Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experiment Design and Sample Collection
2.3. Colostrum Composition Determination
2.4. Serum Index Determination
2.5. Statistical Analysis
3. Results
3.1. Effects of SI and APS Mixture on Production Performance of Lactating Sows
3.2. Effects of SI and APS Mixture on Colostrum Composition of Lactating Sows
3.3. Effects SI and APS Mixture on Serum Antioxidant and Other Indexes of Lactating Sows
3.4. Effects of SI and APS Mixture on Serum Immune Indexes of Lactating Sows
3.5. Effects of SI and APS Mixture on Serum Hormone Level of Lactating Sows
4. Discussion
4.1. Effects of SI and APS Mixture on Production Performance of Lactating Sows
4.2. Effects of SI and APS Mixture on Colostrum Composition of Lactating Sows
4.3. Effects of SI and APS Mixture on Serum Antioxidant and Other Indexes of Lactating Sows
4.4. Effects of SI and APS Mixture on Serum Immune Indexes of Lactating Sows
4.5. Effects of SI and APS Mixture on Serum Hormone Level of Lactating Sows
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Y.; Wan, H.; Zhu, J.; Fang, Z.; Che, L.; Xu, S.; Lin, Y.; Li, J.; Wu, D. Fish oil and olive oil supplementation in late pregnancy and lactation differentially affect oxidative stress and inflammation in sows and piglets. Lipids 2015, 50, 647–658. [Google Scholar] [CrossRef]
- Kim, S.W.; Hurley, W.L.; Wu, G.; Ji, F. Ideal amino acid balance for sows during gestation and lactation. J. Anim. Sci. 2009, 87, E123–E132. [Google Scholar] [CrossRef] [Green Version]
- Lan, R.; Kim, I. Enterococcus faecium supplementation in sows during gestation and lactation improves the performance of sucking piglets. Vet. Med. Sci. 2020, 6, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berchierironchi, C.B.; Kim, S.W.; Zhao, Y.; Correa, C.R. Oxidative stress status of highly prolific sows during gestation and lactation. Animal 2011, 5, 1774–17799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Chen, F.; Zhang, Y.; Lv, Y.; Heng, J.; Min, T.; Li, L.; Guan, W. Recent progress of porcine milk components and mammary gland function. J. Anim. Sci. Biotechnol. 2018, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Zhao, J.; Luo, G.; Xuan, Y.; Fang, Z.; Lin, Y.; Xu, S.; Wu, D.; He, J.; Che, L. Effects of oil quality and antioxidant supplementation on sow performance, milk composition and oxidative status in serum and placenta. Lipids Health Dis. 2017, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Díaz, J.; Fontana, L.; Gil, A. Human milk oligosaccharides and immune system development. Nutrients 2018, 10, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisi, P.; Luise, D.; Won, S.; Salcedo, J.; Bertocchi, M.; Barile, D.; Bosi, P. Variations in porcine colostrum oligosaccharide composition between breeds and in association with sow maternal performance. J. Anim. Sci. Biotechnol. 2020, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Meng, C.; He, P. Soy Isoflavones and their Effects on Xenobiotic Metabolism. Curr. Drug Metab. 2019, 20, 46–53. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [Green Version]
- Dong, N.; Li, X.; Xue, C.; Zhang, L.; Wang, C.; Xu, X.; Shan, A. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway. J. Cell. Physiol. 2020, 235, 5525–5540. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Xi, Y.; Li, Y.; Wang, Z.; Zhang, L.; Han, Z. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows’ Serum Metabolomics. Animals 2020, 10, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. A review of the pharmacological action of astragalus polysaccharide. Front. Pharmacol. 2020, 11, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiner, L.L.; Stahly, T.S.; Stabel, T.J. The effect of dietary soy genistein on pig growth and viral replication during a viral challenge. J. Anim. Sci. 2001, 79, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Gao, K.G.; Zheng, C.T.; Wu, Z.J.; Yang, X.F.; Wang, L.; Ma, X.Y.; Zhou, A.G.; Jiang, Z.J. Effect of dietary supplementation with glycitein during late pregnancy and lactation on antioxidative indices and performance of primiparous sows. J. Anim. Sci. 2015, 93, 2246–2254. [Google Scholar] [CrossRef]
- Li, D.; Fang, Z.; Che, L.; Lin, Y.; Xu, S.; Cheng, X.; Wu, D. Effects of dietary semen vaccariae and soy isoflavones on lactation performance and antioxidation capacity of lactating sows. Chin. J. Anim. Husb. 2014, 50, 63–68. Available online: https://www.cabdirect.org/cabdirect/abstract/20143397393 (accessed on 12 September 2020).
- Liu, Y.; Miao, Y.; Xu, N.; Ding, T.; Cui, K.; Chen, Q.; Zhang, J.; Fang, W.; Mai, K.; Ai, Q. Effects of dietary Astragalus polysaccharides (APS) on survival, growth performance, activities of digestive enzyme, antioxidant responses and intestinal development of large yellow croaker (Larimichthys crocea) larvae. Aquaculture 2020, 517, 734752. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Han, Q.; Lan, J.; Chen, G.; Cao, G.; Yang, C. Effects of astragalus and ginseng polysaccharides on growth performance, immune function and intestinal barrier in weaned piglets challenged with lipopolysaccharide. Anim. Physiol. Anim. Nutr. 2020, 104, 1096–1105. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, B.; Li, L.; Xiao, C.; Fan, J.; Geng, M.; Yin, Y. Effects of soybean isoflavones on reproductive parameters in Chinese mini-pig boars. J. Anim. Sci. Biotechnol. 2012, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Suresh, L.; Radfar, L. Pregnancy and lactation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2004, 97, 672–682. [Google Scholar] [CrossRef]
- Franke, A.A.; Custer, L.J. Daidzein and genistein concentrations in human milk after soy consumption. Clin. Chem. 1996, 42 Pt 1, 955–964. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Wang, Z.A.; Wang, B.; Jahan, M.; Wang, Z.; Wynn, P.C.; Du, Y. Characterization of porcine milk oligosaccharides over lactation between primiparous and multiparous female pigs. Sci. Rep. 2018, 8, 4688. [Google Scholar] [CrossRef] [PubMed]
- Ariza-Nieto, C.; Bandrick, M.; Baidoo, S.K.; Anil, L.; Molitor, T.W.; Hathaway, M.R. Effect of dietary supplementation of oregano essential oils to sows on colostrum and milk composition, growth pattern and immune status of suckling pigs. J. Anim. Sci. 2011, 89, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhu, A.; Zhang, Y. Soybean isoflavone: Effects on performance, blood physiological and biochemistry indices and fecal microorganism flora and lactating sows. Chin. J. Anim. Nutr. 2015, 27, 2803–2810. [Google Scholar] [CrossRef]
- Tan, L.; Wei, T.; Yuan, A.; He, J.; Liu, J.; Xu, D.; Yang, Q. Dietary supplementation of astragalus polysaccharides enhanced immune components and growth factors EGF and IGF-1 in sow colostrum. J. Immunol. Res. 2017, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Verheyen, A.J.; Maes, G.D.; Mateusen, B.; Deprez, P.; Janssens, G.P.; de Lange, L.; Counotte, G. Serum biochemical reference values for gestating and lactating sows. Vet. J. 2007, 174, 92–98. [Google Scholar] [CrossRef]
- Kohn, R.A.; Dinneen, M.M.; Russek-Cohen, E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.H.; Lee, S.I.; Cheong, J.Y.; Kim, I.H. Influence of low-protein diets and protease and bromelain supplementation on growth performance, nutrient digestibility, blood urine nitrogen, creatinine, and faecal noxious gas in growing-finishing pigs. Can. J. Anim. Sci. 2018, 98, 488–497. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Wu, H.-Z.; Wang, F.-F.; Deng, X.-M.; Diao, H.-J.; Diao, X.-P. Effects of soybean isoflavone and Astragalus polysaccharide on production performance, serum biochemical and immune indexes and milk composition of lactating sows. Chin. J. Anim. Nutr. 2016, 28, 3970–3976. Available online: https://www.cabdirect.org/cabdirect/abstract/20173094056 (accessed on 10 September 2020).
- Kim, J.; Lee, H.; Lee, O.; Lee, K.; Lee, Y.; Young, K.D.; Jeong, Y.H.; Choue, R. Isoflavone supplementation influenced levels of triglyceride and luteunizing hormone in Korean postmenopausal women. Arch. Pharm. Res. 2013, 36, 306–313. [Google Scholar] [CrossRef]
- Chen, W.; Xia, Y.-P.; Chen, W.-J.; Yu, M.-H.; Li, Y.-M.; Ye, H.-Y. Improvement of myocardial glycolipid metabolic disorder in diabetic hamster with Astragalus polysaccharides treatment. Mol. Biol. Rep. 2012, 39, 7609–7615. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Ma, H.; Zou, S.; Chen, W.; Wang, G. Effects of soybean isoflavone on the growth of the rat epithelial cell and absorption of glucose and amino acids of small intestine. J. Nanjing Agric. Univ. 2005, 28, 71–75. Available online: https://europepmc.org/article/cba/568254 (accessed on 9 October 2020).
- Ali, A.A.; Velasquez, M.T.; Hansen, C.T.; Mohamed, A.I.; Bhathena, S.J. Effects of soybean isoflavones, probiotics, and their interactions on lipid metabolism and endocrine system in an animal model of obesity and diabetes. J. Nutr. Biochem. 2004, 15, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hiebla, V.; Xu, T.; Ladurner, A.; Atanasov, A.G.; Heiss, E.H.; Dirsch, V.M. Impact of natural products on the cholesterol transporter ABCA1. J. Ethnopharmacol. 2020, 249, 112444. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Meng, X.; Zhu, L.; Xua, Y.; Cui, W.; He, X.; Wei, K.; Zhu, R. A polysaccharide found in Paulownia fortunei flowers can enhance cellular and humoral immunity in chickens. Int. J. Biol. Macromol. 2019, 130, 213–219. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, C.; Luo, Q.; Pan, K.; Cheng, A. Expression of estrogen receptor alpha, nerve growth factor, interleukin-2, and androgen receptor in the cerebellum of ovariectomized rats following soybean isoflavone treatment. Neural Regen. Res. 2009, 4, 965–972. [Google Scholar] [CrossRef]
- Wang, H.; Guo, B. Modulator effects of astragals polysaccharides on duodenum mucosal immunity of broilers. Chin. J. Anim. Nutr. 2015, 27, 1534–1539. [Google Scholar] [CrossRef]
- Shuster, D.E.; Lee, E.K.; Kehrli, M.E., Jr. Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at midlactation. Am. J. Vet. Res. 1996, 57, 1569–1575. Available online: https://europepmc.org/article/med/8915431 (accessed on 10 October 2020).
- Persson-Waller, K.; Colditz, I.G.; Seow, H.F. Accumulation of leucocytes and cytokines in the lactating ovine udder during mastitis due to Staphylococcus aureus and Escherichia coli. Res. Vet. Sci. 1997, 62, 63–66. [Google Scholar] [CrossRef]
- Gaffer, G.G.; Elgawish, R.A.; Heba, M.A.; Abdelrazek, H.M.; Ebaid, H.M.; Tag, H.M. Dietary soy isoflavones during pregnancy suppressed the immune function in male offspring albino rats. Toxicol. Rep. 2018, 5, 296–301. [Google Scholar] [CrossRef]
- Chen, G.; Han, Q.; Zhang, L. Function of lipopolysaccharide stimulated macrophages in mice. Chin. J. Anim. Nutr. 2020, 32, 4358–4365. [Google Scholar] [CrossRef]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestecky, J.; Lamm, M.E.; Strober, W.; Bienenstock, J.; McGhee, J.R.; Mayer, L. Mucosal immunoglobulins. Mucosal Immunol. 2005, 1, 153–181. [Google Scholar] [CrossRef]
- Duan, X.; Tian, G.; Chen, D.; Yang, J.; Zhang, L.; Li, B.; Huang, L.; Zhang, D.; Zheng, P.; Mao, X.; et al. Effects of diet chitosan oligosaccharide on performance and immune response of sows and their offspring. Livest. Sci. 2020, 239, 104114. [Google Scholar] [CrossRef]
- Farmer, C. The role of prolactin for mammogenesis and galactopoiesis in swine. Livest. Prod. Sci. 2001, 70, 105–113. [Google Scholar] [CrossRef]
- Bahia, W.; Soltani, I.; Haddad, A.; Soua, A.; Radhouani, A.; Mahdhi, A.; Ferchichi, S. Association of genetic variants in Estrogen receptor (ESR)1 and ESR2 with susceptibility to recurrent pregnancy loss in Tunisian women: A case control study. Gene 2020, 736, 144406. [Google Scholar] [CrossRef]
- Kleinberg, D.L.; Ruan, W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J. Mammary Gland. Biol. Neoplasia 2008, 13, 353–360. [Google Scholar] [CrossRef]
- Flachowsky, G.; Hünerberg, M.; Meyer, U.; Kammerer, D.R.; Carle, R.; Goerke, M.; Eklund, M. Isoflavone concentration of soybean meal from various origins and transfer of isoflavones into milk of dairy cows. J. Verbrauch. Lebensm. 2011, 6, 449–456. [Google Scholar] [CrossRef]
- Aguirre, G.A.; De Ita, J.R.; de la Garza, R.G.; Castilla-Cortazar, I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. 2016, 14, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 1995, 73, 2804–2819. [Google Scholar] [CrossRef]
- Castillo, C.; Hernandez, J.; Bravo, A.; Lopez-Alonso, M.; Pereira, V.; Benedito, J.L. Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J. 2005, 169, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rashid, M.; Huang, Q.; Wong, C.; Lei, C. Response of antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae) exposed to thermal stress. Bull. Entomol. Res. 2017, 107, 382–390. [Google Scholar] [CrossRef] [PubMed]
Items | Content |
---|---|
Ingredients | |
Corn | 69.00 |
Wheat bran | 3.00 |
Soybean meal | 19.00 |
Fish meal | 2.00 |
Soybean oil | 2.60 |
Calcium hydrogen phosphate | 0.70 |
Limestone | 1.00 |
Salt | 0.70 |
Premix 2 | 2.00 |
Total, kg | 100.00 |
Nutrient levels, on air-dry basis: | |
Digestible energy 3, DE, MJ/kg | 13.98 |
Crude protein 4, CP, % | 16.35 |
Calcium 4, Ca, % | 0.73 |
Phosphorus 4, P, % | 0.34 |
Lysine 4, Lys, % | 0.92 |
Methionine 4, Met, % | 0.26 |
Threonine 4, Thr, % | 0.59 |
Items | GC | GC100 | GC200 | GC300 |
---|---|---|---|---|
ADFI 1, kg/d | 6.39 ± 0.19 b | 6.84 ± 0.43 a | 7.05 ± 0.51 a | 6.54 ± 0.51 b |
ADG 2, g/d | 217 ± 28 | 248 ± 13 | 260 ± 4 | 222 ± 8 |
Total lactation yield, kg | 147.4 ± 6.4 b | 168.0 ± 8.9 ab | 175.6 ± 5.4 a | 146.0 ± 8.2 b |
Diarrhea ratio of piglets, % | 7.26 ± 2.28 | 6.87 ± 2.26 | 6.11 ± 2.90 | 6.49 ± 2.20 |
Mortality ratio of piglets, % | 12.7 ± 2.2 | 9.1 ± 3.2 | 9.1 ± 3.2 | 10.9 ± 2.7 |
Items | GC | GC100 | GC200 | GC300 |
---|---|---|---|---|
Fat content, % | 5.27 ± 0.41 | 5.36 ± 0.16 | 5.40 ± 0.10 | 5.37 ± 0.31 |
Lactose content, % | 5.36 ± 0.12 | 5.33 ± 0.20 | 5.31 ± 0.27 | 5.30 ± 0.28 |
protein content, % | 8.64 ± 0.30 | 8.66 ± 0.18 | 8.66 ± 0.40 | 8.65 ± 0.31 |
Items | GC | GC100 | GC200 | GC300 |
---|---|---|---|---|
1st day of lactation | ||||
TP, g/L | 63.54 ± 0.52 | 65.72 ± 0.45 | 66.68 ± 0.46 | 64.94 ± 2.01 |
ALB, g/L | 27.18 ± 0.67 b | 30.35 ± 0.77 ab | 32.90 ± 0.48 a | 32.59 ± 0.93 a |
UN, mmol/L | 7.05 ± 0.05 a | 5.14 ± 0.09 c | 4.86 ± 0.08 b | 6.12 ± 0.25 c |
G, mmol/L | 3.97 ± 0.20 | 3.86 ± 0.11 | 3.88 ± 0.07 | 3.51 ± 0.08 |
TG, mmol/L | 3.30 ± 0.03 a | 2.86 ± 0.02 b | 2.65 ± 0.05 b | 2.78 ± 0.06 b |
CHO, mmol/L | 2.30 ± 0.04 b | 1.99 ± 0.10 a | 1.97 ± 0.03 a | 2.02 ± 0.09 a |
10th day of lactation | ||||
TP, g/L | 53.61 ± 1.92 b | 56.67 ± 2.02 ab | 65.54 ± 0.64 a | 62.00 ± 1.46 ab |
ALB, g/L | 27.86 ± 0.81 | 28.48 ± 0.41 | 30.02 ± 0.19 | 28.76 ± 0.60 |
UN, mmol/L | 8.04 ± 0.07 a | 5.52 ± 0.38 b | 5.36 ± 0.10 b | 6.89 ± 0.35 ab |
G, mmol/L | 4.23 ± 0.22 | 3.91 ± 0.04 | 3.61 ± 0.07 | 3.77 ± 0.11 |
TG, mmol/L | 3.21 ± 0.02 a | 2.99 ± 0.06 b | 2.89 ± 0.05 b | 2.83 ± 0.06 b |
CHO, mmol/L | 2.87 ± 0.07 b | 2.48 ± 0.03 a | 2.36 ± 0.07 a | 2.42 ± 0.03 a |
21st day of lactation | ||||
TP, g/L | 54.24 ± 1.25 b | 56.59 ± 1.07 ab | 62.19 ± 1.13 a | 60.85 ± 1.23 ab |
ALB, g/L | 25.77 ± 0.77 | 27.23 ± 0.84 | 29.20 ± 0.44 | 29.59 ± 0.92 |
UN, mmol/L | 6.77 ± 0.51 a | 5.83 ± 0.28 b | 5.52 ± 0.08 b | 5.65 ± 0.16 b |
G, mmol/L | 3.89 ± 0.21 | 3.70 ± 0.07 | 3.41 ± 0.17 | 3.42 ± 0.07 |
TG, mmol/L | 2.90 ± 0.04 a | 2.53 ± 0.02 b | 2.51 ± 0.08 b | 2.92 ± 0.03 a |
CHO, mmol/L | 2.24 ± 0.07 b | 1.88 ± 0.10 a | 1.83 ± 0.03 a | 1.97 ± 0.05 a |
Items | GC | GC100 | GC200 | GC300 |
---|---|---|---|---|
1st day of lactation | ||||
IL-2, ng/mL | 0.28 ± 0.01 | 0.32 ± 0.01 | 0.30 ± 0.01 | 0.28 ± 0.01 |
TNF-α, ng/m/L | 0.35 ± 0.01 b | 0.36 ± 0.01 ab | 0.38 ± 0.01 a | 0.36 ± 0.01 ab |
C4, μg/mL | 62.68 ± 1.23 | 63.86 ± 0.69 | 65.85 ± 0.20 | 63.62 ± 0.74 |
IgG, μg/mL | 429.23 ± 15.21 | 435.52 ± 6.85 | 454.42 ± 4.80 | 455.19 ± 4.35 |
IgA, μg/mL | 71.01 ± 0.67 b | 72.27 ± 0.57 b | 77.50 ± 0.61 a | 75.62 ± 1.16 a |
10th day of lactation | ||||
IL-2, ng/mL | 0.27 ± 0.01 b | 0.32 ± 0.01 a | 0.35 ± 0.01 a | 0.35 ± 0.01 a |
TNF-α, ng/m/L | 0.27 ± 0.01 b | 0.28 ± 0.01 b | 0.31 ± 0.01 a | 0.30 ± 0.01 ab |
C4, μg/mL | 66.80 ± 0.92 b | 68.04 ± 0.58 ab | 70.57 ± 0.83 ab | 71.69 ± 0.37 a |
IgG, μg/mL | 408.35 ± 12.87 b | 445.93 ± 13.85 ab | 479.64 ± 3.27 a | 460.90 ± 7.78 ab |
IgA, μg/mL | 74.28 ± 0.32b | 74.73 ± 1.36 b | 81.41 ± 0.56 a | 76.26 ± 0.72 b |
21st day of lactation | ||||
IL-2, ng/mL | 0.26 ± 0.002 c | 0.27 ± 0.01 c | 0.32 ± 0.01 a | 0.29 ± 0.01 b |
TNF-α, ng/m/L | 0.33 ± 0.01 b | 0.35 ± 0.01 ab | 0.38 ± 0.01 a | 0.36 ± 0.01 ab |
C4, μg/mL | 63.90 ± 1.01 | 65.12 ± 0.94 | 65.02 ± 1.39 | 66.71 ± 0.62 |
IgG, μg/mL | 327.05 ± 2.62 c | 334.25 ± 6.08 bc | 393.67 ± 5.12 a | 366.97 ± 7.77 ab |
IgA, μg/mL | 69.88 ± 0.99 b | 70.94 ± 2.59 b | 76.58 ± 1.32 a | 73.90 ± 0.40 b |
Items | GC | GC100 | GC200 | GC300 |
---|---|---|---|---|
1st d of lactation | ||||
PRL, ng/mL | 0.81 ± 0.01 b | 0.83 ± 0.01 ab | 0.84 ± 0.00 a | 0.84 ± 0.01 a |
GH, ng/mL | 22.57 ± 0.37 b | 23.92 ± 0.11 ab | 24.56 ± 0.18 a | 23.69 ± 0.40 ab |
IGF-1, ng/mL | 194.20 ± 5.69 b | 206.07 ± 3.92 b | 239.20 ± 3.53 a | 213.76 ± 2.33 a |
T-AOC, U/mL | 7.62 ± 0.02 b | 7.67 ± 0.02 ab | 7.77 ± 0.04 a | 7.66 ± 0.02 ab |
SOD, μg/mL | 0.33 ± 0.01 c | 0.35 ± 0.01 bc | 0.37 ± 0.01 ab | 0.39 ± 0.01 a |
GSH-Px, pg/mL | 63.30 ± 0.24 b | 64.19 ± 0.19 a | 64.71 ± 0.28 a | 65.14 ± 0.27 a |
CAT, ng/mL | 17.33 ± 0.49 | 17.75 ± 0.038 | 18.23 ± 0.17 | 18.49 ± 0.50 |
MDA, mmol/mL | 6.77 ± 0.03 a | 6.42 ± 0.16 a | 5.69 ± 0.05 b | 5.61 ± 0.06 b |
10th d of lactation | ||||
PRL, ng/mL | 0.72 ± 0.01 b | 0.74 ± 0.06 ab | 0.77 ± 0.02 a | 0.77 ± 0.02 a |
GH, ng/mL | 24.04 ± 0.35 c | 25.02 ± 0.49 b | 28.16 ± 0.54 a | 27.01 ± 0.30 ab |
IGF-1, ng/mL | 164.15 ± 2.47 c | 182.38 ± 3.13 bc | 203.87 ± 3.88 a | 196.70 ± 2.71 ab |
T-AOC, U/mL | 7.73 ± 0.02 | 7.83 ± 0.06 | 7.90 ± 0.06 | 7.95 ± 0.02 |
SOD, μg/mL | 0.34 ± 0.01 b | 0.38 ± 0.01 a | 0.41 ± 0.01 a | 0.38 ± 0.01 a |
GSH-Px, pg/mL | 81.36 ± 0.24 b | 82.43 ± 0.45 ab | 83.69 ± 0.17 a | 82.13 ± 0.22 ab |
CAT, ng/mL | 18.98 ± 0.17 | 19.20 ± 0.15 | 20.62 ± 0.33 | 20.39 ± 0.32 |
MDA, mmol/mL | 7.78 ± 0.03 a | 7.01 ± 0.03 b | 5.37 ± 0.06 c | 5.58 ± 0.07 c |
21st d of lactation | ||||
PRL, ng/mL | 0.64 ± 0.01 c | 0.65 ± 0.01 bc | 0.67 ± 0.01 ab | 0.68 ± 0.01 a |
GH, ng/mL | 23.82 ± 0.26 c | 25.52 ± 0.31 bc | 27.89 ± 0.45 a | 26.51 ± 0.46 ab |
IGF-1, ng/mL | 209.78 ± 4.10 c | 217.92 ± 5.54 bc | 253.47 ± 3.36 a | 240.89 ± 2.20 ab |
T-AOC, U/mL | 7.76 ± 0.06 b | 8.03 ± 0.05 ab | 8.13 ± 0.06 a | 8.08 ± 0.03 a |
SOD, μg/mL | 0.33 ± 0.01 b | 0.40 ± 0.002 a | 0.41 ± 0.01 a | 0.38 ± 0.01 a |
GSH-Px, pg/mL | 67.35 ± 0.55 b | 70.66 ± 0.35 a | 72.47 ± 0.33 a | 72.82 ± 0.83 a |
CAT, ng/mL | 17.71 ± 0.42 b | 20.04 ± 0.39 ab | 20.29 ± 0.35 a | 18.52 ± 0.46 ab |
MDA, mmol/mL | 6.80 ± 0.08 a | 6.59 ± 0.09 a | 5.66 ± 0.05 b | 6.60 ± 0.08 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Yang, J.; Wang, S.; Zhang, X.; Hou, J.; Xu, F.; Wang, Z.; Xu, L.; Diao, X. Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows. Animals 2021, 11, 132. https://doi.org/10.3390/ani11010132
Wu H, Yang J, Wang S, Zhang X, Hou J, Xu F, Wang Z, Xu L, Diao X. Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows. Animals. 2021; 11(1):132. https://doi.org/10.3390/ani11010132
Chicago/Turabian StyleWu, Hongzhi, Ji Yang, Sibo Wang, Xin Zhang, Jinwang Hou, Fei Xu, Zhilong Wang, Li Xu, and Xinping Diao. 2021. "Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows" Animals 11, no. 1: 132. https://doi.org/10.3390/ani11010132
APA StyleWu, H., Yang, J., Wang, S., Zhang, X., Hou, J., Xu, F., Wang, Z., Xu, L., & Diao, X. (2021). Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows. Animals, 11(1), 132. https://doi.org/10.3390/ani11010132