The Effect of Humic Mineral Substances from Oxyhumolite on the Coagulation Properties and Mineral Content of the Milk of Holstein-Friesian Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Milk Samples
2.3. Laboratory Analyses
2.3.1. Acidity and Proximate Chemical Composition of Milk
2.3.2. Milk Coagulation Properties (MCP)
2.3.3. Analysis of Mineral Content
- Power: 400 W/25% max power; increment: 10 min/100 °C; holding time 10 min
- Power: 800 W/50% max power; increment: 10 min/150 °C; holding time 5 min
- Power: 1600 W/100% max power; increment: 15 min/200 °C; holding time 20 min
2.4. Statistical Analysis
3. Results and Discussion
3.1. Milk Yield and Chemical Composition
3.2. Milk Coagulation Properties
3.3. Mineral Profile of Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stocco, G.; Cipolat-Gotet, C.; Bobbo, T.; Cecchinato, A.; Bittante, G. Breed of cow and herd productivity affect milk composition and modeling of coagulation, curd firming, and syneresis. J. Dairy Sci. 2017, 100, 129–145. [Google Scholar] [CrossRef]
- Teter, A.; Kędzierska-Matysek, M.; Barłowska, J.; Król, J.; Brodziak, A. Nutritional value and coagulation properties of cow milk. Mljekarstvo 2020, 70, 210–220. [Google Scholar] [CrossRef]
- Franceschi, P.; Faccia, M.; Malacarne, M.; Formaggioni, P.; Summer, A. Quantification of Cheese Yield Reduction in Manufacturing Parmigiano Reggiano from Milk with Non-Compliant Somatic Cells Count. Foods 2020, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Cecchinato, A.; De Marchi, M.; Gallo, L.; Bittante, G.; Carnier, P. Mid infrared spectroscopy predictions as indicator traits in breeding programs for enhanced coagulation properties of milk. J. Dairy Sci. 2009, 92, 5304–5313. [Google Scholar] [CrossRef] [Green Version]
- Martono, S.; Negara, W.; Gopar, R.A.; Rofiq, M.N. Combination effect of feed supplements on milk yield and milk quality of dairy cattle. J. Adv. Agric. Technol. 2016, 3, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Hassan, A.A.; El Ashry, G.M.; Bakr, M.H.; El-Zaiat, H.M.; Olafadehan, O.A.; Matloup, O.H.; Sallam, S.M.A. Phytogenic feed additives mixture enhances the lactational performance, feed utilization and ruminal fermentation of Friesian cows. Anim Biotechnol. 2020, 4, 1–11. [Google Scholar] [CrossRef]
- Sheng, P.; Ribeiro, G.O.; Wang, Y.; McAllister, T.A. Humic substances reduce ruminal methane production and increase the efficiency of microbial protein synthesis in vitro. J Sci. Food Agric. 2019, 99, 2152–2157. [Google Scholar] [CrossRef] [PubMed]
- Marcin, A.; Bujňák, L.; Mihok, T.; Naď, P. Effects of humic substances with urea on protozoal population and fermentation in the rumen of sheep. Bulg. J. Vet. Med. 2020, 23, 60–69. [Google Scholar] [CrossRef]
- Hudák, M.; Semjon, B.; Marcinčáková, D.; Bujňák, L.; Naď, P.; Koréneková, B.; Nagy, J.; Bartkovský, M.; Marcinčák, S. Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat. Animals 2021, 11, 1087. [Google Scholar] [CrossRef]
- Yüca, S.; Gül, M. Effect of adding humate to the ration of dairy cows on yield performance. Ank. Univ. Vet. Fak. Derg. 2021, 68, 7–14. [Google Scholar] [CrossRef]
- Šamudovská, A.; Demeterová, M. Effect of Diet Supplemented with Natural Humic Compounds and Sodium Humate on Performance and Selected Metabolic Variables in Broiler Chickens. Acta Vet. Brno 2010, 79, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.M.S.; Schuhmacher, A.; Gropp, J.M. Humic acid substances in animal agriculture. Pak. J. Nutr. 2005, 4, 126–134. [Google Scholar]
- Huculak-Mączka, M.; Braun-Giwerska, M.; Nieweś, D.; Mulica, M.; Hoffmann, J.; Hoffmann, K. Peat and brown coal as raw materials for the production of humic acids. Proc. ECOpole 2018, 12, 499–505. (In Polish) [Google Scholar]
- Trziszka, T.; Dobrzański, Z.; Kaźmierska, M.; Tronina, Ł.; Skiba, M. Effect of dietary humic-fatty preparations on egg quality Lohmann Brown hens. Arch. Geflugelk. 2011, 75, 84–90. [Google Scholar]
- Wang, Q.; Ying, J.; Zou, P.; Zhou, Y.; Wang, B.; Yu, D.; Li, W.; Zhan, X. Effects of dietary supplementation of humic acid sodium and zinc oxide on growth performance, immune status and antioxidant capacity of weaned piglets. Animals 2020, 10, 2104. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.P.; Miltko, R.; Skomiał, J.; Kowalik, B. Influence of humic acid supplemented to sheep diets on rumen enzymatic activity. Med. Weter. 2017, 73, 770–773. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Galip, N.; Polat, U.; Biricik, H. Effects of supplemental humic acid on ruminal fermentation and blood variables in rams. Ital. J. Anim. Sci. 2010, 9, e74. [Google Scholar] [CrossRef]
- Terry, S.A.; Ramos, A.F.O.; Holman, D.B.; McAllister, T.A.; Breves, G.; Chaves, A.V. Humic substances alter ammonia production and the microbial populations within a RUSITEC fed a mixed hay—Concentrate diet. Front. Microbiol. 2018, 9, 1410. [Google Scholar] [CrossRef]
- Zigo, F.; Vasiľ, M.; Farkašová, Z.; Ondrašovičová, S.; Zigová, M.; Maľová, J.; Výrostková, J.; Bujok, J.; Pecka-Kiełb, E. Impact of humic acid as an organic additive on the milk parameters and occurrence of mastitis in dairy cows. Potr. S. J. F. Sci. 2020, 14, 358–364. [Google Scholar] [CrossRef]
- Hassan, A.A.; Salem, A.Z.M.; Elghandour, M.M.Y.; Abu Hafsa, S.H.; Reddy, P.R.K.; Atia, S.E.S.; Vidu, L. Humic substances isolated from clay soil may improve the ruminal fermentation, milk yield, and fatty acid profile: A novel approach in dairy cows. Anim. Feed Sci. Technol. 2020, 268, 114601. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists [AOAC]. Casein nitrogen content of milk, method no. 998.06. In Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005; p. 53. [Google Scholar]
- Wolanciuk, A.; Barłowska, J.; Litwińczuk, Z.; Florek, M. Suitability of the milk of native breeds of cows from low-input farms for cheese production, including rennet curd texture. Int. J. Dairy Technol. 2016, 69, 585–591. [Google Scholar] [CrossRef]
- Dell Inc. Dell Statistica (Data Analysis Software System), Version 13. 2016. Available online: software.dell.com (accessed on 10 March 2021).
- Potůčková, M.; Kouřimská, L. Effect of humates in diet of dairy cows on the raw milk main components. Potr. S. J. F. Sci. 2017, 11, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Degirmencioglu, T.; Ozbilgin, S. Effect of administration of humic acid on somatic cell count and total bacteria in Saanen goats. Inter. J Vet Sci. 2013, 2, 151–154. [Google Scholar]
- El-Zaiat, H.M.; Morsy, A.S.; El-Wakeel, E.A.; Anwer, M.M.; Sallam, S.M. Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J. Anim. Feed Sci. 2018, 27, 105–113. [Google Scholar] [CrossRef]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; Mcallister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Glatz-Hoppe, J.; Boldt, A.; Spiekers, H.; Mohr, E.; Losand, B. Relationship between milk constituents from milk testing and health, feeding, and metabolic data of dairy cows. J. Dairy Sci. 2020, 103, 10175–10194. [Google Scholar] [CrossRef] [PubMed]
- Polska Federacja Hodowców Bydła i Producentów Mleka (PFHBiPM). Ocena i Hodowla Bydła Mlecznego Dane za rok 2019 (Polish Federation of Cattle Breeders and Dairy Farmers (PFCBDF). Evaluation and Breeding od Dairy Cattle, Data for 2019); PFHBiPM: Warsaw, Poland, 2020. (In Polish) [Google Scholar]
- European Parliament. Commission Regulation (EC) No 1662/2006 of 6 November 2006 Amending Regulation (EC) No 853/2004 of the European Parliament and of the Council Laying down Specific Hygiene Rules for Food of Animal Origin. OJ L 320 of 18 November 2006 as Amended; European Parliament: Brussels, Belgium, 2006.
- Alhussien, M.N.; Dang, A.K. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World. 2018, 11, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Frolov, A.V.; Korosteleva, V.P.; Stepanova, G.S.; Karimova, A.Z.; Nurgalieva, A.R.; Matveeva, E.L. Technological properties and biological value of milk of cows when using ‘gumifit’ and ‘maks super gumat’ food additives in their diet. Bali Med. J. 2017, 6, 337–340. [Google Scholar] [CrossRef]
- Teter, A.; Barłowska, J.; Florek, M.; Kędzierska-Matysek, M.; Król, J.; Brodziak, A.; Litwińczuk, Z. Coagulation capacity of milk of local polish and Holstein-Friesian cattle breeds. Anim. Sci. Pap. Rep. 2019, 37, 259–268. [Google Scholar]
- Hansen, C.L.; Rinnan, A.; Engelsen, S.B.; Janhøj, T.; Micklander, E.; Andersen, U.; van den Berg, F. Effect of Gel Firmness at Cutting Time, pH, and Temperature on Rennet Coagulation and Syneresis: An in situ H NMR Relaxation Study. J. Agric. Food Chem. 2010, 58, 513–519. [Google Scholar] [CrossRef]
- Fadlalla, I.M.T.; Omer, S.A.; Atta, M. Determination of some serum macroelement minerals levels at different lactation stages of dairy cows and their correlations. Sci. Afr. 2020, 8, e00351. [Google Scholar] [CrossRef]
- Franzoi, M.; Niero, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk. J. Dairy Sci. 2018, 101, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Skalická, M.; Naď, P.; Bujňák, L.; Hudák, M. Effect of humic substances on the mineral composition of chicken meat. Anim. Husb. Dairy Vet. Sci. 2019, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
Component | Content |
---|---|
Humic acids | 65% |
Fulvic acids | 5% |
Calcium | 42,278 mg/kg |
Magnesium | 5111 mg/kg |
Iron | 19,046 mg/kg |
Copper | 15 mg/kg |
Zinc | 37 mg/kg |
Manganese | 142 mg/kg |
Cobalt | 1.24 mg/kg |
Selenium | 1.67 mg/kg |
Vanadium | 42.1 mg/kg |
Molybdenum | 2.7 mg/kg |
Parameter | After 30 Days | After 60 Days | ||||
---|---|---|---|---|---|---|
CON | H | p | CON | H | p | |
Milk yield (kg) | 38.51 ± 6.79 | 38.47 ± 6.40 | 0.978 | 38.65 ± 6.20 | 39.46 ± 6.70 | 0.647 |
pH | 6.78 ± 0.05 | 6.79 ± 0.06 | 0.281 | 6.76 ± 0.06 | 6.79 ± 0.07 | 0.256 |
Fat (%) | 3.67 ± 0.50 | 3.84 ± 0.51 | 0.173 | 3.66 ± 0.48 | 3.93 ± 0.46 | 0.041 |
Protein (%) | 3.27 ± 0.23 | 3.35 ± 0.20 | 0.173 | 3.30 ± 0.18 | 3.44 ± 0.21 | 0.012 |
Casein (%) | 2.60 ± 0.20 | 2.67 ± 0.19 | 0.204 | 2.61 ± 0.17 | 2.73 ± 0.18 | 0.029 |
Lactose (%) | 4.87 ± 0.16 | 4.83 ± 0.15 | 0.332 | 4.82 ± 0.14 | 4.76 ± 0.16 | 0.066 |
Dry matter (%) | 12.51 ± 0.96 | 12.76 ± 0.59 | 0.058 | 12.47 ± 0.63 | 12.85 ± 1.04 | 0.031 |
Urea (mg/kg) | 203.54 ± 52.60 | 225.14 ± 32.87 | 0.070 | 210.88 ± 42.53 | 239.68 ± 51.41 | 0.097 |
SCC (thous./mL) | 258.88 ± 50.35 | 225.83 ± 75.62 | 0.271 | 261.08 ± 49.78 | 208.45 ± 40.17 | 0.023 |
Parameter | After 30 Days | After 60 Days | ||||
---|---|---|---|---|---|---|
CON | H | p | CON | H | p | |
RCT (min) | 20.86 ± 4.84 | 17.78 ± 4.81 | 0.025 | 20.99 ± 4.58 | 18.01 ± 3.34 | 0.049 |
A30 (mm) | 19.01 ± 5.33 | 25.86 ± 6.48 | 0.013 | 18.70 ± 8.04 | 23.94 ± 6.79 | 0.039 |
K20 (min) | 7.76 ± 1.98 | 5.49 ± 2.55 | 0.007 | 7.71 ± 1.86 | 5.84 ± 1.35 | 0.009 |
Parameter | After 30 Days | After 60 Days | ||||
---|---|---|---|---|---|---|
CON | H | p | CON | H | p | |
Fracturability (N) | 3.60 ± 1.15 | 3.75 ± 1.18 | 0.649 | 3.60 ± 0.81 | 4.18 ± 0.88 | 0.042 |
Hardness (N) | 3.62 ± 1.12 | 3.84 ± 1.22 | 0.684 | 3.56 ± 1.08 | 4.36 ± 0.99 | 0.037 |
Adhesiveness (N) | 1.69 ± 0.65 | 1.91 ± 0.94 | 0.400 | 1.62 ± 0.51 | 2.03 ± 0.57 | 0.144 |
Springiness | 2.06 ± 0.93 | 1.59 ± 0.69 | 0.067 | 2.02 ± 0.84 | 1.59 ± 0.59 | 0.163 |
Guminess (N) | 0.42 ± 0.09 | 0.44 ± 0.11 | 0.412 | 0.43 ± 0.08 | 0.46 ± 0.09 | 0.384 |
Chewiness (N) | 0.79 ± 0.16 | 0.75 ± 0.14 | 0.359 | 0.89 ± 0.61 | 0.74 ± 0.31 | 0.438 |
Cohesiveness (mJ) | 0.12 ± 0.04 | 0.12 ± 0.03 | 0.979 | 0.13 ± 0.05 | 0.10 ± 0.02 | 0.061 |
Parameter | After 30 Days | After 60 Days | ||||
---|---|---|---|---|---|---|
CON | H1 | p | CON | H2 | p | |
Ca (mg/kg) | 1113.13 ± 82.39 | 1174.40 ± 70.33 | 0.867 | 1104.84 ± 61.69 | 1253.23 ± 99.81 | 0.000 |
K (mg/kg) | 1589.48 ± 105.08 | 1477.78 ± 118.23 | 0.001 | 1539.98 ± 114.62 | 1524.24 ± 80.34 | 0.700 |
Na (mg/kg) | 356.29 ± 27.37 | 353.62 ± 86.16 | 0.629 | 348.69 ± 44.84 | 387.91 ± 130.29 | 0.335 |
Mg (mg/kg) | 108.21 ± 10.23 | 105.18 ± 8.07 | 0.459 | 107.06 ± 8.44 | 109.79 ± 8.19 | 0.452 |
Zn (mg/kg) | 4.48 ± 0.98 | 4.22 ± 0.76 | 0.476 | 4.56 ± 0.98 | 4.33 ± 0.58 | 0.489 |
Fe (mg/kg) | 0.33 ± 0.12 | 0.41 ± 0.08 | 0.106 | 0.32 ± 0.09 | 0.43 ± 0.08 | 0.004 |
Mn (mg/kg) | 0.05 ± 0.002 | 0.06 ± 0.003 | 0.118 | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.065 |
Cu (mg/kg) | 0.05 ± 0.007 | 0.03 ± 0.017 | 0.341 | 0.06 ± 0.004 | 0.05 ± 0.003 | 0.504 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teter, A.; Kędzierska-Matysek, M.; Barłowska, J.; Król, J.; Brodziak, A.; Florek, M. The Effect of Humic Mineral Substances from Oxyhumolite on the Coagulation Properties and Mineral Content of the Milk of Holstein-Friesian Cows. Animals 2021, 11, 1970. https://doi.org/10.3390/ani11071970
Teter A, Kędzierska-Matysek M, Barłowska J, Król J, Brodziak A, Florek M. The Effect of Humic Mineral Substances from Oxyhumolite on the Coagulation Properties and Mineral Content of the Milk of Holstein-Friesian Cows. Animals. 2021; 11(7):1970. https://doi.org/10.3390/ani11071970
Chicago/Turabian StyleTeter, Anna, Monika Kędzierska-Matysek, Joanna Barłowska, Jolanta Król, Aneta Brodziak, and Mariusz Florek. 2021. "The Effect of Humic Mineral Substances from Oxyhumolite on the Coagulation Properties and Mineral Content of the Milk of Holstein-Friesian Cows" Animals 11, no. 7: 1970. https://doi.org/10.3390/ani11071970
APA StyleTeter, A., Kędzierska-Matysek, M., Barłowska, J., Król, J., Brodziak, A., & Florek, M. (2021). The Effect of Humic Mineral Substances from Oxyhumolite on the Coagulation Properties and Mineral Content of the Milk of Holstein-Friesian Cows. Animals, 11(7), 1970. https://doi.org/10.3390/ani11071970