Effect of Feed Supplementation with Clostridium butyricum, Alone or in Combination with Carob Meal or Citrus Pulp, on Digestive and Metabolic Status of Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Experimental Design
2.2. Sampling Collection
2.3. Analysis of Feed, Digesta, and Feces
2.4. Histomorphometrical and Immunohistochemical Procedures
2.5. Serum Analysis
2.6. Calculations and Statistical Analyses
3. Results
3.1. Body Weight, Digestibility, and Digesta pH
3.2. Microbiology and VFAs
3.3. Histomorphometrical and Immunohistochemical Intestinal Measurements
3.4. Serum Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piva, A.; Morlacchini, M.; Casadei, G.; Gatta, P.P.; Biagi, G.; Prandini, A. Sodium Butyrate Improves Growth Performance of Weaned Piglets during the First Period after Weaning. Ital. J. Anim. Sci. 2002, 1, 35–41. [Google Scholar] [CrossRef]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal Health and Function in Weaned Pigs: A Review of Feeding Strategies to Control Post-Weaning Diarrhoea without Using in-Feed Antimicrobial Compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of Antimicrobials in Food Animals and Impact of Transmission of Antimicrobial Resistance on Humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- López-Gálvez, G.; López-Alonso, M.; Pechova, A.; Mayo, B.; Dierick, N.; Gropp, J. Alternatives to Antibiotics and Trace Elements (Copper and Zinc) to Improve Gut Health and Zootechnical Parameters in Piglets: A Review. Anim. Feed Sci. Tech. 2021, 271, 114727. [Google Scholar] [CrossRef]
- Bednorz, C.; Oelgeschläger, K.; Kinnemann, B.; Hartmann, S.; Neumann, K.; Pieper, R.; Bethe, A.; Semmler, T.; Tedin, K.; Schierack, P.; et al. The Broader Context of Antibiotic Resistance: Zinc Feed Supplementation of Piglets Increases the Proportion of Multi-Resistant Escherichia coli in Vivo. Int. J. Med. Microbiol. 2013, 303, 396–403. [Google Scholar] [CrossRef]
- Bonetti, A.; Tugnoli, B.; Piva, A.; Grilli, E. Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals 2021, 11, 642. [Google Scholar] [CrossRef]
- Patil, A.K.; Kumar, S.; Verma, A.K.; Baghel, R.P.S. Probiotics as Feed Additives in Weaned Pigs: A Review. Livest. Res. Int. 2015, 3, 31–39. [Google Scholar]
- Meng, Q.W.; Yan, L.; Ao, X.; Zhou, T.X.; Wang, J.P.; Lee, J.H.; Kim, I.H. Influence of Probiotics in Different Energy and Nutrient Density Diets on Growth Performance, Nutrient Digestibility, Meat Quality, and Blood Characteristics in Growing-Finishing Pigs. J. Anim. Sci. 2010, 88, 3320–3326. [Google Scholar] [CrossRef] [Green Version]
- Eur-Lex, Commission Implementing Regulation (EU) No 373/2011 of 15 April 2011 Concerning the Authorisation of the Preparation of Clostridium butyricum FERM-BP 2789 as a Feed Additive for Minor Avian Species except Laying Birds, Weaned Piglets and Minor Porcine Species (Weaned) and Amending Regulation (EC) No 903/2009 (Holder of Authorisation Miyarisan Pharmaceutical Co. Ltd., Represented by Miyarisan Pharmaceutical Europe, S.L.U.) Text with EEA Relevance 2011 (OJ L 102, 16.4.2011, p. 10–12). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0373 (accessed on 6 June 2021).
- Meimandipour, A.; Shuhaimi, M.; Soleimani, A.F.; Azhar, K.; Hair-Bejo, M.; Kabeir, B.M.; Javanmard, A.; Anas, O.M.; Yazid, A.M. Selected Microbial Groups and Short-Chain Fatty Acids Profile in a Simulated Chicken Cecum Supplemented with Two Strains of Lactobacillus. Poultry Sci. 2010, 89, 470–476. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Zheng, J.; Li, W.; Jiang, X.; Zhao, X.; Li, J.; Che, L.; Lin, Y.; Xu, S.; et al. Effects of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Development, and Immune Response of Weaned Piglets Challenged with Lipopolysaccharide. J. Anim. Sci. Biotechnol. 2018, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, X.; Liu, P.; Zhao, J.; Sun, J.; Guan, W.; Johnston, L.J.; Levesque, C.L.; Fan, P.; He, T.; et al. Dietary Clostridium butyricum Induces a Phased Shift in Fecal Microbiota Structure and Increases the Acetic Acid-Producing Bacteria in a Weaned Piglet Model. J. Agric. Food Chem. 2018, 66, 5157–5166. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Wang, T.H.; Lu, Z.Q.; Song, D.G.; Zhao, J.; Wang, Y.Z. Effects of Clostridium butyricum or in Combination with Bacillus licheniformis on the Growth Performance, Blood Indexes, and Intestinal Barrier Function of Weanling Piglets. Livest. Sci. 2019, 220, 137–142. [Google Scholar] [CrossRef]
- Cao, G.; Tao, F.; Hu, Y.; Li, Z.; Zhang, Y.; Deng, B.; Zhan, X. Positive Effects of a Clostridium butyricum-Based Compound Probiotic on Growth Performance, Immune Responses, Intestinal Morphology, Hypothalamic Neurotransmitters, and Colonic Microbiota in Weaned Piglets. Food Funct. 2019, 10, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. The Role of Probiotics, Prebiotics and Synbiotics in Animal Nutrition. Gut. Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Fuller, R.; Gibson, G.R. Probiotics and Prebiotics: Microflora Management for Improved Gut Health. Clin. Microbiol. Infect. 1998, 4, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Mao, X.; He, J.; Yu, B.; Huang, Z.; Yu, J.; Zheng, P.; Chen, D. Dietary Fibre Affects Intestinal Mucosal Barrier Function and Regulates Intestinal Bacteria in Weaning Piglets. Br. J. Nutr. 2013, 110, 1837–1848. [Google Scholar] [CrossRef] [Green Version]
- Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Tablas FEDNA de Composición y Valor Nutritivo de Alimentos Para La Fabricación de Piensos Compuestos; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2010. [Google Scholar]
- Biner, B.; Gubbuk, H.; Karhan, M.; Aksu, M.; Pekmezci, M. Sugar Profiles of the Pods of Cultivated and Wild Types of Carob Bean (Ceratonia siliqua L.) in Turkey. Food Chem. 2007, 100, 1453–1455. [Google Scholar] [CrossRef]
- Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional Characterisation and Bioactive Components of Commercial Carobs Flours. Food Chem. 2014, 153, 109–113. [Google Scholar] [CrossRef]
- Biagi, G.; Cipollini, I.; Paulicks, B.R.; Roth, F.X. Effect of Tannins on Growth Performance and Intestinal Ecosystem in Weaned Piglets. Arch. Anim. Nutr. 2010, 64, 121–135. [Google Scholar] [CrossRef]
- Andrés-Elias, N.; Pujols, J.; Badiola, I.; Torrallardona, D. Effect of Nucleotides and Carob Pulp on Gut Health and Performance of Weanling Piglets. Livest. Sci. 2007, 108, 280–283. [Google Scholar] [CrossRef]
- Lizardo, R.; Canellas, J.; Mas, F.; Torrallardona, D.; Brufau, J. L’utilisation de La Farine de Caroube Dans Les Aliments de Sevrage et Son Influence Sur Les Performances et La Santé Des Porcelets. J. Rech. Porcine 2002, 34, 97–101. [Google Scholar]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotchkiss, A.; Manderson, K.; Olano-Martin, E.; Grace, W.; Gibson, G.; Rastall, R. Orange Peel Pectic Oligosaccharide Prebiotics with Food and Feed Applications. In Proceedings of the 228th American Chemical Society National Meeting, Philadelphia, PA, USA, 22–26 August 2004. [Google Scholar]
- Pascoal, L.A.F.; Thomaz, M.C.; Watanabe, P.H.; Ruiz, U.D.S.; Amorim, A.B.; Daniel, E.; Silva, S.Z. Da Purified Cellulose, Soybean Hulls and Citrus Pulp as a Source of Fiber for Weaned Piglets. Sci. Agric. 2015, 72, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Collier, C.T.; Carroll, J.A.; Callaway, T.R.; Arthington, J.D. Oral Administration of Citrus Pulp Reduces Gastrointestinal Recovery of Orally Dosed Escherichia coli F18 in Weaned Pigs. J. Anim. Vet. Adv. 2010, 9, 2140–2145. [Google Scholar] [CrossRef] [Green Version]
- Brambillasca, S.; Zunino, P.; Cajarville, C. Addition of Inulin, Alfalfa and Citrus Pulp in Diets for Piglets: Influence on Nutritional and Faecal Parameters, Intestinal Organs, and Colonic Fermentation and Bacterial Populations. Livest. Sci. 2015, 178, 243–250. [Google Scholar] [CrossRef]
- Pascoal, L.A.F.; Thomaz, M.C.; Watanabe, P.H.; Ruiz, U.D.S.; Ezequiel, J.M.B.; Amorim, A.B.; Daniel, E.; Masson, G.C.I. Fiber Sources in Diets for Newly Weaned Piglets. Rev. Bras. Zootec. 2012, 41, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Almeida, V.V.; Nuñez, A.J.C.; Schinckel, A.P.; Alvarenga, P.V.A.; Castelini, F.R.; Silva-Guillen, Y.V.; Thomaz, M.C. Interactive Effect of Dietary Protein and Dried Citrus Pulp Levels on Growth Performance, Small Intestinal Morphology, and Hindgut Fermentation of Weanling Pigs. J. Anim. Sci. 2017, 95, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Eur-Lex, Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Text with EEA Relevance (OJ L 276, 20.10.2010, p. 33–79). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063 (accessed on 15 May 2021).
- Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Necesidades Nutricionales Para Ganado Porcino Normas FEDNA; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2013. [Google Scholar]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis. A3769; University of Wisconsin, Cooperative Extension Publishing: Madison, WI, USA, 2003. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A Procedure for the Preparation and Quantitative Analysis of Samples for Titanium Dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Madrid, J.; Megías, M.D.; Hernández, F. Determination of Short Chain Volatile Fatty Acids in Silages from Artichoke and Orange By-Products by Capillary Gas Chromatography. J. Sci. Food Agric. 1999, 79, 580–584. [Google Scholar] [CrossRef]
- Oliveira, L.; Madrid, J.; Ramis, G.; Martínez, S.; Orengo, J.; Villodre, C.; Valera, L.; López, M.J.; Pallarés, F.J.; Quereda, J.J.; et al. Adding Crude Glycerin to Nursery Pig Diet: Effect on Nutrient Digestibility, Metabolic Status, Intestinal Morphology and Intestinal Cytokine Expression. Livest. Sci. 2014, 167, 227–235. [Google Scholar] [CrossRef]
- International Organization for Standarization (ISO). Microbiology of Food and Animal Feeding Stuffs—Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Method; ISO 21528-2; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- International Organization for Standarization (ISO). Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique; ISO 4832; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standarization (ISO). Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C; ISO 15214; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Erel, O. A New Automated Colorimetric Method for Measuring Total Oxidant Status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Špoljarić, D.; Marenčić, D.; Benković, M.; Špoljarić, B.; Belščak Cvitanović, A.; Mršić, G.; Vlahović, K.; Popović, M.; Srečec, S.; Stolić, I. Effect of Dietary Carob Wholemeal on Blood Parameters in Weaned Pigs. Veterinarski Arhiv 2019, 89, 351–366. [Google Scholar] [CrossRef]
- Debski, B. Supplementation of Pigs Diet with Zinc and Copper as Alternative to Conventional Antimicrobials. Polish, J. Vet. Sci. 2016, 19, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Tang, C.; Li, Y.; Yu, Y.; Zhan, T.; Zhao, Q.; Zhang, J. Effects of Dietary Supplementation with Clostridium butyricum on Growth Performance, Serum Immunity, Intestinal Morphology, and Microbiota as an Antibiotic Alternative in Weaned Piglets. Animals 2020, 10, 2287. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Ma, X.; Liu, H.; Liu, S.; Piao, X. Effect of Fibre Sources on Performance, Serum Parameters, Intestinal Morphology, Digestive Enzyme Activities and Microbiota in Weaned Pigs. Arch. Anim. Nutr. 2020, 74, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, J.; Tan, B.; Chen, J.; Zhang, H.; Li, Z.; Ma, X. Physiological Function and Application of Dietary Fiber in Pig Nutrition: A Review. Anim. Nutr. 2021, 7, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; He, J.; Huang, Z.; Luo, Y.; Luo, J.; et al. Effects of Soluble and Insoluble Dietary Fiber Supplementation on Growth Performance, Nutrient Digestibility, Intestinal Microbe and Barrier Function in Weaning Piglet. Anim. Feed Sci. Tech. 2020, 260, 114335. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Liu, L.; Zhang, S. Effects of Clostridium butyricum and Corn Bran Supplementation on Growth Performance, Nutrient Digestibility, Faecal Volatile Fatty Acids and Microbiota in Weaned Pigs. J. Appl. Anim. Res. 2020, 48, 313–319. [Google Scholar] [CrossRef]
- O’Shea, C.J.; McAlpine, P.; Sweeney, T.; Varley, P.F.; O’Doherty, J.V. Effect of the Interaction of Seaweed Extracts Containing Laminarin and Fucoidan with Zinc Oxide on the Growth Performance, Digestibility and Faecal Characteristics of Growing Piglets. Br. J. Nutr. 2014, 111, 798–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Cao, G.; Zhang, H.; Li, Q.; Yang, C. Effects of Clostridium butyricum and Enterococcus faecalis on Growth Performance, Immune Function, Intestinal Morphology, Volatile Fatty Acids, and Intestinal Flora in a Piglet Model. Food Funct. 2019, 10, 7844–7854. [Google Scholar] [CrossRef]
- Li, B.T.; Van Kessel, A.G.; Caine, W.R.; Huang, S.X.; Kirkwood, R.N. Small Intestinal Morphology and Bacterial Populations in Ileal Digesta and Feces of Newly Weaned Pigs Receiving a High Dietary Level of Zinc Oxide. Can. J. Anim. Sci. 2001, 81, 511–516. [Google Scholar] [CrossRef]
- Zhu, C.; Lv, H.; Chen, Z.; Wang, L.; Wu, X.; Chen, Z.; Zhang, W.; Liang, R.; Jiang, Z. Dietary Zinc Oxide Modulates Antioxidant Capacity, Small Intestine Development, and Jejunal Gene Expression in Weaned Piglets. Biol. Trace Elem. Res. 2017, 175, 331–338. [Google Scholar] [CrossRef]
- Liu, P.; Pieper, R.; Tedin, L.; Martin, L.; Meyer, W.; Rieger, J.; Plendl, J.; Vahjen, W.; Zentek, J. Effect of Dietary Zinc Oxide on Jejunal Morphological and Immunological Characteristics in Weaned Piglets. J. Anim. Sci. 2014, 92, 5009–5018. [Google Scholar] [CrossRef]
- Perri, A.M.; O’Sullivan, T.L.; Harding, J.C.S.; Wood, R.D.; Friendship, R.M. Hematology and Biochemistry Reference Intervals for Ontario Commercial Nursing Pigs Close to the Time of Weaning. Can. Vet. J. 2017, 58, 371–376. [Google Scholar]
- Ventrella, D.; Dondi, F.; Barone, F.; Serafini, F.; Elmi, A.; Giunti, M.; Romagnoli, N.; Forni, M.; Bacci, M.L. The Biomedical Piglet: Establishing Reference Intervals for Haematology and Clinical Chemistry Parameters of Two Age Groups with and without Iron Supplementation. BMC Vet. Res. 2017, 13, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprarulo, V.; Hejna, M.; Giromini, C.; Liu, Y.; Dell’Anno, M.; Sotira, S.; Reggi, S.; Sgoifo-Rossi, C.A.; Callegari, M.L.; Rossi, L. Evaluation of Dietary Administration of Chestnut and Quebracho Tannins on Growth, Serum Metabolites and Fecal Parameters of Weaned Piglets. Animals 2020, 10, 1954. [Google Scholar] [CrossRef]
- Klem, T.B.; Bleken, E.; Morberg, H.; Thoresen, S.I.; Framstad, T. Hematologic and Biochemical Reference Intervals for Norwegian Crossbreed Grower Pigs. Vet. Clin. Pathol. 2010, 39, 221–226. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Palade, M.; Pistol, G.C.; Chedea, V.S.; Gras, M.A.; Rotar, C. Assessment of the Efficacy of a Grape Seed Waste in Counteracting the Changes Induced by Aflatoxin B1 Contaminated Diet on Performance, Plasma, Liver and Intestinal Tissues of Pigs after Weaning. Toxicon 2019, 162, 24–31. [Google Scholar] [CrossRef]
- Silanikove, N.; Landau, S.; Or, D.; Kababya, D.; Bruckental, I.; Nitsan, Z. Analytical Approach and Effects of Condensed Tannins in Carob Pods (Ceratonia siliqua) on Feed Intake, Digestive and Metabolic Responses of Kids. Livest. Sci. 2006, 99, 29–38. [Google Scholar] [CrossRef]
- Abia, R.; Fry, S.C. Degradation and Metabolism of 14C-Labelled Proanthocyanidins from Carob (Ceratonia siliqua) Pods in the Gastrointestinal Tract of the Rat. J. Sci. Food Agric. 2001, 81, 1156–1165. [Google Scholar] [CrossRef]
- López-Andrés, P.; Luciano, G.; Vasta, V.; Gibson, T.M.; Biondi, L.; Priolo, A.; Mueller-Harvey, I. Dietary Quebracho Tannins Are Not Absorbed, but Increase the Antioxidant Capacity of Liver and Plasma in Sheep. Br. J. Nutr. 2013, 110, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Tan, B.; Huang, B.; Li, J.; Wang, J.; Liao, P.; Guan, G.; Ji, P.; Yin, Y. Involvement of Calcium-Sensing Receptor Activation in the Alleviation of Intestinal Inflammation in a Piglet Model by Dietary Aromatic Amino Acid Supplementation. Br. J. Nutr. 2018, 120, 1321–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Song, J.; Li, Y.; Luan, Z.; Zhu, K. Diosmectite–Zinc Oxide Composite Improves Intestinal Barrier Function, Modulates Expression of pro-Inflammatory Cytokines and Tight Junction Protein in Early Weaned Pigs. Br. J. Nutr. 2013, 110, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloubert, V.; Blaabjerg, K.; Dalgaard, T.S.; Poulsen, H.D.; Rink, L.; Wessels, I. Influence of Zinc Supplementation on Immune Parameters in Weaned Pigs. J. Trace Elem. Med. Biol. 2018, 49, 231–240. [Google Scholar] [CrossRef]
- Li, H.-H.; Li, Y.-P.; Zhu, Q.; Qiao, J.-Y.; Wang, W.-J. Dietary Supplementation with Clostridium butyricum Helps to Improve the Intestinal Barrier Function of Weaned Piglets Challenged with Enterotoxigenic Escherichia coli K88. J. Appl. Microbiol. 2018, 125, 964–975. [Google Scholar] [CrossRef]
- Qiao, J.; Li, H.; Wang, Z.; Wang, W. Effects of Lactobacillus acidophilus Dietary Supplementation on the Performance, Intestinal Barrier Function, Rectal Microflora and Serum Immune Function in Weaned Piglets Challenged with Escherichia coli Lipopolysaccharide. Antonie van Leeuwenhoek 2015, 107, 883–891. [Google Scholar] [CrossRef]
- Guerra-Ordaz, A.A.; González-Ortiz, G.; La Ragione, R.M.; Woodward, M.J.; Collins, J.W.; Pérez, J.F.; Martín-Orúe, S.M. Lactulose and Lactobacillus plantarum, a Potential Complementary Synbiotic to Control Postweaning Colibacillosis in Piglets. Appl. Environ. Microbiol. 2014, 80, 4879–4886. [Google Scholar] [CrossRef] [Green Version]
- Aboura, I.; Nani, A.; Belarbi, M.; Murtaza, B.; Fluckiger, A.; Dumont, A.; Benammar, C.; Tounsi, M.S.; Ghiringhelli, F.; Rialland, M.; et al. Protective Effects of Polyphenol-Rich Infusions from Carob (Ceratonia siliqua) Leaves and Cladodes of Opuntia ficus-indica against Inflammation Associated with Diet-Induced Obesity and DSS-Induced Colitis in Swiss Mice. Biomed. Pharmacother. 2017, 96, 1022–1035. [Google Scholar] [CrossRef] [PubMed]
- Arribas, C.; Pereira, E.; Barros, L.; Alves, M.J.; Calhelha, R.C.; Guillamón, E.; Pedrosa, M.M.; Ferreira, I.C.F.R. Healthy Novel Gluten-Free Formulations Based on Beans, Carob Fruit and Rice: Extrusion Effect on Organic Acids, Tocopherols, Phenolic Compounds and Bioactivity. Food Chem. 2019, 292, 304–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Diets 1 | ||||
---|---|---|---|---|---|
C− | C+ | PRO | PROC | PROP | |
Ingredients, % | |||||
Corn flakes | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Wheat flakes | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
Dehulled barley flakes | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Corn | 9.08 | 9.08 | 9.08 | 9.57 | 8.77 |
Wheat | 9.90 | 9.90 | 9.90 | 8.00 | 8.00 |
Barley | 5.00 | 5.00 | 5.00 | 1.50 | 3.21 |
Soy-protein concentrate 2 | 7.90 | 7.90 | 7.90 | 7.90 | 7.90 |
Soybean meal, 46% crude protein | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 |
Porcine hydrolyzed protein 3 | 2.19 | 2.19 | 2.19 | 2.87 | 2.64 |
Protein concentrate 4 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Sweet whey (dried) | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Whey powder, 50% fat | 1.00 | 1.00 | 1.00 | 2.02 | 1.26 |
Dextrose monohydrate | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 |
Titanium dioxide | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Soybean oil | 2.89 | 2.89 | 2.89 | 3.00 | 3.10 |
Sugar-beet pulp | 2.00 | 2.00 | 2.00 | ||
Carob meal | 5.00 | ||||
Citrus pulp | 5.00 | ||||
Probiotic 5 | 0.05 | 0.05 | 0.05 | ||
Zinc oxide 6 | 0.31 | ||||
Vitamin–mineral premix 7 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Calcium carbonate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Monocalcium phosphate | 0.80 | 0.80 | 0.80 | 0.88 | 0.87 |
Sodium chloride | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
L-Lysine 50 (50%) | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
DL-Methionine (99%) | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
L-Threonine (98%) | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
L-Tryptophan (98%) | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 |
L-Valine | 0.19 | 0.19 | 0.19 | 0.19 | 0.20 |
Sepiolite | 0.33 | 0.02 | 0.28 | 0.3 | 0.27 |
Mycotoxin adsorbents 8 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
β-glucanase and β-xylanase 9 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Calculated composition 10 | |||||
NE (kcal/kg) | 2470 | 2470 | 2470 | 2470 | 2470 |
Lysine (%) | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 |
Methionine (%) | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 |
Methionine + cystine (%) | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
Threonine (%) | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
Tryptophan (%) | 0.32 | 0.32 | 0.32 | 0.33 | 0.32 |
Valine (%) | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
Neutral Detergent Fiber (%) | 10.44 | 10.43 | 10.44 | 10.56 | 10.56 |
Analyzed chemical composition 11, % | |||||
Dry matter | 89.28 | 89.48 | 89.73 | 89.81 | 89.57 |
Crude protein | 17.21 | 17.82 | 17.48 | 17.14 | 17.84 |
Neutral detergent fiber | 11.17 | 11.44 | 11.66 | 12.85 | 12.34 |
Acid detergent fiber | 3.80 | 3.77 | 4.12 | 4.95 | 4.23 |
Acid detergent lignin | 0.70 | 0.70 | 0.74 | 0.85 | 0.78 |
Total dietary fiber | 13.51 | 14.13 | 14.76 | 13.28 | 14.92 |
Insoluble fiber | 12.27 | 12.92 | 13.26 | 12.14 | 12.91 |
Soluble fiber | 1.24 | 1.20 | 1.50 | 1.13 | 2.00 |
Diets 1 | |||||||
---|---|---|---|---|---|---|---|
Item | C− | C+ | PRO | PROC | PROP | SEM 2 | p-Value |
Body weight (kg) | |||||||
0 d | 4.96 | 4.91 | 5.15 | 5.13 | 5.08 | 0.150 | 0.979 |
14 d | 7.29 | 7.14 | 7.78 | 7.43 | 7.74 | 0.211 | 0.842 |
26 d | 11.23 | 10.48 | 11.93 | 10.99 | 11.97 | 0.368 | 0.669 |
ADG (kg/d) | |||||||
0–14 d | 0.167 | 0.161 | 0.187 | 0.164 | 0.189 | 0.009 | 0.726 |
14–26 d | 0.328 | 0.278 | 0.345 | 0.296 | 0.352 | 0.016 | 0.569 |
0–26 d | 0.243 | 0.216 | 0.256 | 0.225 | 0.265 | 0.011 | 0.642 |
Apparent digestibility | |||||||
Ileal | |||||||
DM 3 (%) | 65.27 | 66.45 | 67.09 | 67.32 | 66.51 | 1.734 | 0.991 |
CP 4 (%) | 67.37 | 69.81 | 71.46 | 68.24 | 70.39 | 1.731 | 0.916 |
Fecal | |||||||
DM (%) | 78.93 b | 83.80 a | 81.38 ab | 82.49 ab | 82.51 ab | 0.425 | 0.013 |
CP (%) | 79.04 | 83.04 | 80.01 | 81.87 | 82.33 | 0.731 | 0.398 |
Digesta pH values | |||||||
Stomach | 3.69 | 3.34 | 2.63 | 3.06 | 3.18 | 0.224 | 0.760 |
Duodenum | 5.16 | 5.69 | 5.97 | 5.89 | 6.18 | 0.258 | 0.749 |
Jejunum | 6.20 | 6.53 | 6.36 | 6.80 | 6.44 | 0.070 | 0.114 |
Ileum | 6.80 | 7.01 | 7.05 | 7.24 | 6.72 | 0.088 | 0.376 |
Cecum | 5.65 | 6.20 | 5.83 | 5.85 | 5.71 | 0.063 | 0.088 |
Colon | 5.83 | 6.19 | 6.09 | 5.84 | 6.02 | 0.075 | 0.518 |
Diets 1 | |||||||
---|---|---|---|---|---|---|---|
Item | C− | C+ | PRO | PROC | PROP | SEM 2 | p-Value |
Bacterial population | |||||||
(log10 CFU/g feces) | |||||||
Enterobacteriaceae | 5.89 | 6.18 | 5.63 | 6.11 | 5.50 | 0.287 | 0.929 |
Coliform bacteria | 5.80 | 6.14 | 5.48 | 6.05 | 5.31 | 0.282 | 0.859 |
Lactic acid bacteria | 7.30 | 6.95 | 7.94 | 7.46 | 7.48 | 0.145 | 0.135 |
Diets 1 | |||||||
---|---|---|---|---|---|---|---|
Item | C− | C+ | PRO | PROC | PROP | SEM 2 | p-Value |
Cecum | |||||||
Total VFAs (mmol/kg) | 93.44 a | 55.54 b | 76.38 ab | 78.72 ab | 77.96 ab | 3.868 | 0.066 |
Acetic acid (molar %) | 57.35 | 60.97 | 55.28 | 59.05 | 57.89 | 1.304 | 0.740 |
Propionic acid (molar %) | 24.89 | 20.21 | 24.67 | 22.68 | 22.94 | 0.672 | 0.213 |
Butyric acid (molar %) | 13.41 | 12.45 | 14.10 | 13.10 | 14.33 | 0.854 | 0.961 |
Isobutyric acid (molar %) | 0.30 | 0.97 | 0.43 | 0.68 | 0.33 | 0.090 | 0.192 |
Isovaleric acid (molar %) | 0.28 | 1.16 | 0.42 | 0.70 | 0.31 | 0.111 | 0.115 |
Valeric acid (molar %) | 3.74 | 4.21 | 5.07 | 3.76 | 4.17 | 0.425 | 0.856 |
Feces | |||||||
Total VFAs (mmol/kg) | 105.02 ab | 66.76 b | 93.18 ab | 121.42 a | 114.90 ab | 5.630 | 0.049 |
Acetic acid (molar %) | 71.41 ab | 74.41 a | 67.25 ab | 64.26 b | 68.43 ab | 0.934 | 0.031 |
Propionic acid (molar %) | 15.65 | 16.43 | 16.62 | 17.83 | 16.88 | 0.494 | 0.705 |
Butyric acid (molar %) | 5.36 ab | 3.16 b | 8.67 a | 8.95 a | 7.96 a | 0.495 | 0.009 |
Isobutyric acid (molar %) | 1.82 | 1.79 | 2.04 | 1.97 | 1.69 | 0.192 | 0.979 |
Isovaleric acid (molar %) | 2.40 | 2.32 | 2.60 | 2.54 | 2.09 | 0.284 | 0.982 |
Valeric acid (molar %) | 3.35 | 1.87 | 2.81 | 4.41 | 2.92 | 0.302 | 0.152 |
Diets 1 | |||||||
---|---|---|---|---|---|---|---|
Item | C− | C+ | PRO | PROC | PROP | SEM 2 | p-Value |
Jejunum | |||||||
Villus height (µm) | 508.72 | 422.90 | 551.92 | 481.22 | 555.67 | 16.656 | 0.151 |
Crypt depth (µm) | 237.42 | 288.40 | 266.90 | 267.45 | 271.12 | 6.148 | 0.202 |
Villus/crypt ratio | 2.23 | 1.50 | 2.08 | 1.82 | 2.09 | 0.083 | 0.103 |
Goblet cells 3 | 0.50 | 0.96 | 0.40 | 0.30 | 0.40 | 0.094 | 0.304 |
Lymphocytes 3 | 18.70 | 19.93 | 18.35 | 15.92 | 15.55 | 0.825 | 0.437 |
IgA cells 3 | 10.25 | 11.10 | 14.225 | 14.12 | 9.47 | 0.839 | 0.260 |
Ileum | |||||||
Villus height (µm) | 411.70 | 426.83 | 485.40 | 409.42 | 427.70 | 15.756 | 0.534 |
Crypt depth (µm) | 219.15 | 249.50 | 256.60 | 228.92 | 256.70 | 7.866 | 0.438 |
Villus/crypt ratio | 1.92 | 1.72 | 1.90 | 1.85 | 1.73 | 0.066 | 0.824 |
Goblet cells | 1.05 | 1.13 | 0.80 | 0.92 | 0.95 | 0.138 | 0.955 |
Lymphocytes | 15.70 | 14.23 | 16.40 | 15.37 | 14.05 | 0.612 | 0.713 |
IgA cells | 11.47 | 6.53 | 8.87 | 10.47 | 6.07 | 1.008 | 0.388 |
Diets 1 | |||||||
---|---|---|---|---|---|---|---|
Item | C− | C+ | PRO | PROC | PROP | SEM 2 | p-Value |
Biochemical parameters | |||||||
Glucose (mg/dL) | 83.60 | 81.40 | 91.22 | 85.35 | 92.70 | 2.932 | 0.759 |
Urea (mg/dL) | 27.25 | 25.70 | 28.53 | 26.98 | 28.50 | 1.029 | 0.848 |
Cholesterol (mg/dL) | 89.07 | 74.97 | 80.25 | 76.25 | 92.57 | 4.258 | 0.626 |
Triglycerides (mg/dL) | 45.13 | 31.73 | 31.74 | 41.34 | 33.99 | 2.567 | 0.417 |
Total Bilirubin (mg/dL) | 0.230 | 0.197 | 0.170 | 0.165 | 0.195 | 0.014 | 0.625 |
Total Proteins (g/dL) | 4.81 | 4.65 | 4.80 | 5.20 | 4.98 | 0.110 | 0.620 |
Albumin (g/dL) | 2.48 | 2.16 | 2.37 | 2.57 | 2.65 | 0.080 | 0.348 |
Albumin/Globulin ratio | 1.07 | 0.87 | 0.97 | 1.00 | 1.14 | 0.042 | 0.361 |
(AST) (IU/L) 3 | 94.44 | 65.75 | 68.82 | 65.44 | 75.92 | 5.593 | 0.525 |
(ALT) (IU/L) 4 | 89.87 ab | 115.42 a | 86.40 ab | 71.30 b | 84.05 ab | 4.393 | 0.089 |
Oxidative balance indicators | |||||||
TOS (µmol/L) 5 | 13.94 | 12.05 | 8.57 | 10.35 | 11.50 | 1.286 | 0.762 |
TAC (mmol/L) 6 | 0.824 | 0.776 | 0.768 | 0.746 | 0.777 | 0.010 | 0.227 |
Cytokines | |||||||
IL-1β (ng/mL) | 0.064 | 0.144 | 0.061 | 0.091 | 0.096 | 0.020 | 0.803 |
IL- 6 (ng/mL) | 0.018 | 0.088 | 0.018 | 0.031 | 0.034 | 0.014 | 0.628 |
IL- 8 (ng/mL) | 3.346 a | 2.992 a | 3.043 a | 1.145 b | 2.219 ab | 0.272 | 0.036 |
IL-10 (ng/mL) | 0.389 | 1.958 | 0.252 | 0.384 | 1.022 | 0.358 | 0.641 |
IL- 12 (ng/mL) | 3.453 | 3.071 | 3.835 | 3.249 | 2.749 | 0.196 | 0.448 |
TNF-α (ng/mL) | 0.080 | 0.078 | 0.078 | 0.086 | 0.088 | 0.002 | 0.627 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, M.; Madrid, J.; Hernández, F.; Ros, M.A.; Segura, J.C.; López, M.J.; Pallarés, F.J.; Sánchez, C.J.; Martínez-Miró, S. Effect of Feed Supplementation with Clostridium butyricum, Alone or in Combination with Carob Meal or Citrus Pulp, on Digestive and Metabolic Status of Piglets. Animals 2021, 11, 2924. https://doi.org/10.3390/ani11102924
López M, Madrid J, Hernández F, Ros MA, Segura JC, López MJ, Pallarés FJ, Sánchez CJ, Martínez-Miró S. Effect of Feed Supplementation with Clostridium butyricum, Alone or in Combination with Carob Meal or Citrus Pulp, on Digestive and Metabolic Status of Piglets. Animals. 2021; 11(10):2924. https://doi.org/10.3390/ani11102924
Chicago/Turabian StyleLópez, Marina, Josefa Madrid, Fuensanta Hernández, Martín Antonio Ros, Juan Carlos Segura, Miguel José López, Francisco José Pallarés, Cristian Jesús Sánchez, and Silvia Martínez-Miró. 2021. "Effect of Feed Supplementation with Clostridium butyricum, Alone or in Combination with Carob Meal or Citrus Pulp, on Digestive and Metabolic Status of Piglets" Animals 11, no. 10: 2924. https://doi.org/10.3390/ani11102924
APA StyleLópez, M., Madrid, J., Hernández, F., Ros, M. A., Segura, J. C., López, M. J., Pallarés, F. J., Sánchez, C. J., & Martínez-Miró, S. (2021). Effect of Feed Supplementation with Clostridium butyricum, Alone or in Combination with Carob Meal or Citrus Pulp, on Digestive and Metabolic Status of Piglets. Animals, 11(10), 2924. https://doi.org/10.3390/ani11102924