The Fermentation Process Improves the Nutritional Value of Rapeseed Cake for Turkeys—Effects on Performance, Gut Bacterial Population and Its Fermentative Activity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rapeseed Cake
2.2. Animals and Experimental Design
2.3. Sample Collection
2.4. Chemical Analysis
2.5. Bacterial DNA Eextraction and 16SrRNA Sequencing
2.6. Statistical Analysis
3. Results
3.1. Effect of Diets Containing RRC or FRC on Growth Performance.
3.2. Effect of Diets Containing RRC or FRC on SCFA Concentrations and the Activities of Bacterial Enzymes in the Cecal Digesta
3.3. Effect of Diets Containing RRC or FRC on the Microbial Composition in the Cecal Digesta
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smulikowska, S.; Czerwiński, J.; Mieczkowska, A. Nutritional value of rapeseed expeller cake for broilers: Effect of dry extrusion. J. Anim. Feed Sci. 2006, 15, 447–455. [Google Scholar] [CrossRef]
- Jakobsen, G.V.; Jensen, B.B.; Knudsen, K.E.B.; Canibe, N. Improving the nutritional value of rapeseed cake and wheat dried distillers grains with soluble by addition of enzymes during liquid fermentation. Anim. Feed Sci. Technol. 2015, 208, 198–213. [Google Scholar] [CrossRef]
- Kocher, A.; Choct, M.; Porter, M.D.; Broz, J. The effects of enzyme addition to broiler diets containing high concentrations of canola or sunflower meal. Poult. Sci. 2000, 79, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Zduńczyk, Z.; Jankowski, J.; Juskiewicz, J.; Mikulski, D.; Slominski, B.A. Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and non-starch polysaccharide-degrading enzymes on growth performance and gut physiology of growing turkeys. Can. J. Anim. Sci. 2013, 93, 353–362. [Google Scholar] [CrossRef]
- Feng, D.; Zuo, J. Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. In Proceedings of the 12th International Rapeseed Congress, Wuhan, China, 26–30 March 2007; pp. 265–270. [Google Scholar]
- Mikulski, D.; Jankowski, J.; Zdunczyk, Z.; Juskiewicz, J.; Slominski, B.A. The effect of different dietary levels of rapeseed meal on growth performance, carcass traits and meat quality in turkeys. Poult. Sci. 2012, 91, 215–223. [Google Scholar] [CrossRef]
- Aljubori, A.; Idrus, Z.; Soleimani, A.F.; Abdullah, N.; Boo, L.J. Response of broiler chickens to dietary inclusion of fermented canola meal under heat stress condition. Ital. J. Anim. Sci. 2017, 16, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Chiang, L.; Lu, W.Q.; Piao, X.S.; Hu, J.K.; Gong, L.M.; Thacker, P.A. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian Aust. J. Anim. Sci. 2010, 23, 263–271. [Google Scholar] [CrossRef]
- Xu, F.Z.; Zeng, X.G.; Ding, X.L. Effects of replacing soybean meal with fermented rapeseed meal on performance, serum biochemical variables and intestinal morphology of broilers. Asian Aust. J. Anim. Sci. 2012, 25, 1734–1741. [Google Scholar] [CrossRef]
- Rozan, P.; Villaume, C.; Bau, H.M. Detoxication of rapeseed meal by Rhizopus Oligosporus sp-T3: A first step towards rapeseed protein concentrate. Int. J. Food Sci. Technol. 1996, 31, 85–90. [Google Scholar] [CrossRef]
- Niba, A.T.; Beal, J.D.; Kudi, A.C.; Brooks, P.H. Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. Afr. J. Biotechnol. 2009, 8, 1758–1767. [Google Scholar] [CrossRef]
- Goodarzi Boroojeni, F.; Senz, M.; Kozłowski, K.; Boros, D.; Wisniewska, M.; Rose, D.; Zentek, J. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers. Animal 2017, 11, 1698–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonissen, G.; Eeckhaut, V.; Van Driessche, K.; Onrust, L.; Haesebrouck, F.; Ducatelle, R.; Moore, R.J.; Van Immerseel, F. Microbial shifts associated with necrotic enteritis. Avian Pathol. 2016, 45, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onrust, L.; Ducatelle, R.; Van Driessche, K.; De Maesschalck, C.; Vermeulen, K.; Haesebrouck, F.; Eeckhaut, V.; Van Immerseel, F. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health. Front. Vet. Sci. 2015, 2, 75. [Google Scholar] [CrossRef]
- Kohl, K. Diversity and function of the avian gut microbiota. J. Comp. Physiol. B 2012, 182, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Torok, V.A.; Hughes, R.J.; Mikkelsen, L.L.; Perez-Maldonado, R.; Balding, K.; MacAlpine, R.; Percy, N.J.; Ophel-Keller, K. Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Appl. Environ. Microbiol. 2011, 77, 5868–5878. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, Y.; Li, A.; Wang, Z.; Zhang, X.; Yun, T.; Qiu, L.; Yin, Y. Effect of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food Agric. Immunol. 2016, 27, 182–193. [Google Scholar] [CrossRef]
- OJEU. Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes. OJEU 20.10.2010, Series L. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Hybrid Turkeys, 2013. Converter Performance Goals. Available online: http://www.hybridturkeys.com/en/hybrid-performance-goals/commercial-body-weight-performance-goals (accessed on 20 November 2013).
- Smulikowska, S.; Rutkowski, A. (Eds.) Recommended Allowances and Nutritive Value of Feedstuffs. Poultry Feeding Standards (in Polish), 4th ed.; The Kielanowski Institute of Animal Physiology and Nutrition, PAS: Jablonna, Poland, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC Internationa, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2007. [Google Scholar]
- Haugh, W.; Lantzsh, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Slominski, B.A.; Campbell, L.D. Non-starch polysaccharides of canola meal: Quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation. J. Sci. Food Agric. 1990, 53, 175–184. [Google Scholar] [CrossRef]
- Scott, R.W. Colorimetric determination of hexuronic acids in plant materials. Anal. Chem. 1979, 51, 936–941. [Google Scholar] [CrossRef]
- Slominski, B.A.; Guenter, W.; Campbell, L.D. New approach to water-soluble carbohydrate determination as a tool for evaluation of plant cell wall degradation enzymes. J. Agric. Food Chem. 1993, 41, 2304–2308. [Google Scholar] [CrossRef]
- Slominski, B.A.; Campbell, L.D. Gas chromatographic determination of indole glucosinolates-a re-examination. J. Sci. Food Agric. 1987, 40, 131–143. [Google Scholar] [CrossRef]
- Juśkiewicz, J.; Zduńczyk, Z.; Żary-Sikorska, E.; Król, B.; Milala, J.; Jurgoński, A. Effect of dietary polyphenolic fraction of chicory root, peel, seed and leaf extracts on caecal fermentation and blood parameters in rats fed diets containing prebiotic fructans. Br. J. Nutr. 2011, 105, 710–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drażbo, A.; Ognik, K.; Zaworska, A.; Ferenc, K.; Jankowski, J. The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poult. Sci. 2018, 97, 3910–3920. [Google Scholar] [CrossRef]
- Rad-Spice, M.; Rogiewicz, A.; Jankowski, J.; Slominski, B.A. Yellow-seeded B. napus and B. juncea canola. Part 1. Nutritive value of the meal for broiler chickens. Anim. Feed Sci. Technol. 2018, 240, 66–77. [Google Scholar] [CrossRef]
- Konieczka, P.; Nowicka, K.; Madar, M.; Taciak, M.; Smulikowska, S. Effects of pea extrusion and enzyme and probiotic supplementation on performance, microbiota activity and biofilm formation in the broiler gastrointestinal tract. Br. Poult. Sci. 2018, 59, 654–662. [Google Scholar] [CrossRef]
- Rehman, H.U.; Vahjen, W.; Awad, W.A.; Zentek, J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr. 2007, 61, 319–335. [Google Scholar] [CrossRef]
- De Vadder, F.; Plessier, F.; Gautier-Stein, A.; Mithieux, G. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis. Neurogastroenterol. Motil. 2015, 27, 443–448. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- Heimann, E.; Nyman, M.; Pålbrink, A.K.; Lindkvist-Petersson, K.; Degerman, E. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte 2016, 5, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Beaud, D.; Talliez, P.; Anba-Mondoloni, J. Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium Ruminococcus gnavus. Microbiology 2005, 151, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Lagaert, S.; Pollet, A.; Courtin, C.M.; Volckaert, G. β-Xylosidases and α-arabinofuranosidases: Accessory enzymes for arabinoxylan degradation. Biotechnol. Adv. 2014, 32, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Cowan, A.A.; Vallin, H.E.; Onime, L.A.; Oyama, L.B.; Cameron, S.J.; Gonot, C.; Moorby, J.M.; Waddams, K.; Theobald, V.J.; et al. Characterization of the microbiome along the gastrointestinal tract of growing turkeys. Front. Microbiol. 2017, 8, 1089. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Józefiak, A.; Benzertiha, A.; Kierończyk, B.; Łukomska, A.; Wesołowska, I.; Rawski, M. Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals 2020, 10, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konieczka, P.; Smulikowska, S. Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal 2018, 12, 1144–1153. [Google Scholar] [CrossRef]
Compounds | Weeks 1 to 4 | Weeks 5 to 8 | Weeks 9 to 12 | Weeks 13 to 16 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | RRC | FRC | C | RRC | FRC | C | RRC | FRC | C | RRC | FRC | |
Wheat | 519.4 | 429.3 | 429.3 | 522.2 | 434.6 | 434.6 | 627.3 | 539.7 | 539.7 | 721.4 | 633.7 | 633.7 |
Soybean meal | 414.8 | 345.5 | 345.5 | 388.5 | 318 | 318 | 282.4 | 211.9 | 211.9 | 201 | 130.5 | 130.5 |
Rapeseed cake | — | 150.0 | — | — | 150.0 | — | — | 150.0 | — | — | 150.0 | — |
Fermented rapeseed cake | — | — | 150.0 | — | — | 150.0 | — | — | 150.0 | — | — | 150.0 |
Soybean oil | 16.6 | 28.3 | 28.3 | 40.9 | 52.1 | 52.1 | 49.5 | 60.8 | 60.8 | 47.4 | 58.7 | 58.7 |
Monocalcium phosphate | 17.8 | 17 | 17 | 15.5 | 15 | 15 | 11.4 | 10.9 | 10.9 | 7 | 6.5 | 6.5 |
Sodium bicarbonate | 1.9 | 1.9 | 1.9 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Sodium chloride | 2 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.6 | 1.6 | 1.6 | 1.2 | 1.2 | 1.2 |
Limestone | 15.2 | 14 | 14 | 16.8 | 15.3 | 15.3 | 14.3 | 12.8 | 12.8 | 10.3 | 8.8 | 8.8 |
Choline chloride | 0.9 | 0.9 | 0.9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
L-Lysine HCL | 4.3 | 4.7 | 4.7 | 4.6 | 4.6 | 4.6 | 4.6 | 4.5 | 4.5 | 3.7 | 3.6 | 3.6 |
DL-Methionine | 3.3 | 2.9 | 2.9 | 3 | 2.4 | 2.4 | 2.3 | 1.7 | 1.7 | 1.9 | 1.3 | 1.3 |
L-Threonine | 1.1 | 1 | 1 | 1.3 | 0.9 | 0.9 | 1.3 | 0.9 | 0.9 | 0.9 | 0.5 | 0.5 |
Enzymes | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Vitamin-mineral premix 1 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Analyzed nutrients | ||||||||||||
Crude protein | 271 | 277 | 277 | 258 | 255 | 255 | 220 | 226 | 226 | 184 | 186 | 186 |
Crude fat | 40.5 | 59 | 59 | 52.6 | 75.6 | 75.6 | 54.3 | 69.9 | 69.9 | 60.3 | 75.1 | 75.1 |
Calculated nutritional value 2 | ||||||||||||
ME, kcal/kg | 2750 | 2750 | 2750 | 2900 | 2900 | 2900 | 3050 | 3050 | 3050 | 3125 | 3125 | 3125 |
Crude fiber | 26.9 | 45.5 | 45.5 | 28.2 | 46.5 | 46.5 | 26.7 | 45 | 45 | 25.9 | 44.2 | 44.2 |
Lysine | 17.4 | 17.4 | 17.4 | 16.3 | 16.3 | 16.3 | 13.6 | 13.6 | 13.6 | 10.9 | 10.9 | 10.9 |
Arginine | 17.4 | 17.4 | 17.4 | 15.8 | 15.6 | 15.6 | 12.8 | 12.6 | 12.6 | 10.5 | 10.4 | 10.4 |
Methionine | 6.8 | 6.7 | 6.7 | 6.4 | 6 | 6 | 5.2 | 4.8 | 4.8 | 4.4 | 4.1 | 4.1 |
Methionine + Cysteine | 11.3 | 11.3 | 11.3 | 10.5 | 10.5 | 10.5 | 8.8 | 8.8 | 8.8 | 7.7 | 7.7 | 7.7 |
Threonine | 10.4 | 10.4 | 10.4 | 10 | 10 | 10 | 8.4 | 8.4 | 8.4 | 6.8 | 6.8 | 6.8 |
Tryptophan | 3.4 | 3.4 | 3.4 | 3.1 | 3.1 | 3.1 | 2.6 | 2.6 | 2.6 | 2.2 | 2.3 | 2.3 |
Ca | 13 | 13 | 13 | 11 | 11 | 11 | 9 | 9 | 9 | 6.5 | 6.5 | 6.5 |
Available P | 7 | 7 | 7 | 5 | 5 | 5 | 4 | 4 | 4 | 3 | 3 | 3 |
Component | RRC | FRC |
---|---|---|
Dry matter | 912 | 935 |
Crude protein | 325 | 349 |
Crude fiber | 155 | 164 |
Gross energy (kcal/kg) | 5127 | 5240 |
Phytate-phosphorus | 3.07 | 0.16 |
NSP 1 | 222 | 226 |
Glucosinolates 2 (µmol/g) | 16.3 | 1.66 |
Sugars 3 | 92.2 | 54.8 |
Item | Dietary Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
C | RRC | FRC | |||
DFI, g | 258 | 256 | 261 | 1.372 | 0.336 |
BW, kg | 10.82 x | 10.68 y | 10.83 x | 0.027 | 0.043 |
FCR, kg/kg | 2.53 | 2.51 | 2.52 | 0.010 | 0.819 |
Livability, % | 99.1 | 99.8 | 97.6 | 0.381 | 0.165 |
Item | Dietary Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
C | RRC | FRC | |||
SCFA concentrations (μmol/g) | |||||
Acetic acid | 96.4 | 100 | 98.3 | 2.129 | 0.763 |
Propionic acid | 7.44 b | 8.70 ab | 11.2 a | 0.599 | 0.028 |
Iso-butyric acid | 0.949 | 1.07 | 1.02 | 0.055 | 0.671 |
Butyric acid | 21.4 | 21.4 | 26.6 | 1.103 | 0.082 |
Iso-valeric acid | 1.28 | 1.31 | 1.41 | 0.065 | 0.723 |
Valeric acid | 1.37 b | 1.65 ab | 2.00 a | 0.106 | 0.048 |
Total SCFAs | 129 | 134 | 141 | 3.235 | 0.351 |
SCFA profile (% of total SCFAs) | |||||
Acetic acid | 74.8 a | 74.7 a | 70.2 b | 0.678 | 0.003 |
Propionic acid | 5.88 | 6.45 | 7.8 | 0.362 | 0.08 |
Butyric acid | 16.4 xy | 15.8 y | 18.8 x | 0.536 | 0.047 |
Total pool of SCFAs (μmol/kg BW) | 360.0 | 333.0 | 451.0 | 28.40 | 0.215 |
Total putrefactive SCFAs | 3.60 | 4.03 | 4.43 | 0.151 | 0.079 |
Enzyme activity (U/g) | |||||
α-glucosidase | 28.6 | 23.2 | 31.5 | 1.759 | 0.154 |
β-glucosidase | 1.32 ab | 1.39 a | 0.933 b | 0.076 | 0.026 |
α-galactosidase | 14.6 ab | 19.6 a | 12.8 b | 1.093 | 0.024 |
β-galactosidase | 33.2 | 32.6 | 27.4 | 1.344 | 0.161 |
β-glucuronidase | 35.5 a | 17.4 b | 8.23 b | 2.937 | 0.001 |
α-arabinopyranosidase | 2.04 a | 2.36 a | 1.32 b | 0.130 | 0.001 |
α-arabinofuranosidase | 3.71 a | 4.64 a | 1.95 b | 0.284 | 0.001 |
β-xylosidase | 4.47 b | 13.1 a | 3.75 b | 1.166 | 0.001 |
β-celobiosidase | 1.75 b | 2.65 a | 1.37 b | 0.140 | 0.001 |
Item | Dietary Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
C | RRC | FRC | |||
Phylum | |||||
Firmicutes | 50.33 | 60.89 | 49.42 | 9.04 | 0.053 |
Cyanobacteria | 1.35 | 2.83 | 3.22 | 1.97 | 0.204 |
Actinobacteria | 10.39 | 4.97 | 5.62 | 5.56 | 0.167 |
Proteobacteria | 5.33 | 4.68 | 4.73 | 1.62 | 0.711 |
Bacteroidetes | 24.13 | 19.15 | 28.64 | 9.16 | 0.181 |
Order | |||||
Lactobacillales | 9.45 | 24.89 | 7.27 | 18.02 | 0.166 |
Clostridiales | 36.63 | 31.91 | 36.80 | 10.64 | 0.629 |
Bifidobacteriales | 9.75 | 4.39 | 4.98 | 5.40 | 0.155 |
Bacteroidales | 16.54 | 12.42 | 20.51 | 6.10 | 0.071 |
Unclassified | 12.77 | 12.71 | 13.46 | 1.86 | 0.711 |
Nostocales | 2.13 | 2.55 | 3.36 | 1.72 | 0.649 |
Sphingobacteriales | 4.97 | 4.87 | 4.85 | 1.90 | 0.993 |
Flavobacteriales | 1.90 | 2.04 | 2.02 | 0.45 | 0.871 |
Family | |||||
Clostridiaceae | 15.11 | 13.32 | 13.63 | 6.53 | 0.862 |
Unclassified | 20.24 | 19.08 | 20.52 | 2.94 | 0.631 |
Lachnospiraceae | 7.09 | 6.42 | 9.21 | 3.43 | 0.322 |
Lactobacillaceae | 9.09 | 29.52 | 6.30 | 18.61 | 0.117 |
Bifidobacteriaceae | 12.66 | 5.19 | 9.33 | 5.88 | 0.188 |
Ruminococcaceae | 9.49 | 8.70 | 8.88 | 3.59163 | 0.915 |
Bacteroidaceae | 8.20 ab | 5.38 b | 11.42 a | 3.97 | 0.036 |
Sphingobacteriaceae | 5.77 | 5.76 | 5.43 | 1.22 | 0.909 |
Rikenellaceae | 6.23 | 6.19 | 5.85 | 1.67 | 0.920 |
Genus | |||||
Unclassified | 24.65 | 25.31 | 26.26 | 4.26 | 0.780 |
Lactobacillus | 7.78 b | 37.31 a | 5.95 b | 11.60 | 0.004 |
Clostridium | 4.61 | 4.38 | 5.68 | 1.92 | 0.521 |
Bifidobacterium | 11.97 | 5.12 | 7.42 | 6.62 | 0.333 |
Blautia | 6.60 | 5.45 | 7.74 | 3.07 | 0.427 |
Alkaliphilus | 8.68 | 7.55 | 7.71 | 4.79 | 0.899 |
Faecalibacterium | 7.41 | 6.09 | 6.08 | 3.44 | 0.780 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drażbo, A.A.; Juśkiewicz, J.; Józefiak, A.; Konieczka, P. The Fermentation Process Improves the Nutritional Value of Rapeseed Cake for Turkeys—Effects on Performance, Gut Bacterial Population and Its Fermentative Activity. Animals 2020, 10, 1711. https://doi.org/10.3390/ani10091711
Drażbo AA, Juśkiewicz J, Józefiak A, Konieczka P. The Fermentation Process Improves the Nutritional Value of Rapeseed Cake for Turkeys—Effects on Performance, Gut Bacterial Population and Its Fermentative Activity. Animals. 2020; 10(9):1711. https://doi.org/10.3390/ani10091711
Chicago/Turabian StyleDrażbo, Aleksandra Alicja, Jerzy Juśkiewicz, Agata Józefiak, and Paweł Konieczka. 2020. "The Fermentation Process Improves the Nutritional Value of Rapeseed Cake for Turkeys—Effects on Performance, Gut Bacterial Population and Its Fermentative Activity" Animals 10, no. 9: 1711. https://doi.org/10.3390/ani10091711
APA StyleDrażbo, A. A., Juśkiewicz, J., Józefiak, A., & Konieczka, P. (2020). The Fermentation Process Improves the Nutritional Value of Rapeseed Cake for Turkeys—Effects on Performance, Gut Bacterial Population and Its Fermentative Activity. Animals, 10(9), 1711. https://doi.org/10.3390/ani10091711