Antimicrobial Resistance of Major Bacterial Pathogens from Dairy Cows with High Somatic Cell Count and Clinical Mastitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Farms and Animals’ Selection
2.2. Milk Samples Collection
2.2.1. Bacterial Isolation and Identification
2.2.2. Antimicrobial Sensitivity Test
2.3. Data Analysis
3. Results
3.1. Bovine Mastitis by the Three States, Udder Quarters and Causative Bacterial Species
3.2. Antimicrobial Resistance Patterns of Bacterial Species Isolated from Cases of Mastitis
3.3. Distribution of AMR Bacterial Isolates within Six Causative Bacterial Agents from Cases of Bovine Mastitis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schepers, J.; Dijkhuizen, A. The economics of mastitis and mastitis control in dairy cattle: A critical analysis of estimates published since 1970. Prev. Veter. Med. 1991, 10, 213–224. [Google Scholar] [CrossRef]
- Hortet, P.; Seegers, H. Calculated milk production losses associated with elevated somatic cell counts in dairy cows: Review and critical discussion. Veter. Res. 1998, 29, 497–510. [Google Scholar]
- Drackley, J.K. ADSA Foundation Scholar Award. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Esposito, G.; Irons, P.C.; Webb, E.; Edward, C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, H.; Sinclair, L.A.; Brizuela, C.; Worton, H.; Protheroe, R. Effectiveness of selected premilking teat-cleaning regimes in reducing teat microbial load on commercial dairy farms. Lett. Appl. Microbiol. 2008, 46, 295–300. [Google Scholar] [CrossRef]
- Gleeson, D.; O’Brien, B.; Flynn, J.; O’Callaghan, E.; Galli, F. Effect of pre-milking teat preparation procedures on the microbial count on teats prior to cluster application. Ir. Veter. J. 2009, 62, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Dufour, S.; Fréchette, A.; Barkema, H.W.; Mussell, A.; Scholl, D.T. Invited review: Effect of udder health management practices on herd somatic cell count. J. Dairy Sci. 2011, 94, 563–579. [Google Scholar] [CrossRef]
- Timonen, A.A.; Katholm, J.; Petersen, A.; Orro, T.; Mõtus, K.; Kalmus, P. Elimination of selected mastitis pathogens during the dry period. J. Dairy Sci. 2018, 101, 9332–9338. [Google Scholar] [CrossRef] [Green Version]
- Mordak, R.; Stewart, P.A. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: Examples of prevention. Acta Veter. Scand. 2015, 57, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bach, A. Associations between several aspects of heifer development and dairy cow survivability to second lactation. J. Dairy Sci. 2011, 94, 1052–1057. [Google Scholar] [CrossRef] [Green Version]
- Bradley, A. Bovine Mastitis: An Evolving Disease. Veter. J. 2002, 164, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, T.; Ruegg, P.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkema, H.W.; Green, M.J.; Bradley, A.J.; Zadoks, R.N. Invited review: The role of contagious disease in udder health. J. Dairy Sci. 2009, 92, 4717–4729. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; Saab, M.; Heider, L.; McClure, J.T.; Rodriguez-Lecompte, J.C.; Sanchez, J. Antimicrobial Susceptibility Patterns of Environmental Streptococci Recovered from Bovine Milk Samples in the Maritime Provinces of Canada. Front. Veter. Sci. 2016, 3, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, B.; Lewis, M.; Boonyayatra, S.; Maxwell, M.; Saxton, A.; Oliver, S.; Almeida, R. Short communication: Evaluation of bulk tank milk microbiological quality of nine dairy farms in Tennessee. J. Dairy Sci. 2012, 95, 4275–4279. [Google Scholar] [CrossRef] [Green Version]
- Barbano, D.; Lynch, J. Major Advances in Testing of Dairy Products: Milk Component and Dairy Product Attribute Testing. J. Dairy Sci. 2006, 89, 1189–1194. [Google Scholar] [CrossRef]
- Barbano, D.; Ma, Y.; Santos, M. Influence of Raw Milk Quality on Fluid Milk Shelf Life. J. Dairy Sci. 2006, 89, E15–E19. [Google Scholar] [CrossRef]
- Parodi, P. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004, 59, 3–59. [Google Scholar]
- Jayarao, B.; Pillai, S.; Sawant, A.; Wolfgang, D.; Hegde, N. Guidelines for Monitoring Bulk Tank Milk Somatic Cell and Bacterial Counts. J. Dairy Sci. 2004, 87, 3561–3573. [Google Scholar] [CrossRef] [Green Version]
- USDA APHIS U; Veterinary Services Center for Epidemiology and Animal Health. Determining U.S. Milk Quality Using Bulk-Tank Somatic Cell Counts, 2017. Info Sheet pp. 1–8; August 2018. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy_monitoring/BTSCC_2017infosheet.pdf (accessed on 26 November 2020).
- El-Tahawy, A.; El-Far, A.H. Influences of somatic cell count on milk composition and dairy farm profitability. Int. J. Dairy Technol. 2010, 63, 463–469. [Google Scholar] [CrossRef]
- USDA APHIS U. Antibiotic Use on U.S. Dairy Operations, 2002 and 2007. Info Sheet 5p; October 2008. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy07/Dairy07_is_AntibioticUse_1.pdf (accessed on 23 March 2020).
- Oliver, S.P.; Murinda, S.E.; Jayarao, B.M. Impact of Antibiotic Use in Adult Dairy Cows on Antimicrobial Resistance of Veterinary and Human Pathogens: A Comprehensive Review. Foodborne Pathog. Dis. 2011, 8, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.; Godden, S.; Nydam, D.; Gorden, P.; Lago, A.; Vasquez, A.; Royster, E.; Timmerman, J.; Thomas, M. Randomized controlled trial investigating the effect of 2 selective dry-cow therapy protocols on udder health and performance in the subsequent lactation. J. Dairy Sci. 2020, 103, 6493–6503. [Google Scholar] [CrossRef] [PubMed]
- Kabera, F.; Dufour, S.; Keefe, G.; Cameron, M.; Roy, J.-P. Evaluation of quarter-based selective dry cow therapy using Petrifilm on-farm milk culture: A randomized controlled trial. J. Dairy Sci. 2020, 103, 7276–7287. [Google Scholar] [CrossRef] [PubMed]
- Sawant, A.; Sordillo, L.; Jayarao, B. A Survey on Antibiotic Usage in Dairy Herds in Pennsylvania. J. Dairy Sci. 2005, 88, 2991–2999. [Google Scholar] [CrossRef] [Green Version]
- Pol, M.; Ruegg, P.L. Treatment Practices and Quantification of Antimicrobial Drug Usage in Conventional and Organic Dairy Farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef]
- Kelton, D.; Lissemore, K.D.; Martin, R.E. Recommendations for Recording and Calculating the Incidence of Selected Clinical Diseases of Dairy Cattle. J. Dairy Sci. 1998, 81, 2502–2509. [Google Scholar] [CrossRef]
- Dudek, K.; Bednarek, D.; Ayling, R.D.; Kycko, A.; Reichert, M. Preliminary study on the effects of enrofloxacin, flunixin meglumine and pegbovigrastim on Mycoplasma bovis pneumonia. BMC Vet. Res. 2019, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Illambas, J.; Potter, T.; Cheng, Z.; Rycroft, A.; Fishwick, J.; Lees, P. Pharmacodynamics of marbofloxacin for calf pneumonia pathogens. Res. Vet. Sci. 2013, 94, 675–681. [Google Scholar] [CrossRef]
- Illambas, J.; Potter, T.; Sidhu, P.; Rycroft, A.N.; Cheng, Z.; Lees, P. Pharmacodynamics of florfenicol for calf pneumonia pathogens. Vet. Rec. 2013, 172, 340. [Google Scholar] [CrossRef]
- Constable, P.D. Treatment of Calf Diarrhea: Antimicrobial and Ancillary Treatments. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 101–120. [Google Scholar] [CrossRef]
- Aust, V.; Knappstein, K.; Kunz, H.-J.; Kaspar, H.; Wallmann, J.; Kaske, M. Feeding untreated and pasteurized waste milk and bulk milk to calves: Effects on calf performance, health status and antibiotic resistance of faecal bacteria. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Maynou, G.; Chester-Jones, H.; Bach, A.; Terré, M. Feeding Pasteurized Waste Milk to Preweaned Dairy Calves Changes Fecal and Upper Respiratory Tract Microbiota. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Maynou, G.; Migura-Garcia, L.; Chester-Jones, H.; Ziegler, D.; Bach, A.; Terré, M. Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes of antimicrobial resistance in fecal Escherichia coli isolates before and after weaning. J. Dairy Sci. 2017, 100, 7967–7979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redding, L.E.; Bender, J.; Baker, L. Quantification of antibiotic use on dairy farms in Pennsylvania. J. Dairy Sci. 2019, 102, 1494–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Léger, D.F.; Newby, N.C.; Reid-Smith, R.; Anderson, N.; Pearl, D.L.; Lissemore, K.D.; Kelton, D. Estimated antimicrobial dispensing frequency and preferences for lactating cow therapy by Ontario dairy veterinarians. Can. Vet. J. 2017, 58, 26–34. [Google Scholar]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [Green Version]
- USDA APHIS U; United States Department of Agriculture, Animal Plant Health Inspection Service National Animal Health Monitoring System. Injection Practices on U.S. Dairy Opera Tions, 2007 (Veterinary Services Info Sheet 4 p, February 2009). 2009. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy07/Dairy07_is_InjectionPrac_1.pdf (accessed on 23 March 2020).
- Oliver, S.; Gonzalez, R.; Hogan, J.; Jayarao, B.; Owens, W. Microbiological Procedures for the Diagnosis of Bovine Udder Infection and Determination of Milk Quality; National Mastitis Council: Verona, WI, USA, 2004. [Google Scholar]
- Merrill, C.; Ensermu, D.; Abdi, R.; Gillespie, B.; Vaughn, J.; Headrick, S.; Hash, K.; Walker, T.; Stone, E.; Dego, O.K. Immunological responses and evaluation of the protection in dairy cows vaccinated with staphylococcal surface proteins. Veter. Immunol. Immunopathol. 2019, 214, 109890. [Google Scholar] [CrossRef]
- Vaughn, J.M.; Abdi, R.D.; Gillespie, B.E.; Dego, O.K. Genetic diversity and virulence characteristics of Staphylococcus aureus isolates from cases of bovine mastitis. Microb. Pathog. 2020, 144, 104171. [Google Scholar] [CrossRef]
- Abdi, R.D.; Gillespie, B.E.; Vaughn, J.; Merrill, C.; Headrick, S.I.; Ensermu, D.B.; D’Souza, D.H.; Agga, G.E.; Almeida, R.A.; Oliver, S.P.; et al. Antimicrobial Resistance of Staphylococcus aureus Isolates from Dairy Cows and Genetic Diversity of Resistant Isolates. Foodborne Pathog. Dis. 2018, 15, 449–458. [Google Scholar] [CrossRef]
- Wayne, P.A. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; CLSI: Annapolis Junction, MD, USA, 2018; p. 296. [Google Scholar]
- Persson, Y.; Nyman, A.-K.J.; Grönlund-Andersson, U. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet. Scand. 2011, 53, 36. [Google Scholar] [CrossRef] [Green Version]
- Saini, V.; McClure, J.; Scholl, D.; Devries, T.; Barkema, H. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1921–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riekerink, R.O.; Barkema, H.; Kelton, D.; Scholl, D. Incidence Rate of Clinical Mastitis on Canadian Dairy Farms. J. Dairy Sci. 2008, 91, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Kalmus, P.; Aasmäe, B.; Kärssin, A.; Orro, T.; Kask, K. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. Acta Vet. Scand. 2011, 53, 4. [Google Scholar] [CrossRef] [Green Version]
- Tenhagen, B.-A.; Köster, G.; Wallmann, J.; Heuwieser, W. Prevalence of Mastitis Pathogens and Their Resistance against Antimicrobial Agents in Dairy Cows in Brandenburg, Germany. J. Dairy Sci. 2006, 89, 2542–2551. [Google Scholar] [CrossRef] [Green Version]
- Koivula, M.; Pitkälä, A.; Pyörälä, S.; Mäntysaari, E.A. Distribution of bacteria and seasonal and regional effects in a new database for mastitis pathogens in Finland. Acta Agric. Scand. Sect. A 2007, 57, 89–96. [Google Scholar] [CrossRef]
- Thomas, V.; De Jong, A.; Moyaert, H.; Simjee, S.; El Garch, F.; Morrissey, I.; Marion, H.; Vallé, M. Antimicrobial susceptibility monitoring of mastitis pathogens isolated from acute cases of clinical mastitis in dairy cows across Europe: VetPath results. Int. J. Antimicrob. Agents 2015, 46, 13–20. [Google Scholar] [CrossRef]
- Guarín, J.F.; Paixão, M.G.; Ruegg, P.L. Association of anatomical characteristics of teats with quarter-level somatic cell count. J. Dairy Sci. 2017, 100, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Seykora, A.; McDaniel, B. Genetics Statistics and Relationships of Teat and Udder Traits, Somatic Cell Counts, and Milk Production. J. Dairy Sci. 1986, 69, 2395–2407. [Google Scholar] [CrossRef]
- Breen, J.E.; Green, M.J.; Bradley, A.J. Quarter and cow risk factors associated with the occurrence of clinical mastitis in dairy cows in the United Kingdom. J. Dairy Sci. 2009, 92, 2551–2561. [Google Scholar] [CrossRef] [Green Version]
- Barkema, H.W.; Schukken, Y.; Lam, T.; Galligan, D.; Beiboer, M.; Brand, A. Estimation of Interdependence among Quarters of the Bovine Udder with Subclinical Mastitis and Implications for Analysis. J. Dairy Sci. 1997, 80, 1592–1599. [Google Scholar] [CrossRef]
- Saini, V.; McClure, J.; Léger, D.; Keefe, G.; Scholl, D.; Morck, D.; Barkema, H. Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms. J. Dairy Sci. 2012, 95, 4319–4332. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, B.; Unnerstad, H.E.; Ekman, T.; Artursson, K.; Nilsson-Öst, M.; Waller, K.P. Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet. Microbiol. 2009, 136, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta BBA Proteins Proteom. 2009, 1794, 808–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, A.; Adler, A.; Abu-Hanna, J.; Percia, S.C.; Matalon, M.K.; Carmeli, Y. Spread of KPC-producing carbapenem-resistant Enterobacteriaceae: The importance of super-spreaders and rectal KPC concentration. Clin. Microbiol. Infect. 2015, 21, 470.e1–470.e7. [Google Scholar] [CrossRef] [Green Version]
- Holt, K.E.; Wyres, K.L. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- Courvalin, P. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 1994, 38, 1447–1451. [Google Scholar] [CrossRef] [Green Version]
- Ekakoro, J.E.; Caldwell, M.; Strand, E.B.; Okafor, C.C. Drivers of Antimicrobial Use Practices among Tennessee Dairy Cattle Producers. Vet. Med. Int. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- USDA APHIS U; United States Department of Agriculture, Animal Plant Health Inspection Service National Animal Health Monitoring System. Highlights of Dairy 2007 Part III: Reference of Dairy Cattle Health and Management Practices in the United States, 2007. Info Sheet 4p; October 2008. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy07/Dairy07_ir_Food_safety.pdf (accessed on 23 March 2020).
- Wagner, S.; Erskine, R.J. Antimicrobial Drug Use in Mastitis, 5th ed.; Blackwell Publishing: Ames, IA, USA, 2013. [Google Scholar]
- Bryan, M.; Hea, S.Y. A survey of antimicrobial use in dairy cows from farms in four regions of New Zealand. N. Z. Vet. J. 2016, 65, 93–98. [Google Scholar] [CrossRef]
- Ekakoro, J.E.; Caldwell, M.; Strand, E.B.; Okafor, C.C. Drivers, alternatives, knowledge, and perceptions towards antimicrobial use among Tennessee beef cattle producers: A qualitative study. BMC Vet. Res. 2019, 15, 16. [Google Scholar] [CrossRef]
- Ekakoro, J.E.; Caldwell, M.; Strand, E.B.; Okafor, C.C. Perceptions of Tennessee cattle producers regarding the Veterinary Feed Directive. PLoS ONE 2019, 14, e0217773. [Google Scholar] [CrossRef]
Ecoli | % | Koxy | % | Kpne | % | SA | % | Sdys | % | Sube | % | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KY (n = 70 isolates) | 15 | 21.4 | 9 | 12.9 | 16 | 22.9 | 19 | 27.1 | 11 | 15.7 | 70 | ||
MS (n = 9 isolates) | 3 | 33.3 | 1 | 11.1 | 5 | 55.6 | 9 | ||||||
TN (n = 114 isolates) | 16 | 14.0 | 4 | 3.5 | 4 | 3.5 | 50 | 43.9 | 16 | 14.0 | 24 | 21.1 | 114 |
Cows with mastitis (n = 151) | 32 | 21.2 | 3 | 2.0 | 12 | 7.9 | 46 | 30.5 | 32 | 21.2 | 31 | 20.5 | 151 |
Farms with mastitis (n = 34) | 15 | 44.1 | 3 | 8.8 | 7 | 20.6 | 15 | 44.1 | 19 | 55.9 | 21 | 61.8 |
Ecoli | Koxy | Kpne | SA | Sdys | Sube | Total isolates | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Measurement | n = 34 | % | n = 4 | % | n = 13 | % | n = 66 | % | n = 36 | % | n = 40 | % | N = 193 | % |
LF (n = 47) | 10 | 29.4% | 3 | 75.0% | 0 | 0.0% | 16 | 24.2% | 11 | 30.6% | 13 | 32.5% | 53 | 27.5% |
LR (n = 37) | 5 | 14.7% | 0 | 0.0% | 5 | 38.5% | 14 | 21.2% | 7 | 19.4% | 6 | 15.0% | 37 | 19.2% |
RF (n = 52) | 9 | 26.5% | 0 | 0.0% | 5 | 38.5% | 23 | 34.8% | 12 | 33.3% | 13 | 32.5% | 62 | 32.1% |
RR (n = 38) | 10 | 29.4% | 1 | 25.0% | 3 | 23.1% | 13 | 19.7% | 6 | 16.7% | 8 | 20.0% | 41 | 21.2% |
Clinical mastitis (n = 63) | 27 | 79.4% | 3 | 75.0% | 5 | 38.5% | 6 | 9.1% | 19 | 52.8% | 17 | 42.5% | 77 | 39.9% |
Subclinical mastitis (n = 88) | 7 | 20.6% | 1 | 25.0% | 8 | 61.5% | 60 | 90.9% | 17 | 47.2% | 23 | 57.5% | 116 | 60.1% |
Share of total isolates (n = 193) | 34 | 17.6% | 4 | 2.1% | 13 | 6.7% | 66 | 34.2% | 36 | 18.7% | 40 | 20.7% |
Parameter | B | Std. Error | 95% Wald CI | Test | Exp (B) | 95% Wald CI for Exp (B) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | Wald χ2 | df | Sig. | Lower | Upper | ||||
(Intercept) | −0.298 | 0.7365 | −1.742 | 1.146 | 0.164 | 1 | 0.686 | 0.742 | 0.175 | 3.144 |
State | ||||||||||
KY | 0.199 | 0.8039 | −1.377 | 1.775 | 0.061 | 1 | 0.805 | 1.22 | 0.252 | 5.897 |
MS | 0.242 | 1.2597 | −2.227 | 2.712 | 0.037 | 1 | 0.847 | 1.274 | 0.108 | 15.052 |
TN | Ref | 1 | ||||||||
Udder quarter | ||||||||||
LF | 0.957 | 0.5729 | −0.166 | 2.08 | 2.79 | 1 | 0.095 | 2.604 | 0.847 | 8.003 |
LR | 0.529 | 0.4999 | −0.451 | 1.508 | 1.118 | 1 | 0.29 | 1.696 | 0.637 | 4.519 |
RF | 0.411 | 0.4642 | −0.499 | 1.321 | 0.783 | 1 | 0.376 | 1.508 | 0.607 | 3.746 |
RR | Ref | 1 | ||||||||
Bacterial species | ||||||||||
Ecoli | −1.676 | 0.6837 | −3.016 | −0.335 | 6.006 | 1 | 0.014 | 0.187 | 0.049 | 0.715 |
Koxy | −1.562 | 1.1707 | −3.856 | 0.733 | 1.78 | 1 | 0.182 | 0.21 | 0.021 | 2.08 |
Kpne | 0.274 | 0.8581 | −1.408 | 1.956 | 0.102 | 1 | 0.749 | 1.315 | 0.245 | 7.07 |
SA | 2.108 | 0.4882 | 1.152 | 3.065 | 18.653 | 1 | 0.000 | 8.234 | 3.163 | 21.435 |
Sdys | −0.46 | 0.5188 | −1.477 | 0.556 | 0.788 | 1 | 0.375 | 0.631 | 0.228 | 1.744 |
Sube | Ref | 1 |
Antimicrobial | Bacterial spp. | No. AMR Isolate | Percentage (%) | 95% CI Lower | 95% CI Upper | Sig. |
---|---|---|---|---|---|---|
AMP | Ecoli (n = 34) | 2 | 5.9 | 0.7 | 19.7 | 0.000 |
Koxy (n = 4) | 3 | 75 | 19.4 | 99.4 | 0.625 | |
Kpne (n = 13) | 12 | 92.3 | 64 | 99.8 | 0.003 | |
SA (n = 66) | 0 | 0 | 0 | 5.4 | 0.000 | |
Sdys (n = 36) | 0 | 0 | 0 | 9.7 | 0.000 | |
Sube (n = 40) | 28 | 70 | 53.5 | 83.4 | 0.018 | |
PEN | SA | 0 | 0 | 0 | 5.4 | 0.000 |
Sdys | 2 | 5.6 | 7 | 18.7 | 0.000 | |
Sube | 31 | 77.5 | 61.5 | 89.2 | 0.001 | |
ERY | Ecoli | 33 | 97.1 | 84.7 | 99.9 | 0.000 |
Koxy | 4 | 100 | 39.8 | 100 | 0.125 | |
Kpne | 13 | 100 | 75.3 | 100 | 0.000 | |
SA | 1 | 1.5 | 0 | 8.2 | 0.000 | |
Sdys | 2 | 5.6 | 7 | 18.7 | 0.000 | |
Sube | 32 | 80 | 64.4 | 90.9 | 0.000 | |
OXA | SA | 0 | 0 | 0 | 5.4 | 0.000 |
Sdys | 8 | 22.2 | 10.1 | 39.2 | 0.002 | |
Sube | 27 | 67.5 | 50.9 | 81.4 | 0.04 | |
PRL | SA | 0 | 0 | 0 | 5.4 | 0.000 |
Sdys | 1 | 2.8 | 0.1 | 14.5 | 0.000 | |
Sube | 32 | 80 | 64.4 | 90.9 | 0.000 | |
SA | 0 | 0 | 0 | 5.4 | 0.000 | |
Sdys | 2 | 5.6 | 0.7 | 18.7 | 0.000 | |
Sube | 27 | 67.5 | 50.9 | 81.4 | 0.04 | |
TET | Ecoli | 14 | 41.2 | 24.6 | 59.3 | 0.391 |
Koxy | 1 | 25 | 0.6 | 80.6 | 0.625 | |
Kpne | 5 | 38.5 | 13.9 | 68.4 | 0.581 | |
SA | 66 | 100 | 0 | 5.4 | 0.000 | |
Sdys | 34 | 94.4 | 81.3 | 99.3 | 0.000 | |
Sube | 31 | 77.5 | 61.5 | 89.2 | 0.0001 | |
CEPH | Ecoli | 11 | 32.4 | 17.4 | 50.5 | 0.059 |
Koxy | 1 | 25 | 0.6 | 80.6 | 0.625 | |
Kpne | 7 | 53.8 | 25.1 | 80.8 | 1 | |
SA | 0 | 0 | 0 | 5.4 | 0.000 | |
Sdys | 0 | 0 | 0 | 9.7 | 0.000 | |
Sube | 25 | 62.5 | 45.8 | 77.3 | 0.155 | |
CFT | Ecoli | 1 | 2.9 | 0.1 | 15.3 | 0.000 |
Koxy | 4 | 100 | 0 | 60.2 | 0.125 | |
Kpne | 7 | 53.8 | 25.1 | 80.8 | 1 | |
SA | 0 | 0 | 0 | 5.4 | 0.000 | |
Sdys | 0 | 0 | 0 | 9.7 | 0.000 | |
Sube | 25 | 62.5 | 45.8 | 77.3 | 0.155 | |
SULPH | Ecoli | 10 | 29.4 | 15.1 | 47.5 | 0.026 |
Koxy | 2 | 50 | 6.8 | 93.2 | 1 | |
Kpne | 7 | 53.8 | 25.1 | 80.8 | 1 | |
SA | 10 | 15.2 | 7.5 | 26.1 | 0.000 | |
Sdys | 36 | 100 | 90.3 | 100 | 0.000 | |
Sube | 40 | 100 | 91.2 | 100 | 0.000 |
Antimicrobials | Predictor Variable/Reference | B | S.E. | Wald | df | Sig. | Exp (B) | 95% CI Lower EXP (B) | 95% CI Upper EXP (B) |
---|---|---|---|---|---|---|---|---|---|
Ampicillin | Ecoli/Sube | −3.613 | 0.87 | 17.266 | 1 | 0.000 | 0.027 | 0.005 | 0.148 |
Penicillin | Sdys/Sube | −4.314 | 0.899 | 23.001 | 1 | 0.000 | 0.013 | 0.002 | 0.078 |
Erythromycin | Clinical/Subclinical | −1.544 | 0.779 | 3.931 | 1 | 0.047 | 0.213 | 0.046 | 0.983 |
Erythromycin | EC/Sube | 2.808 | 1.154 | 5.921 | 1 | 0.015 | 16.57 | 1.726 | 159.039 |
Erythromycin | SA/Sube | −6.188 | 1.196 | 26.786 | 1 | 0.000 | 0.002 | 0 | 0.021 |
Erythromycin | Sdys/Sube | −4.343 | 0.904 | 23.067 | 1 | 0.000 | 0.013 | 0.002 | 0.076 |
Oxacillin | Sdys/Sube | −2.04 | 0.581 | 12.312 | 1 | 0.000 | 0.13 | 0.042 | 0.406 |
Pirlimycin | Sdys/Sube | −5.644 | 1.346 | 17.574 | 1 | 0.000 | 0.004 | 0 | 0.05 |
PEN/NOVO | Clinical/Subclinical | −1.418 | 0.695 | 4.162 | 1 | 0.041 | 0.242 | 0.062 | 0.946 |
PEN/NOVO | Sdys/Sube | −3.92 | 0.917 | 18.272 | 1 | 0.000 | 0.02 | 0.003 | 0.12 |
Tetracycline | EC/Sube | −1.376 | 0.55 | 6.253 | 1 | 0.012 | 0.253 | 0.086 | 0.743 |
Tetracycline | Kpne/Sube | −1.873 | 0.738 | 6.437 | 1 | 0.011 | 0.154 | 0.036 | 0.653 |
Tetracycline | Sdys/Sube | 1.698 | 0.84 | 4.092 | 1 | 0.043 | 5.464 | 1.054 | 28.321 |
Ceftiofur | EC/Sube | −3.989 | 1.094 | 13.305 | 1 | 0.000 | 0.019 | 0.002 | 0.158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, R.D.; Gillespie, B.E.; Ivey, S.; Pighetti, G.M.; Almeida, R.A.; Kerro Dego, O. Antimicrobial Resistance of Major Bacterial Pathogens from Dairy Cows with High Somatic Cell Count and Clinical Mastitis. Animals 2021, 11, 131. https://doi.org/10.3390/ani11010131
Abdi RD, Gillespie BE, Ivey S, Pighetti GM, Almeida RA, Kerro Dego O. Antimicrobial Resistance of Major Bacterial Pathogens from Dairy Cows with High Somatic Cell Count and Clinical Mastitis. Animals. 2021; 11(1):131. https://doi.org/10.3390/ani11010131
Chicago/Turabian StyleAbdi, Reta D., Barbara E. Gillespie, Susan Ivey, Gina M. Pighetti, Raul A. Almeida, and Oudessa Kerro Dego. 2021. "Antimicrobial Resistance of Major Bacterial Pathogens from Dairy Cows with High Somatic Cell Count and Clinical Mastitis" Animals 11, no. 1: 131. https://doi.org/10.3390/ani11010131
APA StyleAbdi, R. D., Gillespie, B. E., Ivey, S., Pighetti, G. M., Almeida, R. A., & Kerro Dego, O. (2021). Antimicrobial Resistance of Major Bacterial Pathogens from Dairy Cows with High Somatic Cell Count and Clinical Mastitis. Animals, 11(1), 131. https://doi.org/10.3390/ani11010131