality of Gentile di Puglia Light Lambs: Effects of Dietary Supplementation with Oregano and Linseed. Animals 2021, 11, 607. https://doi.org/10.3390/ani11030607
Scarpa G, Tarricone S, Ragni M. Carcass Composition, Meat Quality and Sensory Quality of Gentile di Puglia Light Lambs: Effects of Dietary Supplementation with Oregano and Linseed. Animals. 2021; 11(3):607. https://doi.org/10.3390/ani11030607
Chicago/Turabian StyleScarpa, Giuseppe, Simona Tarricone, and Marco Ragni. 2021. "Carcass Composition, Meat Quality and Sensory Quality of Gentile di Puglia Light Lambs: Effects of Dietary Supplementation with Oregano and Linseed" Animals 11, no. 3: 607. https://doi.org/10.3390/ani11030607
APA StyleScarpa, G., Tarricone, S., & Ragni, M. (2021). Carcass Composition, Meat Quality and Sensory Quality of Gentile di Puglia Light Lambs: Effects of Dietary Supplementation with Oregano and Linseed. Animals, 11(3), 607. https://doi.org/10.3390/ani11030607