Genomic Regions Associated with the Position and Number of Hair Whorls in Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Genome-Wide Association Study
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABQM–Associação Brasileira de Criadores de Cavalo Quarto de MilhA. Quarto de Milha: O Cavalo da Família Brasileira. Cartilha ABQM, 2016. Available online: http://www.abqm.com.br/documentos/institucional/abqm_cartil ha.pdf (accessed on 27 June 2021).
- Wickens, C.; Brooks, S.A. Genetics of equine behavioral traits. Vet. Clin. N. Am. Equine Pract. 2020, 36, 411–424. [Google Scholar] [CrossRef]
- Randle, H.D. Facial hair whorl position and temperament in cattle. Appl. Anim. Behav. Sci. 1998, 56, 139–147. [Google Scholar] [CrossRef]
- Górecka, A.; Golonka, M.; Chruszczewski, M.; Jezierski, T. A note on behaviour and heart rate in horses differing in facial hair whorl. Appl. Anim. Behav. Sci. 2007, 105, 244–248. [Google Scholar] [CrossRef]
- Murphy, J.; Arkins, S. Facial hair whorls (trichoglyphs) and the incidence of motor laterality in the horse. Behav. Process. 2008, 79, 7–12. [Google Scholar] [CrossRef]
- Shivley, C.; Grandin, T.; Deesing, M. Behavioral laterality and facial hair whorls in horses. J. Equine Vet. Sci. 2016, 44, 62–66. [Google Scholar] [CrossRef]
- Furdon, S.A.; Clark, D.A. Scalp hair characteristics in the newborn infant. Adv. Neonatal Care 2003, 3, 286–296. [Google Scholar] [CrossRef]
- Górecka, A.; Słoniewski, K.; Golonka, M.; Jaworski, Z.; Jezierski, T. Heritability of hair whorl position on the forehead in Konik horses. J. Anim. Breed. Genet. 2006, 123, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Yokomori, T.; Tozaki, T.; Mita, H.; Miyake, T.; Kakoi, H.; Kobayashi, Y.; Kusano, K.; Itou, T. Heritability estimates of the position and number of facial hair whorls in thoroughbred horses. BMC Res. Notes 2019, 12, 1–4. [Google Scholar] [CrossRef]
- Cruz, V.A.R.; Lima, D.F.P.A.; Diaz, I.P.S.; Curi, R.A.; Pereira, G.L.; Costa, R.B.; de Camargo, G.M.F. Genetic parameters for hair whorl traits in horses. Livest. Sci. 2021, 252, 104679. [Google Scholar] [CrossRef]
- Pereira, G.L.; Chud, T.C.; Bernardes, P.A.; Venturini, G.C.; Chardulo, L.A.; Curi, R.A. Genotype imputation and accuracy evaluation in racing quarter horses genotyped using different commercial SNP panels. J. Equine Vet. Sci. 2017, 58, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, S.; Misztal, I. THRGIBBS1F90 for estimation of variance components with threshold-linear models. Commun. 27–31. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 13–18 August 2006. [Google Scholar]
- Irano, N.; de Camargo, G.M.F.; Costa, R.B.; Terakado, A.P.N.; Magalhaes, A.; Silva, R.M.D.O.; Dias, M.M.; Bignardi, A.B.; Baldi, F.; Carvalheiro, R.; et al. Genome-wide association study for indicator traits of sexual precocity in Nellore cattle. PLoS ONE 2016, 11, e0159502. [Google Scholar] [CrossRef]
- Sur, I.; Undén, A.B.; Toftgård, R. Human Krüppel-like factor5/KLF5: Synergy with NF-κB/Rel factors and expression in human skin and hair follicles. Eur. J. Cell Biol. 2002, 81, 323–334. [Google Scholar] [CrossRef]
- Yanagi, M.; Hashimoto, T.; Kitamura, N.; Fukutake, M.; Komure, O.; Nishiguchi, N.; Kawamata, T.; Maeda, K.; Shirakawa, O. Expression of Kruppel-like factor 5 gene in human brain and association of the gene with the susceptibility to schizophrenia. Schizophr. Res. 2008, 100, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, A.; Petukhova, L.; Cabral, R.M.; Clynes, R.; Christiano, A.M. Genetic basis of alopecia areata. A roadmap for translational research. Dermatol. Clin. 2013, 31, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Naseri, M.A.S.; Ad’hiah, A.H.; Salman, E.D. The association between multiple sclerosis and genetic variations of TGFβ1 and IL2 genes in Iraqi patients. Meta Gene 2019, 19, 253–257. [Google Scholar] [CrossRef]
- Tan, B.; Yatim, S.M.J.; Peng, S.; Gunaratne, J.; Hunziker, W.; Ludwig, A. The mammalian crumbs complex defines a distinct polarity domain apical of epithelial tight junctions. Curr. Biol. 2020, 30, 2791–2804. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Y.; Wu, Q.; Ding, Q.; Fan, W. Sirtuin-1 protects hair follicle stem cells from TNFα-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway. Life Sci. 2018, 212, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.-M. The effect of emodin on melanogenesis through the modulation of ERK and MITF signaling pathway. Nat. Prod. Res. 2020, 1–5. [Google Scholar] [CrossRef]
- Wang, D.; Tang, W.; Zhao, J.; Fan, W.; Zhang, Y.; Zhang, C. A comprehensive analysis of the effect of SIRT1 variation on the risk of schizophrenia and depressive symptoms. Front. Genet. 2020, 11, 832. [Google Scholar] [CrossRef]
- Gnedeva, K.; Vorotelyak, E.; Cimadamore, F.; Cattarossi, G.; Giusto, E.; Terskikh, V.V.; Terskikh, A.V. Derivation of hair-inducing cell from human pluripotent stem cells. PLoS ONE 2015, 10, e0116892. [Google Scholar] [CrossRef] [Green Version]
- Numakawa, T.; Ishimoto, T.; Suzuki, S.; Numakawa, Y.; Adachi, N.; Matsumoto, T.; Yokomaku, D.; Koshimizu, H.; Fujimori, K.; Hashimoto, R.; et al. Neuronal roles of the integrin-associated protein (IAP/CD47) in developing cortical neurons. J. Biol. Chem. 2004, 279, 43245–43253. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Yu, Z.; Liu, Y.; Bai, Y.; Jiang, Y.; van Leyen, K.; Yang, Y.-G.; Lok, J.M.; Whalen, M.J.; Lo, E.H.; et al. CD47 deficiency improves neurological outcomes of traumatic brain injury in mice. Neurosci. Lett. 2017, 643, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Zaki AK, A.; Almundarij, T.I.; Abo-Aziza, F.A. Comparative characterization and osteogenic/adipogenic differentiation of mesenchymal stem cells derived from male rat hair follicles and bone marrow. Cell Regen. 2020, 9, 1–14. [Google Scholar]
- Chamera, K.; Szuster-Głuszczak, M.; Trojan, E.; Basta-Kaim, A. Maternal immune activation sensitizes male offspring rats to lipopolysaccharide-induced microglial deficits involving the dysfunction of CD200-CD200R and CX3CL1-CX3CR1 systems. Cells 2020, 9, 1676. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.S.; Kim, H.W.; Kellom, M.; Greenstein, D.; Chen, M.; Kraft, A.D.; Harry, G.J.; Rapoport, S.J.; Basselin, M. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. J. Neuroinflamm. 2011, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everts, H.B.; Sundberg, J.P.; King, L.E.; Ong, D.E. Immunolocalization of enzymes, binding proteins, and receptors sufficient for retinoic acid synthesis and signaling during the hair cycle. J. Investig. Dermatol. 2007, 127, 1593–1604. [Google Scholar] [CrossRef] [Green Version]
- Grünblatt, E.; Ruder, J.; Monoranu, C.M.; Riederer, P.; Youdim, M.B.; Mandel, S.A. Differential alterations in metabolism and proteolysis-related proteins in human Parkinson’s disease substantia nigra. Neurotox. Res. 2017, 33, 560–568. [Google Scholar] [CrossRef]
- Murata, M.; Ito, T.; Tanaka, Y.; Kaku-Ito, Y.; Furue, M. Nectin4 expression in extramammary paget’s disease: Implication of a new therapeutic target. Int. J. Mol. Sci. 2020, 21, 5891. [Google Scholar] [CrossRef]
- Shah, K.; Mehmood, S.; Jan, A.; Abbe, I.; Ali, R.H.; Khan, A.; Chishti, M.S.; Lee, K.; Ahmad, F.; Ansar, M.; et al. Sequence variants in nine different genes underlying rare skin disorders in 10 consanguineous families. HHS Public Access 2018, 56, 1406–1413. [Google Scholar] [CrossRef]
- Cho, W.K.; Kim, H.; Paek, S.H.; Kim, S.; Seo, H.H.; Song, J.; Lee, O.H.; Min, J.; Lee, S.J.; Jo, Y.; et al. Gene expression profile of human follicle dermal papilla cells in response to Camellia japonica phytoplacenta extract. FEBS Open Bio 2021, 11, 633–651. [Google Scholar] [CrossRef]
- Nishimori, N.; Hayama, K.; Kimura, K.; Fujita, H.; Fujiwara, K.; Terui, T. A novel ncstn gene mutation in a japanese family with hidradenitis suppurativa. Acta Derm. Venereol. 2020, 100, 2–3. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Liu, Z.; Han, X.; Lian, A.; Zhang, Y.; Zuo, K.; Wang, Y.; Liu, M.; Zou, F.; et al. Internalization of the TAT-PBX1 fusion protein significantly enhances the proliferation of human hair follicle-derived mesenchymal stem cells and delays their senescence. Biotechnol. Lett. 2020, 42, 1877–1885. [Google Scholar] [CrossRef]
- Cetera, M.; Leybova, L.; Woo, F.W.; Deans, M.; Devenport, D. Planar cell polarity-dependent and independent functions in the emergence of tissue-scale hair follicle patterns. Dev. Biol. 2017, 428, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rivero, M.; Hernández-Aguilar, M.E.; Aranda-Abreu, G.E. A strategy focused on MAPT, APP, NCSTN and BACE1 to build blood classifiers for Alzheimer’s disease. J. Theor. Biol. 2015, 376, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Grebbin, B.M.; Hau, A.C.; Groß, A.; Anders-Maurer, M.; Schramm, J.; Koss, M.; Wille, C.; Mittelbronn, M.; Selleri, L.; Schulte, D. PBX1 is required for adult subventricular zone neurogenesis. Development 2016, 143, 2281–2291. [Google Scholar] [PubMed] [Green Version]
- Wang, M.; Zhang, Y.; Feng, L.; Zheng, J.; Fan, S.; Liu, J.; Yang, N.; Liu, Y.; Zuo, P. Compound porcine cerebroside and ganglioside injection attenuates cerebral ischemia–reperfusion injury in rats by targeting multiple cellular processes. Neuropsychiatr. Dis. Treat. 2017, 13, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, S.D.S.; Moreau, M.M.; Hien, Y.E.; Garcia, M.; Aubailly, N.; Henderson, D.J.; Studer, V.; Sans, N.; Thoumine, O.; Montcouquiol, M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. Elife 2020, 9, e51822. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; He, X.; Shi, X.; Xia, Y.; Liu, X.; Wu, H.; Li, P.; Zhang, H.; Yin, W.; Du, X.; et al. Analysis of differentially expressed genes among human hair follicle-derived iPSCs, induced hepatocyte-like cells, and primary hepatocytes. Stem Cell Res. Ther. 2018, 9, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardman, J.A.; Haslam, I.; Farjo, N.; Farjo, B.; Paus, R. Thyroxine differentially modulates the peripheral clock: Lessons from the human hair follicle. PLoS ONE 2015, 10, e0121878. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, K.; Akiyama, M. Update on autosomal recessive congenital ichthyosis: MRNA analysis using hair samples is a powerful tool for genetic diagnosis. J. Dermatol. Sci. 2015, 79, 4–9. [Google Scholar] [CrossRef]
- Millar, S.E.; Willert, K.; Salinas, P.C.; Roelink, H.; Nusse, R.; Sussman, D.J.; Barsh, G.S. WNT signaling in the control of hair growth and structure. Dev. Biol. 1999, 207, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Clements, S.; Techanukul, T.; Lai-Cheong, J.; Mee, J.; South, A.; Pourreyron, C.; Burrows, N.; Mellerio, J.; McGrath, J. Mutations in AEC syndrome skin reveal a role for p63 in basement membrane adhesion, skin barrier integrity and hair follicle biology. Br. J. Dermatol. 2012, 167, 134–144. [Google Scholar] [CrossRef]
- Kozicka, K.; Łukasik, A.; Pastuszczak, M.; Jaworek, A.; Spałkowska, M.; Kłosowicz, A.; Dyduch, G.; Wojas-Pelc, A. Is hormone testing worthwhile in patients with female pattern hair loss? Polski Merkuriusz Lekarski 2020, 48, 323–326. [Google Scholar]
- Kim, S.-N.; Akindehin, S.; Kwon, H.-J.; Son, Y.-H.; Saha, A.; Jung, Y.-S.; Seong, J.-K.; Lim, K.-M.; Sung, J.-H.; Maddipati, K.R.; et al. Anti-inflammatory role of 15-lipoxygenase contributes to the maintenance of skin integrity in mice. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, T.; Kim, N.; Park, T. Topical application of oleuropein induces anagen hair growth in telogen mouse skin. PLoS ONE 2015, 10, e0129578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Olmeda, J.F.; Tartaglione, E.V.; de la Iglesia, H.O.; Sánchez-Vázquez, F.J. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions. Chronobiol. Int. 2010, 27, 1380–1400. [Google Scholar] [CrossRef] [PubMed]
- Grasa, M.D.M.; Villarreal, L.; Granero, R.; Vilà, R.; Penelo, E.; Agüera, Z.; Jiménez-Murcia, S.; Romero, M.D.M.; Menchón, J.M.; Remesar, X.; et al. Purging behavior modulates the relationships of hormonal and behavioral parameters in women with eating disorders. Neuropsychobiology 2013, 67, 230–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayanagi, Y.; Spira, A.P.; McIntyre, R.S.; Eaton, W.W. Sex hormone binding globulin and verbal memory in older men. Am. J. Geriatr. Psychiatry 2015, 23, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inkster, B.; Nichols, T.E.; Saemann, P.G.; Auer, D.P.; Holsboer, F.; Muglia, P.; Matthews, P.M. Pathway-based approaches to imaging genetics association studies: Wnt signaling, GSK3beta substrates and major depression. Neuroimage 2010, 53, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Nakrieko, K.A.; Welch, I.; Dupuis, H.; Bryce, D.; Pajak, A.; St Arnaud, R.; Dedhar, S.; D’Souza, S.J.A.; Dagnino, L. Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis. Mol. Biol. Cell 2008, 19, 1462–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joost, S.; Annusver, K.; Jacob, T.; Sun, X.; Dalessandri, T.; Sivan, U.; Sequeira, I.; Sandberg, R.; Kasper, M. The molecular anatomy of mouse skin during hair growth and rest. Cell Stem Cell 2020, 26, 441–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, S.; Yoshizuka, N.; Takizawa, M.; Takema, Y.; Murase, T.; Tokimitsu, I.; Saito, M. Expression of uncoupling proteins in human skin and skin-derived cells. J. Investig. Dermatol. 2008, 128, 1894–1900. [Google Scholar] [CrossRef]
- Wang, E.; Chong, K.; Yu, M.; Akhoundsadegh, N.; Granville, D.J.; Shapiro, J.; McElwee, K.J. Development of autoimmune hair loss disease alopecia areata is associated with cardiac dysfunction in C3H/HeJ mice. PLoS ONE 2013, 8, e62935. [Google Scholar] [CrossRef]
- Lin, X.; Meng, G.; Liu, X.; Yu, T.; Bai, C.; Fei, X.; Deng, S.; Zhao, J.; Ren, S.; Zhang, J.; et al. The differentially expressed genes of human sporadic cerebral cavernous malformations. World Neurosurg. 2018, 113, e247–e270. [Google Scholar] [CrossRef] [PubMed]
- Gigante, A.; Andreazza, A.; Lafer, B.; Yatham, L.; Beasley, C.; Young, L. Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci. Lett. 2011, 505, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zheng, Y.; Shi, H.; Du, X.; Zhang, Y.; Wei, B.; Luo, M.; Wang, H.; Wu, X.; Hua, X.; et al. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. Genes Brain Behav. 2016, 16, 296–307. [Google Scholar] [CrossRef] [PubMed]
Trait | Phenotype (No. of Animals) | Total No. of Animals |
---|---|---|
POS * | 1(161), 2(144), 3(18) | 323 |
NUM ** | 1(306), 2(32), 3(2) | 340 |
NUML ** | 1(263), 2(65), 3(10), 5(2) | 340 |
NUMR ** | 1(263), 2(65), 3(11), 7(1) | 340 |
Phenotype | Genomic Window (Chromosome: Start Position–End Position in bp) | Va% |
---|---|---|
POS | 17: 45,252,386–49,471,423 2: 104,112,526–108,667,352 5: 7,191,873–11,827,369 | 51.31 4.56 4.41 |
NUM | 1: 54,370,083–58,251,385 19: 49,710,771–53,302,322 23: 17,020,869–20,697,071 | 26.80 6.46 4.25 |
NUML | 5: 29,306,930–34,034,348 11: 50,127,066–53,788,216 | 14.06 8.48 |
NUMR | 7: 70,662,347–74,512,078 | 81.96 |
Trait | Chromosome/Additive Variance Explained (%) | Gene (Symbol) |
---|---|---|
POS | ECA17 (51.31) | KLF5, PIBF1, MZT1, KLF12, BORA, DACH1, LMO7, UCHL3, DIS3, TBC1D4, COMMD6 |
ECA2 (4.56) | IL2, MIR147B, SMIM43, USP53, C2H4orf3, PDE5A, MAD2L1, PRDM5, NDNF, TNIP3, QRFPR, ANXA5, CCNA2, TRPC3, BBS12, NUDT6, EXOSC9, BBS7, KIAA1109, ADAD1, SPATA5, SPRY1, ANKRD50, FABP2, FGF2, IL21 | |
ECA5 (4.41) | FASLG, TNFSF4, MIR214, MIR199A, TNFSF18, TEX50, KIAA0040, RABGAP1L, COP1, TNR, TNN, CACYBP, SERPINC1, DARS2, KLHL20, ANKRD45, SLC9C2, SUCO, C5H1orf05, PIGC, DNM3, MYOC, FMO1, FMO2, MROH9, PAPPA2, MRPS14, RC3H1, CENPL, PRDX6, METTL13, VAMP4, PRRC2C, FMO4, FMO3 ZBTB37, GPR52 | |
NUM | ECA1 (26.80) | SIRT1, VPS26A, HK1, SUPV3L1, DDX21, STOX1, TET1, SLC25A16, DNA2, MYPN, FAM241B, TSPAN15, SRGN, KIFBP, DDX50, CCAR1, HNRNPH3, RUFY2, PBLD, HERC4, DNAJC12, LRRTM3, CTNNA3, ATOH7, NEUROG3, HKDC1, TACR2 |
ECA19 (6.46) | CD47, CD200, HHLA2, CCDC54, MYH15, TRAT1, BBX, IFT57, CIP2A, DZIP3, RETNLB, GUCA1C, MORC1, DPPA4, DPPA2 | |
ECA23 (4.25) | ALDH1A1, MIR204B-2, MIR8951, C23H9orf57, APBA1, PTAR1, CFAP95, MAMDC2, SMC5, CEMIP2, C23H9orf85, TRPM6, FAM189A2, KLF9, TRPM3, ABHD17B, GDA, ZFAND5, RORB, C23H9orf40, TMC1 | |
NUML | ECA5 (14.06) | NECTIN4, PPOX, CCDC190, NCSTN, PBX1, VANGL2, KLHDC9, FCER1G, ADAMTS4, MIR7177A, ATF6, PCP4L1, SLAMF9, FCRLB, F11R, NIT1, TOMM40L, CFAP126, ARHGAP30, UFC1, USP21, B4GALT3, NDUFS2, APOA2, NR1I3, SDHC, RGS5, HSD17B7, CD244, LY9, SLAMF7, UHMK1, CD84, SPATA46, SLAMF6, PEX19, LMX1A, PEA15, NUF2, CASQ1, RGS4, ATP1A4, DDR2, ATP1A2, SH2D1B, IGSF8, KCNJ9, KCNJ10, PIGM, IGSF9, CFAP45, CD48, SLAMF1, COPA, DCAF8, TAGLN2, HSPA6, FCRLA, OLFML2B, DUSP12, MPZ, TSTD1, USF1, PFDN2, DEDD, NHLH1 |
ECA11 (8.48) | TP53, AURKB, PER1, ALOXE3, ALOX12B, ALOX15, ALOX15B, SHBG, DVL2, MYH1, MYH2, SLC2A4, EFNB3, TNFSF13, MIR195, MIR497, MIR324, MIR9096, TNFSF12, SPEM2, TMEM220, RNASEK, FXR2, BCL6B, KCTD11, WRAP53, FGF11, PHF23, DNAH2, ADPRM, SCO1, GAS7, GLP2R, DHRS7C, USP43, STX8, NTN1, MFSD6L, KRBA2, ODF4, ARHGEF15, CTC1, VAMP2, GUCY2D, CHD3, KDM6B, ATP1B2, SAT2, POLR2A, SLC35G6, CHRNB1, SPEM1, NLGN2, PLSCR3, TMEM95, ACAP1, YBX2, CLDN7, ELP5, CTDNEP1, ASGR2, SLC16A11, SLC16A13, C11H17orf49, PELP1, PIRT, MYH3, MYH8, MYH13, CFAP52, PIK3R5, PIK3R6, CCDC42, MYH10, NDEL1, RNF222, RPL26, RANGRF, SLC25A35, PFAS, BORCS6, TMEM107, CNTROB, CYB5D1, NAA38, TMEM88, TMEM102, TMEM256, TNK1, NEURL4, GPS2, ACADVL, DLG4, ASGR1, GABARAP, GSG1L2, SENP3, EIF5A, RCVRN, SOX15, ZBTB4, MYH4, HES7, TRAPPC1, KCNAB3, MPDU1, EIF4A1, CD68 | |
NUMR | ECA7 (81.96) | RHOG, UCP3, IL18BP, UCP2, SLCO2B1, MIR139, MIR326, COA4, ATG16L2, TRIM21, ART5, ANAPC15, FOLR1, FOLR2, INPPL1, CLPB, FCHSD2, P2RY2, ARHGEF17, RELT, PLEKHB1, RAB6A, MRPL48, C2CD3, PPME1, P4HA3, KCNE3, LIPT2, CHRDL2, RNF169, NEU3, ARRB1, KLHL35, GDPD5, SERPINH1, MAP6, MOGAT2, RRM1, STIM1, PGAP2, NUP98, ART1, NUMA1, LAMTOR1, FOLR3, PHOX2A, PDE2A, ARAP1, STARD10, FAM168A, PAAF1, PGM2L1, POLD3, SPCS2, RPS3, OR52B3, TPBGL, P2RY6, OR52B37P, OR52M2, OR52P2, OR51AE1, OR52B4OP, OR52B4F, OR52B4GP, OR52B4E, OR52B4, OR55B1, CHRNA10, RNF121, XRRA1, OR2AT2, OR2AT2D, OR2AT2EP, OR2AT13P, OR52K1, OR52B4N, OR52B4D, DNAJB13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, D.F.P.d.A.; da Cruz, V.A.R.; Pereira, G.L.; Curi, R.A.; Costa, R.B.; de Camargo, G.M.F. Genomic Regions Associated with the Position and Number of Hair Whorls in Horses. Animals 2021, 11, 2925. https://doi.org/10.3390/ani11102925
Lima DFPdA, da Cruz VAR, Pereira GL, Curi RA, Costa RB, de Camargo GMF. Genomic Regions Associated with the Position and Number of Hair Whorls in Horses. Animals. 2021; 11(10):2925. https://doi.org/10.3390/ani11102925
Chicago/Turabian StyleLima, Diogo Felipe Pereira de Assis, Valdecy Aparecida Rocha da Cruz, Guilherme Luís Pereira, Rogério Abdallah Curi, Raphael Bermal Costa, and Gregório Miguel Ferreira de Camargo. 2021. "Genomic Regions Associated with the Position and Number of Hair Whorls in Horses" Animals 11, no. 10: 2925. https://doi.org/10.3390/ani11102925
APA StyleLima, D. F. P. d. A., da Cruz, V. A. R., Pereira, G. L., Curi, R. A., Costa, R. B., & de Camargo, G. M. F. (2021). Genomic Regions Associated with the Position and Number of Hair Whorls in Horses. Animals, 11(10), 2925. https://doi.org/10.3390/ani11102925