Organic versus Conventional Raw Cow Milk as Material for Processing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Requirements for Processing Raw Milk
3. Milk Production System
3.1. Organic System
3.2. Conventional Systems
3.2.1. Intensive System
3.2.2. Traditional System
4. Milk Production System and the Quantity and Quality of Raw Milk and Manufactured Dairy Products
4.1. Milk Yield
4.2. Hygienic Quality
4.2.1. Somatic Cell Count (SCC)
4.2.2. Microbiological Quality
4.3. Physicochemical Quality
4.3.1. Acidity
4.3.2. Proximate Chemical Composition
4.4. Bioactive Compounds
4.4.1. Whey Proteins
4.4.2. Fatty Acids
4.4.3. Vitamins
4.4.4. Minerals
4.5. Mycotoxins
4.6. Technological Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Barłowska, J. Differences in bioactive protein and vitamin status of milk from certified organic and conventional farms. Int. J. Dairy Technol. 2018, 71, 321–332. [Google Scholar] [CrossRef]
- Król, J.; Brodziak, A.; Zaborska, A.; Litwińczuk, Z. Comparison of whey proteins and lipophilic vitamins between four cow breeds maintained in intensive production system. Mljekarstvo 2017, 67, 17–24. [Google Scholar]
- Kuczyńska, B.; Puppel, K.; Metera, E.; Gołębiewski, M.; Sakowski, T.; Słoniewski, K. Differences in whey proteins content between cow’s milk collected in late pasture and early indoor feeding season from conventional and organic farms in Poland. J. Sci. Food Agric. 2012, 92, 2899–2904. [Google Scholar] [CrossRef]
- Puppel, K.; Sakowski, T.; Kuczyńska, B.; Grodkowski, G.; Gołębiewski, M.; Barszczewski, J.; Wróbel, B.; Budziński, A.; Kapusta, A.; Balcerak, M. Degrees of antioxidant protection: A 2-year study of the bioactive properties of organic milk in Poland. J. Food Sci. 2017, 82, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Mitani, T.; Kobayashi, K.; Ueda, K.; Kendo, S. Discrimination of “grazing milk” using milk fatty acid profile in the grassland dairy area in Hokkaido. Anim. Sci. Nutr. 2015, 87, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Torre-Santos, S.; Royo, L.J.; Martínez-Fernánd, A.; Chocarro, C.; Vicente, F. The mode of grass supply to dairy cows impacts on fatty acid and antioxidant profile of milk. Foods 2020, 9, 1256. [Google Scholar] [CrossRef]
- Eurostat. 2021. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 20 March 2021).
- FAO. 2021. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 March 2021).
- Willer, H.; Trávníček, J.; Meier, C.; Schlatter, B. (Eds.) The World of Organic Agriculture. Statistics and Emerging Trends 2021; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM—Organics International: Bonn, Germany, 2021; p. 244. [Google Scholar]
- CLAL. 2021. Available online: https://www.clal.it/en/index.php (accessed on 20 March 2021).
- Commission Regulation (EC) No 1662/2006 of 6 November 2006 amending Regulation (EC) No 853/2004 of the European Parliament and of the Council Laying down Specific Hygiene Rules for Food of animal origin. Official Journal of the European Union L 320/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1662&from=PL (accessed on 8 April 2021).
- Mhone, T.A.; Matope, G.; Saidi, P.T. Aerobic bacterial, coliform, Escherichia coli and Staphylococcus aureus counts of raw and processed milk from selected smallholder dairy farms of Zimbabwe. Inter. J. Food Microb. 2011, 151, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.Y.; Zhao, S.G.; Zheng, N.; Li, S.L.; Zhang, Y.D.; Liu, H.M.; McKillip, J.; Wang, J.Q. Short communication: Microbiological quality of raw cow milk and its association with herd management practices in Northern China. J. Dairy Sci. 2017, 100, 294–299. [Google Scholar] [CrossRef]
- Oliver, S.P.; Boor, K.J.; Murphy, S.C.; Murinda, S.E. Food safety hazards associated with consumption of raw milk. Foodborne Pathog. Dis. 2009, 6, 793–806. [Google Scholar] [CrossRef] [Green Version]
- Piepers, S.P.; Zrimsek, P.; Passchyn, S. De Vliegher Manageable risk factors associated with bacterial and coliform counts in unpasteurized bulk milk in Flemish dairy herds. J. Dairy Sci. 2014, 97, 3409–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodziak, A.; Król, J.; Stanek, P.; Litwińczuk, Z. Indicators of the mammary gland health status in dairy animals. In Mammary Glands: Anatomy, Development and Diseases; Rucker, E.B., Ed.; Nova Science Publisher: New York, NY, USA, 2015; pp. 193–234. [Google Scholar]
- FDA—USA. Food and Drug Administration. Grade “A” Pasteurized Milk Ordinance, USA; Department of Health and Human Services: Washington, DC, USA, 2015. Available online: https://www.fda.gov/media/99451/download (accessed on 27 March 2021).
- Burke, N.; Zacharski, K.A.; Southern, M.; Hogan, P.; Ryan, M.P.; Adley, C.C. The Dairy Industry: Process, Monitoring, Standards, and Quality. 2018. Available online: https://www.intechopen.com/books/descriptive-food-science/the-dairy-industry-process-monitoring-standards-and-quality (accessed on 27 March 2021).
- BCHA—British Columbia Herdshare Association. Examples of Bacterial Testing Standards for Raw Milk. 2016. Available online: http://bcherdshare.org/information/testing-standards/#_ftn7 (accessed on 27 March 2021).
- PN-A-86002: 1999. Raw Milk for Purchase–Requirements and Tests. Available online: https://sklep.pkn.pl/ (accessed on 4 May 2021).
- Chitchyan, Z.T.; Grigoryan, A.A. Yield and quality of Brine—Ripened cheeses, production from the milk of jersey and Simmental cows. Ann. Agrar. Sci. 2016, 14, 64–66. [Google Scholar] [CrossRef] [Green Version]
- Law, B.A.; Tamime, A.Y. Factors affecting the quality of milk for cheese manufacture. In Technology of Cheesemaking, 2nd ed.; Society of Dairy Technology; Blackwell Publishing: Oxford, UK, 2010; pp. 24–50. [Google Scholar]
- Zannoni, M.; Annibaldi, S. Standardisation of the renneting ability of milk by Formagraph. Sci. Tecn. Latt. Cas. 1981, 32, 79–94. [Google Scholar]
- Robinson, R.K. Milk quality requirements for yoghurt-making. In Improving the Safety and Quality of Milk, Volume 2: Improving Quality in Milk Products; Griffiths, M.W., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 417–430. [Google Scholar]
- Litwińczuk, Z.; Koperska, N.; Chabuz, W.; Kędzierska-Matysek, M. Basic chemical composition and mineral content of the milk of cows of various breeds raised on organic farms and on traditional farms using intensive (PMR) and traditional feeding systems). Med. Weter. 2018, 74, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.; Omer, A.K.; Razavi, R.; Valipour, S.; Guimarães, J.T. The relationship between milk somatic cell count and cheese production, quality and safety: A review. Inter. Dairy J. 2021, 113, 104884. [Google Scholar] [CrossRef]
- Summer, A.; Franceschi, P.; Formaggioni, P.; Malacarne, M. Influence of milk somatic cell content on Parmigiano-Reggiano cheese yield. J. Dairy Res. 2015, 82, 222–227. [Google Scholar] [CrossRef]
- Król, J.; Brodziak, A.; Chabuz, W.; Litwińczuk, Z.; Barłowska, J. Effect of the feeding system and the production season on the protein fraction content in milk. Mljekarstvo 2019, 69, 98–107. [Google Scholar] [CrossRef]
- Council Regulation (EC), No. 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. Official Journal of the European Union L 189/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=PL (accessed on 27 April 2021).
- Commission Regulation (EC), No. 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, labelling and control. Official Journal of the European Union L 250/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1527525178326&uri=CELEX:32008R0889 (accessed on 27 April 2021).
- Regulation (EU) 2018/848 of the European Parliament and of the Council of May 30, 2018 on Organic Production and Labeling of Organic Products and Repealing Council Regulation No 834/2007. Official Journal of the European Union L 150/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0848&from=PL (accessed on 27 April 2021).
- Orjales, I.; Lopez-Alonso, M.; Miranda, M.; Alaiz-Moretón, H.; Resch, C.; López, S. Dairy cow nutrition in organic farming systems. Comparison with the conventional system. Animal 2019, 13, 1084–1093. [Google Scholar] [CrossRef]
- Kuczyńska, B.; Puppel, K. Organic Milk—Irreplaceable source of bioactive components. Pol. Dairy J. 2010, 9, 4–9. [Google Scholar]
- Bilik, K.; Strzelecki, J. Dairy cow feeding according to organic standards with regard to studies at the National Research Institute of Animal Production. Wiad. Zootech. 2013, 3, 25–41. [Google Scholar]
- Escribano, A.J. Organic Feed: A Bottleneck for the development of the livestock sector and its transition to sustainability? Sustainability 2018, 10, 2393. [Google Scholar] [CrossRef] [Green Version]
- Winnicki, S.; Jugowar, J.L.; Nawrocki, L.; Kalika, G.; Rudowicz-Nawrocka, J. TMR system of feeding dairy cows in terms of precision agriculture. Probl. Inż. Rol. 2012, 1, 77–85. [Google Scholar]
- Szarkowski, K.; Sablik, P.; Lachowski, W. The feeding of high yielding dairy cows with regard to the urea level in milk. Acta Sci. Pol. Zootech. 2009, 8, 39–46. [Google Scholar]
- Cuffia, M.; Baudracco, J.; Romero, L.; Cuatrin, A.; Gagliostro, G.; Maiztegui, J.; Comerón, E. A simplified feeding system did not affect milk production compared with a total mixed ration system in dairy cows. Ital. J. Anim. Sci. 2020, 19, 887–895. [Google Scholar] [CrossRef]
- Muhanned, E.M.; Mohammad, A.; Gorgulu, M.; Goncu, S. The Effects of Total Mixed Ration and Separate Feeding on Lactational Performance of Dairy Cows. Asian Res. J. Agric. 2017, 5, 1–7. [Google Scholar]
- Brodziak, A.; Król, J.; Litwińczuk, Z. Whey protein content and fatty acids profile in milk of cows used in intensive and conventional production systems with regard to stage of lactation. Turk. J. Vet. Anim. Sci. 2015, 39, 745–750. [Google Scholar] [CrossRef]
- Barłowska, J.; Litwińczuk, Z.; Kowal, M. Influence of production season and lactation stage on the technological suitability of milk from cows of various breeds fed in the TMR system. Ann. Anim. Sci. 2014, 14, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Garnier, J.; Le Noë, J.; Marescaux, A.; Sanz-Cobena, A.; Lassaletta, L.; Silvestre, M.; Thieu, V.; Billen, G. Long—Term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Sci. Total. Environ. 2019, 660, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Munyaneza, C.; Kurwijila, L.R.; Mdoe, N.S.; Baltenweck, I.; Twine, E.E. Identification of appropriate indicators for assessing sustainability of small-holder milk production systems in Tanzania. Sustain. Prod. Consum. 2019, 19, 141–160. [Google Scholar] [CrossRef]
- Reardon, T.; Lu, L.; Zilberman, D. Links among innovation, food system transformation, and technology adoption, with implications for food policy: Overview of a special issue. Food Policy 2019, 83, 285–288. [Google Scholar] [CrossRef]
- Vaarst, M.; Smolders, G.; Wahome, R.; Odhong, C.; Kiggundu, M.; Kabi, F.; Nalubwama, S.; Halberg, N. Options and challenges for organic milk production in East African smallholder farms under certified organic crop production. Livest. Sci. 2019, 220, 230–240. [Google Scholar] [CrossRef]
- Pirlo, G.; Lolli, S. Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy). J. Clean. Prod. 2019, 211, 962–971. [Google Scholar] [CrossRef]
- Zuba-Ciszewska, M.; Kowalska, A.; Manning, L.; Brodziak, A. Organic milk supply in Poland: Market and policy developments. Br. Food J. 2019, 121, 3396–3412. [Google Scholar] [CrossRef]
- Rodríguez-Bermúdez, R.; Miranda, M.; Baudracco, J.; Fouz, R.; Pereira, V.; López-Alonso, M. Breeding for organic dairy farming: What types of cows are needed? J. Dairy Res. 2019, 86, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasińska, M.; Dmytrów, I.; Mituniewicz-Małek, A.; Wąsik, K. Cow feeding system versus milk utility for yoghurt manufacture. Acta. Sci. Pol. Technol. Aliment. 2010, 9, 189–199. [Google Scholar]
- Kuczyńska, B. Bioactive ingredients and technological parameters of milk produced on organic and conventional farms. In Scientific Dissertations and Monographs; SGGW Publishing House: Warsaw, Poland, 2011. [Google Scholar]
- Teter, A.; Joanna Barłowska, J.; Król, J.; Brodziak, A.; Rutkowska, J.; Litwińczuk, Z. Volatile compounds and amino acid profile of short-ripened farmhouse cheese manufactured from the milk of the White-Backed native cow breed. Lebensm. Wiss. Technol. 2020, 129, 109602. [Google Scholar] [CrossRef]
- Manzi, P.; Durazzo, A. Organic vs. conventional milk: Some considerations on fat-soluble vitamins and iodine content. Beverages 2017, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leiferd, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski, M. Enhancing the fatty acid profile of milk through Forage—Based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef] [PubMed]
- Bloksma, J.; Adriaansen-Tennekes, R.; Huber, M.; van de Vijver, L.P.L.; Baar, T.; de Wit, J. Comparison of organic and conventional raw milk quality in the Netherlands. Biol. Agric. Hortic. 2008, 26, 69–83. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Barłowska, J.; Król, J.; Brodziak, A.; Matwijczuk, A.; Kowal, M. Chemical composition and technological suitability of milk with regard to the feeding system of cows. Med. Wet. 2015, 71, 231–235. [Google Scholar]
- Wójcik-Saganek, A. Nutritional Value and Technological Suitability of Farm Milk Together with a Technical and Economic Analysis of the Efficiency of Its Production. Ph.D. Dissertation, The University of Life Sciences in Lublin, Lublin, Poland, 2019. [Google Scholar]
- Rosati, A.; Aumaitre, A. Organic dairy farming in Europe. Livest. Prod. Sci. 2004, 90, 41–51. [Google Scholar] [CrossRef]
- Nauta, W.J.; Verkamp, R.F.; Brascamp, E.W.; Bovenhuis, H. Genotype by environment interaction for milk production traits between organic and conventional dairy cattle production in the Netherlands. J. Dairy Sci. 2006, 89, 2729–2737. [Google Scholar] [CrossRef]
- Bilik, K.; Łopuszańska-Rusek, M. Effect of organic and conventional feeding of Red-and-White cows on productivity and milk composition. Ann. Anim. Sci. 2010, 10, 441–458. [Google Scholar]
- Król, J.; Brodziak, A.; Topyła, B. The nutritional value of the milk of Simmental cows in relation to the season and production system. Anim. Prod. Review 2016, 6, 20–24. [Google Scholar]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Higher PUFA and n-3 PUFA conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta- and redundancy analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litwińczuk, Z.; Król, J.; Brodziak, A.; Barłowska, J. Changes of protein content and its fractions in bovine milk from different breeds subject to somatic cell count. J. Dairy Sci. 2011, 94, 684–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgadillo-Puga, C.; Sánchez-Muñoz, B.; Nahed–Toral, J.; Cuchillo-Hilario, M.; Díaz–Martínez, M.; Solis-Zabaleta, R.; Reyes-Hernández, A.; Castillo-Domíguez, R. Fatty acid content, health and risk indices, physicochemical composition, and somatic cell counts of milk from organic and conventional farming systems in tropical south–eastern Mexico. Trop. Anim. Health Prod. 2014, 46, 883–888. [Google Scholar] [CrossRef]
- Cermanova, I.; Hanuš, O.; Roubal, P.; Vyletělova, M.; Genčurova, V.; Jedelska, R.; Kopecky, J.; Dolinkova, A. Effect of organic farming on selected raw cow milk components and properties. Acta Univ. Agric. Silvic. Mendel. Brun. 2011, 59, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Haskell, M.; Langford, F.; Jack, M.; Sherwood, L.; Lawrence, A.; Rutherford, K. The effect of organic status and management practices on somatic cell counts on UK dairy farms. J. Dairy Sci. 2009, 92, 3775–3780. [Google Scholar] [CrossRef]
- Lopreiato, V.; Minuti, A.; Morittu, V.M.; Britti, D.; Piccioli-Cappelli, F.; Loor, J.J.; Trevisi, E. Short communication: Inflammation, migration, and cell-cell interaction-related gene network expression in leukocytes is enhanced in Simmental compared with Holstein dairy cows after calving. J. Diary Sci. 2020, 103, 1908–1913. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, A.C.; Paranhos da Costa, M.J.R. The relationship between dairy cow hygiene and somatic cell count in milk. J. Dairy Sci. 2011, 94, 3835–3844. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, T.; Reugg, P.L.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [Green Version]
- Król, J.; Brodziak, A.; Jańczuk, A. Evaluation of hygiene conditions during milking and milk processing at the farm level. In Farm Machinery and Processes Management in Sustainable Agriculture, Proceedings of the X International Scientific Symposium FMPMSA, Lublin, Poland, 20–22 November 2019; Lorencowicz, E., Uziak, J., Huyghebae, B., Eds.; Instytut Naukowo-Wydawniczy Spatium: Lublin, Poland, 2019; pp. 419–423. [Google Scholar]
- Kouřimská, L.; Legarová, V.; Panovská, Z.; Pánek, J. Quality of cows’ milk from organic and conventional farming. Czech. J. Food Sci. 2014, 32, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Kukułowicz, A. Comparison of microbiological quality of milk products from organic and conventional production. Rocz. Nauk. Stow. Ekon. Rol. 2018, XX, 147–153. [Google Scholar] [CrossRef]
- Pyz-Łukasik, R.; Knysz, P.; Gondek, M. Hygiene quality and consumer safety of traditional short- and long-ripened cheeses from Poland. J. Food Qual. 2018, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, J.; Kemppinen, A.; Kärki, M.; Laitinen, H.; Mäki, M.; Sivelä, S.; Taimisto, A.M.; Ryhänen, E.L. The effect of a protective culture and exclusion of nitrate on the survival of enterohemorrhagic E. coli and Listeria in Edam cheese made from Finnish organic milk. Int. Dairy J. 2005, 15, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Kapturowska, A.U.; Zielińska, K.J.; Stecka, K.M. Evaluation of raw milk quality in connection with roughages quality in selected organic farms. J. Food Qual. 2012, 57, 194–197. [Google Scholar]
- Berthold, A.; Stachura, A. Microbiological quality of cheeses originated from ecological farms. Post. Tech. Przetw. Spoż. 2009, 1, 65–69. [Google Scholar]
- Głuchowska-Gołda, G.; Smalej, B. Organic processing of raw materials of animal origin. In Advances in Life Sciences, 2nd ed.; Maciąg, K., Szala, M., Winiarski, G., Eds.; Lublin University of Technology: Lublin, Poland, 2013; pp. 19–32. [Google Scholar]
- Morandi, S.; Brasca, M.; Alfieri, P.; Lodi, R.; Tamburini, A. Influence of pH and temperature on the growth of Enterococcus faecium and Enterococcus faecalis. Le Lait 2005, 85, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Bis, H.; Mędrela-Kuder, E. Microbiological purity of milk and dairy products supplied by individual producers to the Stary Kleparz Marketplace in Cracow. Hyg. Pub. Health 2011, 46, 57–63. [Google Scholar]
- Kamana, O.; Ceuppens, S.; Jacxsens, L.; Kimonyo, A.; Uyttendaele, M. Microbiological quality and safety assessment of the Rwandan milk and dairy chain. J. Food Prot. 2014, 77, 299–307. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Official Journal of the European Union L 338/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF (accessed on 10 April 2021).
- Lairon, D. Nutritional quality and safety of organic food. A review. Agron. Sustain. Dev. 2010, 30, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Codex Alimentarius International Food Standards, Code of Hygienic Practice for Milk and Milk Products, No. CAC/RCP 57-2004, Modified in 2009. 2009. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B57-2004%252FCXC_057e.pdf (accessed on 8 May 2021).
- Lorenzen, P.C.; Clawin-Rädecker, I.; Einhoff, K.; Hammer, P.; Hartmann, R.; Hoffmann, W.; Martin, D.; Molkentin, J.; Walte, H.G.; Devrese, A. A survey of the quality of extended shelf life (ESL) milk in relation to HTST and UHT milk. Int. J. Dairy Technol. 2011, 64, 166–178. [Google Scholar] [CrossRef]
- Wichrowska, D.; Wojdyła, T. Sensory and physicochemical evaluation of selected natural and organic yoghurts. Inż. Ap. Chem. 2014, 53, 421–423. [Google Scholar]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Florek, M. Bioactive compound levels and sensory quality of partially skimmed organic yoghurts: Effects of the milk treatment, production season and starter culture. Int. J. Dairy Technol. 2021, 74, 139–147. [Google Scholar] [CrossRef]
- PN-A-86003/A1:1998. Milk and Dairy Products–Drinking Milk. Available online: https://sklep.pkn.pl (accessed on 10 March 2021).
- PN-A-86061:2006. Milk and Milk Products. Fermented Milk. Available online: https://sklep.pkn.pl/ (accessed on 12 March 2021).
- Spomlek Dairy Co-operative. Available online: https://www.cenyrolnicze.pl/firma/273-Sp-ldzielcza-MleczarniaSpomlek/cennik/mleko (accessed on 17 May 2021).
- Szajner, P. (Ed.) Milk Market, No 60; Institute of Agricultural and Food Economics National Research Institute: Warsaw, Poland, 2021. [Google Scholar]
- Toledo, P.; Andren, A.; Bjork, L. Composition of raw milk from sustainable production systems. Int. Dairy J. 2002, 12, 75–80. [Google Scholar] [CrossRef]
- Zagorska, J.; Ciprovica, I. The chemical composition of organic and conventional milk in Latvia. FOODBALT 2008, 3, 10–14. [Google Scholar]
- Kruczyńska, H. Fodders and concentrated mixtures in cattle nutrition. Cattle 2010, 2, 12–15. [Google Scholar]
- Vicini, J.; Etherton, T.; Kris-Etherton, P.; Ballam, J.; Denham, S.; Staub, R.; Goldstein, D.; Cady, R.; McGrath, M.; Lucy, M. Survey of retail milk composition as affected by label claims regarding farm-management practices. J. Am. Diet. Assoc. 2008, 108, 1198–1203. [Google Scholar] [CrossRef]
- Stergiadis, S.; Leifert, C.; Seal, C.J.; Eyre, M.D.; Steinshamn, H.; Butler, G. Improving the fatty acid profile of winter milk from housed cows with contrasting feeding regimes by oilseed supplementation. Food Chem. 2014, 164, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilcawley, K.N.; Faulkner, H.; Clarke, H.J.; O’Sullivan, M.G.; Kerry, J.P. Factors influencing the flavour of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef]
- Nahar, A.; Al-Amin, M.; Wadud, A.; Monir, M.M.; Khan, M.A.S. Effect of partial green grass over dry feeding on the productive performance of early lactating crossbred cows in Bangladesh. Int. J. Dairy Sci. 2007, 2, 73–78. [Google Scholar]
- Heck, J.M.L.; van Valenberg, H.J.F.; Dijkstra, J.; van Hooijdonk, A.C.M. Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci. 2009, 92, 4745–4755. [Google Scholar] [CrossRef]
- Kuczyńska, B.; Puppel, K.; Metera, E.; Klis, P.; Grodzka, A.; Sakowski, T. Fatty acid composition of milk from Brown Swiss and Holstein-Friesian black and white cows kept in a certified organic farm. Annals of Warsaw University of Life Sciences SGGW. Anim. Sci. 2011, 49, 61–67. [Google Scholar]
- Król, J.; Brodziak, A. Milk proteins with antibacterial properties. Probl. Hig. Epidemiol. 2015, 96, 399–405. [Google Scholar]
- Dinika, I.; Verma, D.K.; Balia, R.; Utama, G.L.; Patel, A.R. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. Trends Food Sci. Technol. 2020, 103, 57–67. [Google Scholar] [CrossRef]
- Salaris, C.; Scarpa, M.; Elli, M.; Bertolini, A.; Guglielmetti, S.; Pregliasco, F.; Blandizzi, C.; Brun, P.; Castagliuolo, I. Protective effects of lactoferrin against SARS-CoV-2 infection in vitro. Nutrients 2021, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Tzi, B.N.; Wei-Zen, S. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int. J. Antimicrob. Agents. 2020, 56, 106–118. [Google Scholar]
- Zagorska, J. The Evaluation of Organic Milk Quality, Summary of Doctoral Thesis. Latvia University of Agriculture: Jelgava, Latvia. Available online: http://www3.acadlib.lv/greydoc/zagorskas_disertacija/zagorska_ang.doc (accessed on 24 March 2021).
- Turner, S.A.; Thomson, N.A.; Auldist, M.J. Variation of lactoferrin and lactoperoxidase in bovine milk and the impact of level of pasture intake. N. Z. J. Agric. Res. 2007, 50, 33–40. [Google Scholar] [CrossRef]
- Mackle, T.R.; Bryant, A.M.; Petch, S.F.; Hooper, R.J.; Auldist, M.J. Variation in the composition of milk protein from pasture-fed dairy cows in late lactation and the effect of grain and silage supplementation. N. Z. J. Agric. Res. 1999, 42, 147–154. [Google Scholar] [CrossRef]
- Król, J.; Litwińczuk, Z.; Litwińczuk, A.; Brodziak, A. Content of protein and its fractions in milk of simmental cows with regard to rearing technology. Ann. Anim. Sci. 2008, 1, 57–61. [Google Scholar]
- Brodziak, A.; Król, J.; Barłowska, J.; Litwińczuk, Z.; Teter, A.; Kędzierska-Matysek, M. Differences in bioactive protein and vitamin status of milk obtained from Polish local breeds of cows. Ann. Anim. Sci. 2020, 20, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Sakkas, L.; Moutafi, A.; Moschopoulou, E.; Moatsou, G. Assessment of heat treatment of various types of milk. Food Chem. 2014, 159, 293–301. [Google Scholar] [CrossRef]
- Ruprichová, L.; Králová, M.; Borkovcová, I.; Vorlová, L.; Bedáňová, I. Determination of whey proteins in different types of milk. Acta Vet. Brno. 2014, 83, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Elliott, A.J.; Datta, N.; Amenu, B.; Deeth, H.C. Heat—Induced and other chemical changes in commercial UHT milks. J. Dairy Res. 2005, 72, 442–446. [Google Scholar] [CrossRef]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “grass-fed” milk story: Understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, T.F. The benefits of pasture-based dairy. Ir. Food 2019, 1, 34–35. [Google Scholar]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Tores-Gonzales, M.; Kraft, J. Branched—Chain fatty Acids—An underexplored class of Dairy—Derived fatty acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef] [PubMed]
- Vincente, F.; Santiago, C.; Jiménez-Calderón, J.D.; Martínez-Fernández, A. Capacity of milk composition to identify the feeding system used to feed dairy cows. J. Dairy Res. 2017, 84, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, R.; Kang, R.; Meng, J.; Ao, C. Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets. Anim. Nutr. 2016, 2, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Vanbergue, E.; Peyraud, J.L.; Ferlay, A.; Miranda, G.; Martin, P.; Hurtaud, C. Effects of feeding level, type of forage and milking time on milk lipolytic system in dairy cows. Livest. Sci. 2018, 217, 116–126. [Google Scholar] [CrossRef]
- Cichosz, G.; Czeczot, H. Trans fatty acids in the human diet. Bromat. Chem. Toksykol. 2012, XLV, 181–190. [Google Scholar]
- Coppa, M.; Verdier-Metz, I.; Ferlay, A.; Pradel, P.; Didienne, R.; Farruggia, A.; Montel, M.C.; Martin, B. Effect of different grazing systems on upland pastures compared with hay diet on cheese sensory properties evaluated at different ripening times. Int. Dairy J. 2011, 21, 815–822. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Tech. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hanuš, O.; Krížová, L.; Samková, E.; Špička, J.; Kučera, J.; Klimešová, M.; Roubal, P.; Jedelská, R. The effect of cattle breed, season and type of diet on the fatty acid profile of raw milk. Arch. Anim. Breed. 2016, 59, 373–380. [Google Scholar] [CrossRef]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profiles of Caciocavallo cheese as affected by management system. J. Diary Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanzin, A.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Effect of rearing system (mountain pasture vs. indoor) of Simmental cows on milk composition and Montasio cheese characteristics. J. Dairy Res. 2013, 80, 390–399. [Google Scholar] [CrossRef]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Deadman, C.; Shadbolt, N.M.; Otter, D.E. Invited review: Organic and conventionally produced Milk—An evaluation of factors influencing milk composition. J. Diary Sci. 2014, 98, 721–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capuano, E.; Gravink, R.; Boerrigter-Eenling, R.; van Ruth, S.M. Fatty acid and triglycerides profiling of retail organic, conventional and pasture milk: Implications for health and authenticity. Int. Dairy J. 2015, 42, 58–63. [Google Scholar] [CrossRef]
- Benbrook, C.M.; Butler, G.; Latif, M.A.; Leifert, C.; Davis, D.R. Organic production enhances milk nutritional quality by shifting fatty acid composition: A united states-wide, 18-month study. PLoS ONE 2013, 8, e82429. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.; Innocent, G.; Grove–White, D.; Cripps, P.; McLean, W.; Howard, C.; Mihm, M. Comparing the fatty acid composition of organic and conventional milk. J. Dairy Sci. 2006, 89, 1938–1950. [Google Scholar] [CrossRef]
- Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. Int. Dairy J. 2008, 18, 976–982. [Google Scholar] [CrossRef]
- Butler, G.; Stergiadis, S.; Seal, C.; Eyre, M.; Leifert, C. Fat composition of organic and conventional retail milk in northeast England. J. Dairy Sci. 2011, 94, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.; Jensen, S.; Govasmark, E.; Steinshamn, H. Effect of short–term versus long–term grassland management and seasonal variation in organic and conventional dairy farming on the composition of bulk tank milk. J. Dairy Sci. 2013, 96, 5793–5810. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, T.; Yan, S.; Shi, B.; Zhang, Y.; Guo, X. Influence of pasture or total mixed ration on fatty acid composition and expression of lipogenic genes of longissimus thoracis and subcutaneous adipose tissues in Albas White Cashmere goats. I. J. Ani. Sci. 2019, 18, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Process. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouin, G.; Guillocheau, E.; Catheline, D.; Baudry, C.; Le Ruyet, P.; Rioux, V.; Legrand, P. Impact of n-3 docosapentaenoic acid supplementation on fatty acid composition in rat differs depending upon tissues and is influenced by the presence of dairy lipids in the diet. J. Agric. Food Chem. 2018, 66, 9976–9988. [Google Scholar] [CrossRef] [PubMed]
- Drouin, G.; Guillocheau, E.; Catheline, D.; Baudry, C.; Le Ruyet, P.; Rioux, V.; Legrand, P. Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition. J. Nutr. Biochem. 2019, 63, 186–196. [Google Scholar] [CrossRef]
- Kuhnt, K.; Degen, C.; Jahreis, G. Evaluation of the impact of ruminant trans fatty acids on human health: Important aspects to consider. Crit. Rev. Food Sci. Nutr. 2016, 56, 1964–1980. [Google Scholar] [CrossRef] [PubMed]
- den Hartigh, L.J. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Kučević, D.; Trivunović, S.; Bogdanović, V.; Čobanović, K.; Janković, D.; Stanojevi, D. Composition of raw milk from conventional and organic dairy farming. Biotechnol. Anim. Husb. 2016, 32, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Dunshea, F.R.; Walker, G.P.; Williams, R.; Doyle, P.T. Mineral and citrate concentrations in milk are affected by seasons, stage of lactation and management practices. Agriculture 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their Variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamo, P.; Fedele, E.; Iannibelli, L.; Marzillo, G. Fat–Soluble vitamin contents and fatty acid composition in organic and conventional Italian dairy product. Food Chem. 2003, 82, 625–631. [Google Scholar] [CrossRef]
- Brodziak, A.; Wajs, J.; Czernecki, T.; Król, J.; Stobiecka, M. Profile of free fatty acids in yoghurts manufactured on the basis of organic cow milk. In Proceedings of the 2nd International Agricultural, Biological & Life Science Conference: Agrobiology, Edirne, Turkey, 1–3 September 2020; Yalcin, K., Ed.; pp. 513–520. [Google Scholar]
- Fanti, M.G.N.; Emílio de Almeida, K.E.; Rodrigues, A.M.; da Silva, R.C.; Florence, A.C.R.; Gioielli, L.A.; Nogueira de Oliveira, M. Contribution to the study of physicochemical characteristics and lipid fraction of organic milk. Food Sci. Technol. 2008, 28, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Cintra, R.M.G.; Malheiros, J.M.; Ferraz, A.P.R.; Chardulo, L.A.L. A Review of nutritional characteristics of organic animal foods: Eggs, milk, and meat. Nutr. Food Technol. 2018, 4, 1–7. [Google Scholar]
- Florence, A.C.R.; Silva, R.C.; Sousa, A.L.P.; Gioielli, L.A.; Oliveira, M.N. The lipid profile of probiotic fermented milks organic and conventional. Nutrire. J. Braz. Soc. Food Nutr. 2009, 34, 223. [Google Scholar]
- Król, J.; Wawryniuk, A.; Brodziak, A.; Barłowska, J.; Kuczyńska, B. The effect of selected factors on the content of fat-soluble vitamins and macro-elements in raw milk from Holstein-Friesian and Simmental cow sand acid curd cheese (Tvarog). Animals 2020, 10, 1800. [Google Scholar] [CrossRef]
- Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and dairy products and their nutritional contribution to the average Polish diet. Nutrients 2019, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro, T.; Gayoso, L.; Rodríguez-Otero, J.L. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk. J. Dairy Sci. 2015, 98, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalač, P. The effects of silage feeding on some sensory and health attributes of cow’s milk: A review. Food Chem. 2011, 125, 307–317. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Raikos, V.; Pirie, L.P.; Gürel, S.; Hayes, H.E. Encapsulation of vitamin E in yogurt-based beverage emulsions: Influence of bulk pasteurization and chilled storage on physicochemical stability and starter culture viability. Molecules 2021, 26, 1504. [Google Scholar] [CrossRef]
- Sakowski, T.; Kuczyńska, B.; Puppel, K.; Metera, E.; Słoniewskia, K.; Barszczewski, J. Relationships between physiological indicatorsin blood, and their yield, as well as chemical composition of milk obtained from organic dairy cows. J. Sci. Food Agric. 2012, 92, 2905–2912. [Google Scholar] [CrossRef]
- Mogensen, L.; Kristensen, T.; Søegaard, K.; Jensen, S.K.; Sehested, J. Alfatocopherol and beta-carotene in roughages and milk in organic dairy herds. Livest. Sci. 2012, 145, 44–54. [Google Scholar] [CrossRef]
- Butler, G.; Nielsen, J.; Slots, T.; Seal, C.; Eyre, M.; Sanderson, R.; Leifert, C. Fatty acid and Fat—Soluble antioxidant concentrations in milk from high– and low–input conventional and organic systems: Seasonal variation. J. Sci. Food. Agric. 2008, 88, 1431–1441. [Google Scholar] [CrossRef]
- Galgano, F.; Tolve, R.; Colangelo, M.A.; Scarpa, T.; Caruso, M.C.; Yildiz, F. Conventional and organic foods: A comparison focused on animal products. Cogent Food Agric. 2016, 2, 1–18. [Google Scholar] [CrossRef]
- Gabryszuk, M.; Sakowski, T.; Metera, E.; Kuczyńska, B.; Rembiałowska, E. Wpływ żywienia na zawartość składników bioaktywnych w mleku krów z gospodarstw ekologicznych. Żywn. Nauk. Technol. J. 2013, 20, 16–26. [Google Scholar]
- Emanuelson, U.; Fall, N. Vitamins and selenium in bulk tank milk of organic and conventional dairy farms. In Book of Abstracts of the 58th Annual Meeting of the EAAP; van der Honing, Y., Ed.; Wageningen Academic Publishers: Dublin, Ireland, 2007; Volume 13, pp. 35–39. [Google Scholar]
- Strusińska, D.; Antoszkiewicz, Z.; Kaliniewicz, J. The concentrations of β-carotene, vitamin A and vitamin E in bovine milk in regard to the feeding season and the share of concentrate in the feed ration. Sci. Ann. Pol. Soc. Anim. Prod. 2010, 6, 213–220. [Google Scholar]
- Havemose, M.S.; Weisbjerg, M.R.; Bredie, W.L.P.; Nielsen, J.H. Influence of feeding different types of roughage on the oxidative stability of milk. Int. Dairy J. 2004, 14, 563–570. [Google Scholar] [CrossRef]
- Leiber, F.; Kreuzer, M.; Nigg, D.; Wettstein, H.R.; Scheeder, M.R.L. A study on the causes for the elevated n-3 fatty acids in cow’s milk of alpine origin. Lipids 2005, 40, 191–202. [Google Scholar] [CrossRef]
- Jensen, S.K.; Nielsen, K.N. Tocopherols, retinol, β-carotene and fatty acids in fat globule membrane and fat globule core in cow’s milk. J. Dairy Res. 1996, 63, 565–574. [Google Scholar] [CrossRef]
- Ellis, K.A.; Monteiro, A.; Innocent, G.T.; Grove-White, D.; Cripps, P.; McLean, W.G.; Howard, C.V.; Mihm, M. Investigation of the vitamins A and E and β-carotene content in milk from UK organic and conventional dairy farms. J. Dairy Res. 2007, 74, 484–491. [Google Scholar] [CrossRef]
- Fall, N.; Emanuelson, U. Fatty acid content, vitamins and selenium in bulk tank milk from organic and conventional Swedish dairy herds during the indoor season. J. Dairy Res. 2011, 78, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Chotyakul, N.; Pateiro-Moure, M.; Saraiva, J.A.; Torres, J.A.; Pérez-Lamela, C. Simultaneous HPLC-DAD quantification of vitamins A and E content in raw, pasteurized, and UHT cow’s milk and their changes during storage. Eur. Food Res. Technol. 2014, 238, 535–547. [Google Scholar] [CrossRef]
- Bakircioglu, D.; Topraksever, N.; Yurtsever, S.; Kizildere, M.; Kurtulus, Y.B. Investigation of macro, micro and toxic element concentrations of milk and fermented milks products by using an inductively coupled plasma optical emission spectrometer, to improve food safety in Turkey. Microchem. J. 2018, 136, 133–138. [Google Scholar] [CrossRef]
- Mroczek, J. Dairy cattle on organic farms. Cattle 2011, 1, 54–58. [Google Scholar]
- Hermansen, J.; Badsberg, J.; Kristensen, T.; Gundersen, V. Major and trace elements in organically or conventionally produced milk. J. Dairy Res. 2005, 72, 362–368. [Google Scholar] [CrossRef]
- Gabryszuk, M.; Słoniewski, K.; Sakowski, T. Macro- and microelements in milk and hair of cows from conventional vs. organic farms. Anim. Sci. Pap. Rep. 2008, 26, 199–209. [Google Scholar]
- Koperska, N.; Kędzierska-Matysek, M.; Litwińczuk, Z.; Wójcik-Saganek, A. Correlation between the content of macro- and microelements in milk obtained from organic and conventional farms. In Proceedings of the Conference materials of XVI Lublin Scientific Magnesology Conference—Chemical elements and health, Lublin, Poland, 25 May 2013; p. 64. [Google Scholar]
- Bath, S.C.; Button, S.; Rayman, M.P. Iodine concentra-tion of organic and conventional milk: Implications for iodine intake. Br. J. Nutr. 2012, 107, 935–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey-Crespo, R.; Miranda, M.; López-Alonso, M. Essential trace and toxic element concentrations in organic and convential milk in NW Spain. Food Chem. Toxicol. 2013, 55, 513–518. [Google Scholar] [CrossRef]
- Wather, B.; Wechsler, D.; Schlegel, P.; Haldimann, M. Iodine in Swiss milk depending on production (conventional versus organic) and on processing (raw versus UHT) and the contribution of milk to the human iodine supply. J. Trac. Element. Med. Bio. 2018, 46, 138–143. [Google Scholar] [CrossRef]
- Flachowsky, G.; Franke, K.; Meyer, U.; Leiterer, M.; Schöne, F. Influencing factors on iodine content of cow milk. Eur. J. Natur. 2014, 53, 351–365. [Google Scholar] [CrossRef]
- Pilarczyk, B.; Pilarczyk, R.; Tomza-Marciniak, A.; Kowieska, A.; Wojcik, J.; Sablik, P.; Tylkowska, A.; Hendzel, D. Selenium concentrations in the serum and milk of cows from organic and conventional farms in West Pomerania. Tierarztl. Umsch. 2011, 64, 327–331. [Google Scholar]
- Zwierzchwoski, G.; Ametaj, B.N. Minerals and Heavy Metals in the Whole Raw Milk of Dairy Cows from Different Management Systems and Countries of Origin: A Meta-Analytical Study. J. Agric. Food Chem. 2018, 66, 6877–6888. [Google Scholar] [CrossRef]
- Lucas, A.; Rock, E.; Chamba, J.F.; Verdier-Metz, I.; Brachet, P.; Coulon, J.B. Respective effects of milk composition and the cheese-making process on cheese compositional variability in components of nutritional interest. Lait 2006, 86, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Manuelian, C.L.; Currò, S.; Penasa, M.; Cassandro, M.; De Marchi, M. Characterization of major and trace minerals, fatty acid composition, and cholesterol content of Protected Designation of Origin cheeses. J. Dairy Sci. 2017, 100, 3384–3395. [Google Scholar] [CrossRef] [Green Version]
- Tosun, H.; Ayyıldız, T. Occurrence of aflatoxin M-1 in organic dairy products. Qual. Assur. Saf. Crop. Foods 2013, 5, 215–219. [Google Scholar] [CrossRef]
- Becker-Algeri, T.A.; Castagnaro, D.; de Bortoli, K.; de Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in bovine milk and dairy products: A review. J. Food Sci. 2016, 81, R544–R552. [Google Scholar] [CrossRef] [Green Version]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- IARC—International Agency for Research on Cancer—World Health Organization. IARC Monograph on the Evaluation of Carcinogenic Risk to Humans; IARC Press: Lyon, France, 2002; Volume 82, p. 171. [Google Scholar]
- Brodziak, A.; Król, J.; Nowaczek, A. Natural substances of plant origin negatively affecting the health of cows and milk quality. Żywn. Nauk. Technol. J. 2017, 110, 33–47. [Google Scholar]
- Wróbel, B. Health risks of animals and humans caused by toxins of filamentous fungi in feed and food. Woda Sr. Obsz. Wiej. 2014, 14, 159–176. [Google Scholar]
- Tchana, A.N.; Moundipa, P.F.; Tchouanguep, F.M. Aflatoxin contamination in food and body fluids in relation to malnutrition and cancer status in Cameroon. Int. J. Environ. Res. Public Health 2010, 124, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Kamkar, A. The study of aflatoxin M1 in UHT milk samples by ELISA. J. Vet. Res. 2008, 63, 7–12. [Google Scholar]
- Oliveira, C.A.F.; Ferraz, J.C.O. Occurrence of aflatoxin M1 in pasteurised, UHT milk and milk powder from goat origin. Food Control. 2008, 18, 375–378. [Google Scholar] [CrossRef]
- Regulation of the Polish Minister of Agriculture and Rural Development of February 6, 2012 on the Content of Undesirable Substances in Feed. Journal of Laws L 2012, Item 203. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120000203 (accessed on 5 July 2021).
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Official Journal of the European Union L 364/5. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=celex%3A32006R1881 (accessed on 5 July 2021).
- Codex Alimentarius International Food Standards, Codex General Standard for Contaminants and Toxins in Food and Feed, No. Codex Stan 193-1995. Available online: http://www.fao.org/fileadmin/user_upload/livestockgov/documents/1_CXS_193e.pdf (accessed on 6 July 2021).
- Flores-Flores, M.E.; Lizarraga, E.; López de Cerain, A.; González-Peñas, E. Presence of mycotoxins in animal milk: A review. Food Control. 2015, 53, 163–176. [Google Scholar] [CrossRef]
- Tam, L.; Thürig, B. Mycotoxins and pathogens in organic food. Org. Stand. 2002, 15, 92N–96N. [Google Scholar]
- Wyss, G. Assessing the risk from mycotoxins for the organic food chain: Results from Organic HACCP-project and other research. In Systems Development: Quality and Safety; Hovi, M., Walkenhorst, M., Padel, S., Eds.; FiBL: Frick, Switerland; pp. 133–136.
- Vallone, L.; Boscariol, D.; Dragoni, I. Aflatoxins in organic milk and dairy products. Vet. Res. Comm. 2006, 30, 369–370. [Google Scholar] [CrossRef]
- Kos, J.; Lević, J.; Đuragić, O.; Kokić, B.; Miladinović, I. Occurrence and estimation of aflatoxin M1 exposure in milk in Serbia. Food Control. 2014, 38, 41–46. [Google Scholar] [CrossRef]
- Hallén, E.; Allmere, T.; Naslund, J.; Andren, A.; Lunden, A. Effect of genetic polymorphism of milk proteins on rheology of chymosin-induced milk gels. Int. Dairy J. 2007, 17, 791–799. [Google Scholar] [CrossRef]
- Jensen, H.B.; Poulsen, N.A.; Andersen, K.K.; Hammershøj, M.; Poulsen, H.D.; Larsen, L.B. Distinct composition of bovine milk from Jersey and Holstein-Friesian cows with good, poor, or noncoagulation properties as reflected in protein genetic variants and isoforms. J. Dairy Sci. 2012, 95, 6905–6917. [Google Scholar] [CrossRef]
- Wedholm, A.; Hallén, E.; Larsen, L.B.; Lindmark-Månsson, H.; Karlsson, A.H.; Allmere, T. Comparison of milk protein composition in a Swedish and a Danish dairy herd using reversed phase HPLC. Acta Agr. Scand. A. 2006, 56, 8–15. [Google Scholar] [CrossRef]
- Barłowska, J.; Chabuz, W.; Król, J.; Szwajkowska, M.; Litwińczuk, Z. Nutritional value and technological usefulness of milk produced in an intensive and traditional system in three regions of Eastern Poland. Żywn. Nauk. Technol. J. 2012, 4, 122–135. [Google Scholar]
- Devold, T.G.; Brovold, M.J.; Langsrud, T.; Vegarud, G.E. Size of native and heated casein micelles, content of protein and minerals in milk from Norwegian Red Cattle—Effect of milk protein polymorphism and different feeding regimes. Int. Dairy J. 2000, 10, 313–323. [Google Scholar] [CrossRef]
- Małecka, M.; Klimczak, I. Shaping Food Quality; Publishing House of the University of Economics in Poznań: Poznań, Poland, 2010; p. 244. [Google Scholar]
- Ziajka, S. Dairy, 2nd ed.; Publishing House of the University of Warmia and Mazury: Olsztyn, Poland, 2008; Volume 1. [Google Scholar]
- Guinee, T.; Mulholland, E.; Kelly, J.; Callaghan, D. Effect of protein to fat ratio of milk on the composition, manufacturing efficiency and yield of Cheddar Cheese. J. Dairy Sci. 2007, 90, 110–123. [Google Scholar] [CrossRef]
- Barłowska, J.; Brodziak, A.; Król, J.; Kędzierska–Matysek, M.; Litwińczuk, Z. Casein content in milk from Eastern Poland and its changes over 5 years. Sci. Ann. Pol. Soc. Anim. Prod. 2014, 10, 37–44. [Google Scholar]
- Akkerman, M.; Larsen, L.B.; Sørensen, J.; Poulsen, N.A. Natural variations of citrate and calcium in milk and their effects on milk processing properties. J. Dairy Sci. 2019, 102, 6830–6841. [Google Scholar] [CrossRef] [PubMed]
- Priyashantha, H.; Lundh, Å.; Höjer, A.; Bernes, G.; Nilsson, D.; Hetta, M.; Saedén, K.H.; Gustafsson, A.H.; Johansson, M. Composition and properties of bovine milk: A case study from dairy farms in northern Sweden; Part I. Effect of dairy farming system. J. Dairy Sci. 2021, 104, 8582–8594. [Google Scholar] [CrossRef]
Characteristic | Suggested Values | Comment |
---|---|---|
Visual/sensory characteristics | ||
Appearance | - | Should be typical of milk (creamy white colour, homogeneous, no free fat or froth). |
Smell | - | Should be typical of milk (no atypical odours and taints). |
Biochemical/physical characteristics | ||
Active acidity (pH value) | 6.5–6.8 | |
Freezing point (°C) | ≤−0.520 | |
Protein content (g/100 g) | ≥3.3 | |
Casein content (g/100 g) | ≥2.50 | Higher casein content is associated with higher cheese yield. |
Non-protein nitrogen content (g/100 g total nitrogen) | <6 | |
κ-casein content (g/100 g total casein) | >15 | |
Fat content (g/100 g) | >3.5 | Should remain relatively consistent to avoid large changes in liquid-to-solid fat ratio and rheology of fat phase in cheese. |
Fee fatty acid content (mg/kg) | <3.5 | Should be low to avoid rancid off-flavours. |
Protein to fat ratio | >0.8 | It proves the high suitability of milk for technological purposes. |
Lactose content (g/100) | >4.5 | |
Somatic cell count (cells/mL) | ≤100 × 103 | Recommended ‘gold standard’ is ≤50 × 103 in 1 mL of milk. |
Total bacterial count (colony forming units (cfu)/mL) | ≤30 × 103 | |
Plasmin (AMC units/mL) a | <0.18 | |
Plasminogen (AMC units/mL) a | <0.18 | |
Antibiotics | Not detectable | |
Inhibitory substances (washing, disinfecting agents) | Not detectable | |
Trichloromethane (µg/kg) | <2 | |
Processability characteristics | ||
Formagraph – curd firmness time (A30, mm) | 20–40 | |
Rennet coagulating time –RCT (min) | 11–18 | |
Rheometer (G′, Pa) | 50 Pa at 31 °C in 60 min a | |
Syneresis | nd b | Gel should undergo syneresis readily on cutting (may be measured empirically by centrifugation under defined conditions, or µg/kg). |
Characteristic | Suggested Values | Comment |
---|---|---|
Visual/sensory characteristics | ||
Appearance | - | Should be typical of milk (creamy white colour, homogeneous, no free fat or froth). |
Smell | - | Should be free of atypical odours and taints. |
Biochemical/physical characteristics | ||
Solids-not-fat (SNF) content (g/L) | ~140 g/L for stirred fruit yoghurt | Bulk raw milk contains 85–90 g/L, so it must be raised by heating. |
higher SNF for the ‘luxury’ or Greek-style yoghurt | ||
Protein content (g/L) | 40–50 | Bulk raw milk contains ~33 g/L, so it must be raised. The higher the protein content in milk, the stronger the yoghurt gel. |
Fat content (g/L) | 10–12 | Bulk raw milk contains ~30–35 g/L. The recommended level of 10–12 g/L gives yoghurt a smooth, satisfying ‘mouthfeel’. |
Lactose content (g/L) | ~45 | Forms the bulk of the SNF (the balance is minerals) |
Content | Raw Milk | Natural Yoghurt * | ||
---|---|---|---|---|
Organic System | Traditional System | Intensive System | Organic System | |
β-Lactoglobulin (g/L) | 3.32–3.35 | 3.26–3.58 | 3.01–3.28 | 0.65–1.57 |
α-Lactalbumin (g/L) | 1.07–1.19 | 1.05–1.21 | 0.98–1.14 | 0.75–0.77 |
Bovine serum albumin (g/L) | 0.43 | 0.44 | 0.41–0.49 | 0.40–0.41 |
Lactoferrin (mg/L) | 123.8–125.9 | 109.80–130.62 | 94.01–121.23 | 22.19–25.76 |
Lysozyme (µg/L) | 11.14 | 9.92–10.71 | 6.90–12.13 | 3.15–3.39 |
Fatty Acids (FA) | Raw Milk | Cheese * | |||
---|---|---|---|---|---|
Organic System | Traditional System | Intensive System | Traditional System (Pasture) | Intensive System (TMR) | |
Saturated fatty acids (SFA) | 66.28 | 59.03–64.74 | 67.69–71.41 | 64.61–67.47 | 70.71–71.72 |
Monounsaturated fatty acids (MUFA) | 26.11–34.07 | 30.33–32.16 | 21.87–28.15 | 28.22–31.71 | 25.58–27.13 |
Oleic acid (c9 C18:1) | nd | 16.10–22.66 | 16.16–17.20 | 22.48–24.00 | 21.13–21.49 |
Wakcenic acid (t11 C18:1) | nd | 1.18–7.00 | 0.80–2.00 | 0.83 | 0.46 |
Polyunsaturated fatty acids (PUFA) | 3.85–5.36 | 3.69–5.32 | 1.65–3.77 | 3.68–4.31 | 3.71 |
Eicosapentaenoic acid, EPA (C20:5 n-3) | nd | 0.08 | 0.05 | nd | nd |
Conjugated linoleic acid, CLA (cis9 trans11) | 0.83–1.53 | 0.54–0.93 | 0.42–1.19 | 1.12–1.53 | 0.36–0.46 |
Linoleic acid, LA (C18:2 n-6) | nd | 1.17–2.18 | 1.4–2.39 | 2.53 | 2.04 |
α-linolenic acid, ALA (C18:3 n-3) | nd | 0.49–1.25 | 0.39–0.42 | 0.98–1.21 | 0.41–0.67 |
γ-linolenic acid, GLA (C18:3 n-6) | nd | 0.13 | 0.12 | 0.18 | 0.13 |
Proportion 18:3n3: 18:3n6 | nd | 0.60–2.77 | 1.26 | 0.72 | 0.62 |
Content | Raw Milk | Natural Yoghurt * | ||
---|---|---|---|---|
Organic System | Traditional System | Intensive System | Organic System | |
A (mg/L) | 0.468–0.800 | 0.410–0.556 | 0.347–0.465 | 0.352–0.408 |
D3 (μg/L) | 0.461–0.768 | 0.610–1.212 | 0.589–0.700 | 0.556–0.638 |
E (mg/L) | 1.358–2.655 | 1.656–1.953 | 1.075–1.302 | 1.649–1.709 |
β-karoten (mg/L) | 0.195–0.580 | 0.231–0.252 | 0.175–0.190 | 0.222–0.231 |
Content | Raw Milk | |
---|---|---|
Organic System | Conventional System | |
K | 1896.92 | 1844.37 |
Ca | 971.33 | 1404.70–1417.76 |
Na | 366.59 | 476.35 |
Mg | 86.21 | 113.87–118.50 |
Zn | 2.86–3.96 | 2.96–4.39 |
Fe | 0.32–0.67 | 0.34–0.47 |
Mn | 0.023–0.047 | 0.022–0.139 |
Cu | 0.023–0.084 | 0.038–0.161 |
I | 0.013–0.283 | 0.071–6.540 |
Se | 0.002–0.020 | 0.008–0.040 |
Co | 0.001 | 0.001 |
Sr | 0.166 | 0.202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodziak, A.; Wajs, J.; Zuba-Ciszewska, M.; Król, J.; Stobiecka, M.; Jańczuk, A. Organic versus Conventional Raw Cow Milk as Material for Processing. Animals 2021, 11, 2760. https://doi.org/10.3390/ani11102760
Brodziak A, Wajs J, Zuba-Ciszewska M, Król J, Stobiecka M, Jańczuk A. Organic versus Conventional Raw Cow Milk as Material for Processing. Animals. 2021; 11(10):2760. https://doi.org/10.3390/ani11102760
Chicago/Turabian StyleBrodziak, Aneta, Joanna Wajs, Maria Zuba-Ciszewska, Jolanta Król, Magdalena Stobiecka, and Anna Jańczuk. 2021. "Organic versus Conventional Raw Cow Milk as Material for Processing" Animals 11, no. 10: 2760. https://doi.org/10.3390/ani11102760
APA StyleBrodziak, A., Wajs, J., Zuba-Ciszewska, M., Król, J., Stobiecka, M., & Jańczuk, A. (2021). Organic versus Conventional Raw Cow Milk as Material for Processing. Animals, 11(10), 2760. https://doi.org/10.3390/ani11102760