Tracing Mastitis Pathogens—Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Outbreak History
2.2. Collection of Samples
2.3. Bacteriological Examination of Quarter Milk Samples and SCC Measurement
2.4. Antimicrobial Resistance Testing (AMR)
2.5. Bacteriological Culturing of Environmental Samples
2.6. Confirmation and Genotyping of P. aeruginosa
3. Results
3.1. Bacteriological Examination and Molecular Strain Typing
3.2. Interventions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.-W.; Lau, Y.Y.; Krishnan, T.; Chan, K.-G.; Chang, C.-Y. Recent advances in molecular diagnosis of pseudomonas aeruginosa infection by state-of-the-art genotyping techniques. Front. Microbiol. 2018, 9, 1104. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Kazuki, H.; Sayuri, A.; Ayaka, N.; Yasushi, K.; Toshio, T. Characterization of Pseudomonas aeruginosa isolates from dogs and cats in Japan: Current status of antimicrobial resistance and prevailing resistance mechanisms. Microbiol. Immunol. 2012, 56, 123–127. [Google Scholar] [CrossRef]
- Bergonier, D.; de Cremoux, R.; Rupp, R.; Lagriffoul, G.; Berthelot, X. Mastitis of dairy small ruminants. Vet. Res. 2003, 34, 689–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, M.A.; Welcome, F.L.; Schukken, Y.H.; Zadoks, R.N. Molecular epidemiology of two Klebsiella pneumoniae mastitis outbreaks on a dairy farm in New York State. J. Clin. Microbiol. 2007, 45, 3964–3971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sela, S.; Hammer-Muntz, O.; Krifucks, O.; Pinto, R.; Weisblit, L.; Leitner, G. Phenotypic and genotypic characterization of Pseudomonas aeruginosa strains isolated from mastitis outbreaks in dairy herds. J. Dairy Res. 2007, 74, 425–429. [Google Scholar] [CrossRef]
- Ohnishi, M.; Sawada, T.; Hirose, K.; Sato, R.; Hayashimoto, M.; Hata, E.; Yonezawa, C.; Kato, H. Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from Mastitis. Vet. Microbiol. 2011, 154, 202–207. [Google Scholar] [CrossRef]
- Kirk, J.H.; Bartlett, P.C. Nonclinical Pseudomonas aeruginosa mastitis in a dairy herd. J. Am. Vet. Med. Assoc. 1984, 184, 671–673. [Google Scholar] [PubMed]
- Daly, M.; Power, E.; Björkroth, J.; Sheehan, P.; O’Connell, A.; Colgan, M.; Korkeala, H.; Fanning, S. Molecular analysis of pseudomonas aeruginosa: Epidemiological investigation of mastitis outbreaks in irish dairy herds. Appl. Environ. Microbiol. 1999, 65, 2723–2729. [Google Scholar] [CrossRef] [Green Version]
- Erskine, R.J.; Unflat, J.G.; Eberhart, R.J.; Hutchinson, L.J.; Hicks, C.R.; Spencer, S.B. Pseudomonas mastitis: Difficulties in detection and elimination from contaminated wash-water systems. J. Am. Vet. Med. Assoc. 1987, 191, 811–815. [Google Scholar] [PubMed]
- Kawai, K.; Shinozuka, Y.; Uchida, I.; Hirose, K.; Mitamura, T.; Watanabe, A.; Kuruhara, K.; Yuasa, R.; Sato, R.; Onda, K.; et al. Control of pseudomonas mastitis on a large dairy farm by using slightly acidic electrolyzed water. Anim. Sci. J. 2017, 88, 1601–1605. [Google Scholar] [CrossRef]
- Osborne, A.D.; Armstrong, K.; Catrysse, N.H.; Butler, G.; Versavel, L. An outbreak of Pseudomonas mastitis in dairy cows. Can. Vet. J. 1981, 22, 215–216. [Google Scholar] [PubMed]
- Mellenberger, K. Mastitis Control Program for Pseudomonas Mastitis in Dairy Cows. Available online: http://milkquality.wisc.edu/wp-content/uploads/2011/09/mastitis-control-program_pseudomonas-mastitis.pdf (accessed on 20 November 2020).
- Scaccabarozzi, L.; Leoni, L.; Ballarini, A.; Barberio, A.; Locatelli, C.; Casula, A.; Bronzo, V.; Pisoni, G.; Jousson, O.; Morandi, S.; et al. Pseudomonas aeruginosa in Dairy Goats: Genotypic and phenotypic comparison of intramammary and environmental Isolates. PLoS ONE 2015, 10, e0142973, PMCID:PMC4659641. [Google Scholar] [CrossRef] [PubMed]
- Leitner, G.; Krifucks, O. Pseudomonas aeruginosa mastitis outbreaks in sheep and goat flocks: Antibody production and vaccination in a mouse model. Vet. Immunol. Immunopathol. 2007, 119, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, R.N.; Middleton, J.R.; McDougall, S.; Katholm, J.; Schukken, Y.H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia. 2011, 16, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Sargeant, J.M.; Leslie, K.E.; Shirley, J.E.; Pulkrabek, B.J.; Lim, G.H. Sensitivity and specificity of somatic cell count and california mastitis test for identifying intramammary infection in early lactation. J. Dairy Sci. 2011, 84, 2018–2024. [Google Scholar] [CrossRef]
- National Mastitis Council. Laboratory Handbook on Bovine Mastitis, 3rd ed.; National Mastitis Council: Verona, WI, USA, 2017. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100 Wayne: New York, NY, USA, 2020. [Google Scholar]
- Pechorsky, A.; Nitzan, Y.; Lazarovitch, T. Identification of pathogenic bacteria in blood cultures: Comparison between conventional and PCR methods. J. Microbiol. Methods 2009, 78, 325–330. [Google Scholar] [CrossRef]
- Versalovic, J.; Koeuth, T.; Lupski, R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucl. Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef]
- Loncaric, I.; Oberlerchner, J.T.; Heissenberger, B.; Moosbeckhofer, R. Phenotypic and genotypic diversity among strains of Aureobasidium pullulans in comparison with related species. Antonie Leeuwenhoek 2009, 95, 165–178. [Google Scholar] [CrossRef]
- Loncaric, I.; Heigl, H.; Licek, E.; Moosbeckhofer, R.; Busse, H.-J.; Rosengarten, R. Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie 2009, 40, 40–54. [Google Scholar] [CrossRef]
- Mahenthiralingam, E.; Bischof, J.; Byrne, S.K.; Radomski, C.; Davies, J.E.; Av-Gay, Y.; Vandamme, P. DNA-Based Diagnostic approaches for identification of burkholderia cepacia complex, burkholderia vietnamiensis, burkholderia multivorans, burkholderia stabilis, and burkholderia cepacia genomovars I and III. J. Clin. Microbiol. 2000, 38, 3165–3173. [Google Scholar] [CrossRef] [Green Version]
- Vu-Thien, H.; Corbineau, G.; Hormigos, K.; Fauroux, B.; Corvol, H.; Clement, A.; Vergnaud, G.; Pourcel, C. Multiple-Locus variable-number tandem-repeat analysis for longitudinal survey of sources of pseudomonas aeruginosa infection in cystic fibrosis patients. J. Clin. Microbiol. 2007, 45, 3175–3183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westropp, J.L.; Sykes, J.E.; Irom, S.; Daniels, J.B.; Smith, A.; Keil, D.; Settje, T.; Wang, Y.; Chew, D.J. Evaluation of the efficacy and safety of high dose short duration enrofloxacin treatment regimen for uncomplicated urinary tract infections in dogs. J. Vet. Intern. Med. 2012, 26, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Kidd, T.J.; Grimwood, K.; Ramsay, K.A.; Rainey, P.B.; Bell, S.C. Comparison of three molecular techniques for typing pseudomonas aeruginosa isolates in sputum samples from patients with cystic fibrosis. J. Clin. Microbiol. 2011, 49, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Syrmis, M.W. Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J. Med. Microbiol. 2004, 53, 1089–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rojas, A.; Mena, A.; Martín, S.; Borrell, N.; Oliver, A.; Blázquez, J. Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology 2009, 155, 1050–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlandi, V.T.; Bolognese, F.; Chiodaroli, L.; Tolker-Nielsen, T.; Barbieri, P. Pigments influence the tolerance of pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. Microbiology (Reading) 2015, 161, 2298–2309. [Google Scholar] [CrossRef] [PubMed]
- Visca, P.; Imperi, F.; Lamont, I.L. Pyoverdine siderophores: From biogenesis to biosignificance. Trends Microbiol. 2006, 15, 22–30. [Google Scholar] [CrossRef]
- Høiby, N.; Bjarnsholt, M.; Givskov, S.M.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2016, 35, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Sol, J.; Barkema, H.W.; Berghege, I.M.; Borst, G.H.; Hoornick, L.J.; Sampimon, O.C. Mastitis na droogzetten geassocieerd met tepeldoekjes, besmet met Pseudomonas aeruginosa Mastitis following drying up associated with teat wipes contaminated with Pseudomonas aeruginosa. Tijdschr Diergeneeskd 1998, 123, 112–113. [Google Scholar] [PubMed]
- Friman, M.J.; Eklund, M.H.; Pitkälä, A.H.; Rajala-Schultz, P.J.; Rantala, M.H.J. Description of two Serratia marcescens associated mastitis outbreaks in Finnish dairy farms and a review of literature. Acta Vet. Scand. 2019, 61, 54. [Google Scholar] [CrossRef]
- Geiss, H.K. Interpretation und bewertung von antimikrobiellen Empfindlichkeitstestungen. In Mikrobiologische Diagnostik, 2nd ed.; Neumeister, B., Geiss, H., Braun, R.W., Kimmig, P., Eds.; Thieme Verlag: Stuttgart, Germany, 2009; pp. 270–276. [Google Scholar]
Primer Pairs | Sequence |
---|---|
ms77L | 5′-GCGTCATGGTCTGCATGTC-3′ |
ms77R | 5′-TATACCCTCTTCGCCCAGTC-3′ |
ms127L | 5′-CTCGGAGTCTCTGCCAACTC-3′ |
ms127R | 5′-GGCAGGACAGGATCTCGAC-3′ |
ms142L | 5′-AGCAGTGCCAGTTGATGTTG-3′ |
ms142R | 5′-GTGGGGCGAAGGAGTGAG-3′ |
ms172L | 5′-GGATTCTCTCGCACGAGGT-3′ |
ms172R | 5′-TACGTGACCTGACGTTGGTG-3′ |
ms211L | 5′-ACAAGCGCCAGCCGAACCTGT-3′ |
ms211R | 5′-CTTCGAACAGGTGCTGACCGC-3′ |
ms212L | 5′-TGCTGGTCGACTACTTCGGCAA-3′ |
ms212R | 5′-ACTACGAGAACGACCCGGTGTT-3′ |
ms213L | 5′-CTGGGCAAGTGTTGGTGGATC-3′ |
ms213R | 5′-TGGCGTACTCCGAGCTGATG-3′ |
ms214L | 5′-AAACGCTGTTCGCCAACCTCTA-3′ |
ms214R | 5′-CCATCATCCTCCTACTGGGTT-3′ |
ms215L | 5′-GACGAAACCCGTCGCGAACA-3′ |
ms215R | 5′-CTGTACAACGCCGAGCCGTA-3′ |
ms216L | 5′-ACTACTACGTCGAACACGCCA-3′ |
ms216R | 5′-GATCGAAGACAAGAACCTCG-3′ |
ms217L | 5′-TTCTGGCTGTCGCGACTGAT-3′ |
ms217R | 5′-GAACAGCGTCTTTTCCTCGC-3′ |
ms222L | 5′-AGAGGTGCTTAACGACGGAT-3′ |
ms222R | 5′-TGCAGTTCTGCGAGGAAGGCG-3′ |
ms223L | 5′-TTGGCAATATGCCGGTTCGC-3′ |
ms223R | 5′-TGAGCTGATCGCCTACTGG-3′ |
ms207L | 5′-ACGGCGAACAGCACCAGCA-3′ |
ms207R | 5′-CTCTTGAGCCTCGGTCACT-3′ |
ms209L | 5′-CAGCCAGGAACTGCGGAGT-3′ |
ms209R | 5′-CTTCTCGCAACTGAGCTGGT-3′ |
Variable | Description |
---|---|
Stalls, Bedding | Free stall barn, cubicles with straw-manure mattresses, heifers on rubber mattresses without bedding |
Cleaness Barn, Cows | Clean and dry cubicles, clean udders and cows |
Udder Health Control | Monthly performed SCC measures, further preventive control measures like CMT or bacteriological examinations not established |
Milking Technique | Tandem milking parlor, three milking units without automatic initial stimulation or automatic cluster take-off |
Udder Preparation | Strip cup not used, teat cleaning with microfiber towels that were hand washed after milking and soaked into fresh water with added disinfectant (Dermisan Plus, Hypred, Bornheim, G) between the 12–12 h milking routine, teat skin clean but still wet before cluster attachment |
Milking Procedure and Teat Disinfection | Short (<1 min) udder stimulation, overmilking of some cows observed, post milking teat disinfection with a barrier teat dip with 3.5% lactic acid (LactiFence, DeLaval, Tumba, S) |
CMT | Not performed regularly |
Dry Cow Management | Drying off 6–8 weeks prior calving, blanket dry cow therapy with cloxacillin (Orbenin, Pfizer, NY, USA), Dry cows not separated from the milking herd |
First BE | Herd Survey (October 2018) | Treatment Control | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cow | Quarter | CMT | Culture | SCC/mL | Culture | Intervention | SCC/mL | Culture | Intervention | |
Bon | FL | +++ | ++ Pseud. | 876,000 | +++ Pseud. | 361,000 | Negative | Culling | ||
Ale | FL | ++ | ++ Pseud. | 523,000 | ++ Pseud. | 243,000 | ++ Pseud. | Culling | ||
Sil | FR | +++ | + Pseud. | 21,000 | Negative | Enrofloxacin | 6000 | Negative | Control | |
Sil | RL | +++ | + Pseud. | 1,026,000 | Negative | 15,000 | Negative | |||
Tam | FR | +++ | ++ Pseud. | n.d * | Negative | Enrofloxacin | 1,523,000 * | Negative | Culling | |
Tam | RR | Negative | 34,000 | + Pseud. | n.d. | Negative | ||||
Tam | FL | +++ | ++ Pseud. | 2,618,000 * | + Pseud. | 468,000 | Negative | |||
Tam | RL | +++ | + Pseud. | 10,000 | Negative | Negative | ||||
Sab | RR | +++ | ++ Pseud. | 180,000 | + Pseud. | 619,000 | + Pseud. | Culling | ||
Sab | FL | ++ | ++ Pseud. | 437,000 | + Pseud. | 148,000 | + Pseud. | |||
Sab | RL | +++ | + Pseud. | 4,280,000 | + Pseud. | 216,000 | + Pseud. | |||
Fil | RR | +++ | ++ Pseud. | 663,000 | Negative | Enrofloxacin | 235,000 | Negative | Culling | |
Fil | FL | +++ | Negative | 413,000 | ++ Pseud. | n.d. | +++ Pseud. | |||
Fil | RL | +++ | Negative | 1,962,000 * | Negative | 2,703,000 | + Pseud. | |||
Flie | RL | +++ | ++ Pseud. | 1,936,000 * | Negative | Enrofloxacin | 1,888,000 | + Pseud. | Culling | |
Ali | FL | +++ | + Pseud. | 1,089,000 | ++ Pseud. | 4,322,000 | ++ Pseud. | Culling | ||
Bet | RL | n.d. | Negative | 1,871,000 | +++ Pseud. | Culling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schauer, B.; Wald, R.; Urbantke, V.; Loncaric, I.; Baumgartner, M. Tracing Mastitis Pathogens—Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd. Animals 2021, 11, 279. https://doi.org/10.3390/ani11020279
Schauer B, Wald R, Urbantke V, Loncaric I, Baumgartner M. Tracing Mastitis Pathogens—Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd. Animals. 2021; 11(2):279. https://doi.org/10.3390/ani11020279
Chicago/Turabian StyleSchauer, Bernhard, Regina Wald, Verena Urbantke, Igor Loncaric, and Martina Baumgartner. 2021. "Tracing Mastitis Pathogens—Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd" Animals 11, no. 2: 279. https://doi.org/10.3390/ani11020279
APA StyleSchauer, B., Wald, R., Urbantke, V., Loncaric, I., & Baumgartner, M. (2021). Tracing Mastitis Pathogens—Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd. Animals, 11(2), 279. https://doi.org/10.3390/ani11020279