Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes
Abstract
:Simple Summary
Abstract
1. General Aspects of Oocyte Cryopreservation
2. Principles of Oocyte Cryopreservation
3. Cryoprotective Agents
4. Cryopreservation Techniques
5. Outcome following Oocyte Cryopreservation
5.1. Ruminants (Bovine and Ovine)
5.2. Horse
5.3. Pig
5.4. Canines and Felines
5.5. Nonhuman Primates
5.6. Humans
6. Prospects and Conclusions Regarding Oocyte Cryopreservation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkening, T.A.; Tsunoda, Y.; Chang, M.C. Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen-thawed mouse eggs. J. Exp. Zool. 1976, 197, 369–374. [Google Scholar] [CrossRef]
- Whittingham, D.G. Fertilization In Vitro and development to term of unfertilized mouse oocytes previously stored at −196 degrees C. J. Reprod. Fertil. 1977, 49, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Dinnyés, A.; Dai, Y.; Jiang, S.; Yang, X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, In Vitro fertilization, and somatic cell nuclear transfer. Biol. Reprod. 2000, 63, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.D.; Motta, E.E.; Serafini, P. Theoretical and experimental basis of oocyte vitrification. Reprod. Biomed. Online 2011, 23, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Chian, R.-C.; Wang, Y.; Li, Y.-R. Oocyte vitrification: Advances, progress and future goals. J. Assist. Reprod. Genet. 2014, 31, 411–420. [Google Scholar] [CrossRef] [PubMed]
- De Santis, L.; Coticchio, G. Reprint of: Theoretical and experimental basis of slow freezing. Reprod. Biomed. Online 2011, 23, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Rienzi, L.; Gracia, C.; Maggiulli, R.; LaBarbera, A.R.; Kaser, D.J.; Ubaldi, F.M.; Vanderpoel, S.; Racowsky, C. Oocyte, embryo and blastocyst cryopreservation in ART: Systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum. Reprod. Update 2017, 23, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Boldt, J. Current results with slow freezing and vitrification of the human oocyte. Reprod. Biomed. Online 2011, 23, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Rall, W.F.; Fahy, G.M. Ice-free cryopreservation of mouse embryos at− 196 C by vitrification. Nature 1985, 313, 573–575. [Google Scholar] [CrossRef]
- Arav, A.; Natan, Y. Vitrification of oocytes: From basic science to clinical application. Adv. Exp. Med. Biol. 2013, 761, 69–83. [Google Scholar] [CrossRef]
- Cil, A.P.; Seli, E. Current trends and progress in clinical applications of oocyte cryopreservation. Curr. Opin. Obs. Gynecol. 2013, 25, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, B.; Ueno, S.; Nakayama, N.; Matsunari, H.; Nakano, K.; Fujiwara, T.; Ikezawa, Y.; Nagashima, H. Developmental ability of porcine In Vitro matured oocytes at the meiosis II stage after vitrification. J. Reprod. Dev. 2010, 56, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Park, K.E.; Kwon, I.K.; Han, M.S.; Niwa, K. Effects of partial removal of cytoplasmic lipid on survival of vitrified germinal vesicle stage pig oocytes. J. Reprod. Dev. 2005, 51, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Wolf, D. The non-human primate oocyte and embryo as a model for women, or is it vice versa? Theriogenology 2008, 69, 31–36. [Google Scholar] [CrossRef] [PubMed]
- DeMayo, F.J.; Rawlins, R.G.; Dukelow, W.R. Xenogenous and In Vitro fertilization of frozen/thawed primate oocytes and blastomere separation of embryos. Fertil. Steril. 1985, 43, 295–300. [Google Scholar] [CrossRef]
- Lanzendorf, S.; Holmgren, W.; Schaffer, N.; Hatasaka, H.; Wentz, A.; Jeyendran, R. In Vitro fertilization and gamete micromanipulation in the lowland gorilla. J. Assist. Reprod. Genet. 1992, 9, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Songsasen, N.; Ratterree, M.; VandeVoort, C.; Pegg, D.; Leibo, S. Permeability characteristics and osmotic sensitivity of rhesus monkey (Macaca mulatta) oocytes. Hum. Reprod. 2002, 17, 1875–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. Pregnancy after human oocyte cryopreservation. Lancet 1986, 327, 884–886. [Google Scholar] [CrossRef]
- Koutlaki, N.; Schoepper, B.; Maroulis, G.; Diedrich, K.; Al-Hasani, S. Human oocyte cryopreservation: Past, present and future. Reprod. BioMed. Online 2006, 13, 427–436. [Google Scholar] [CrossRef]
- Ethics, E.T.F.O.; Law, I.; Dondorp, W.; de Wert, G.; Pennings, G.; Shenfield, F.; Devroey, P.; Tarlatzis, B.; Barri, P.; Diedrich, K. Oocyte cryopreservation for age-related fertility loss. Hum. Reprod. 2012, 27, 1231–1237. [Google Scholar]
- Cobo, A.; Meseguer, M.; Remohí, J.; Pellicer, A. Use of cryo-banked oocytes in an ovum donation programme: A prospective, randomized, controlled, clinical trial. Hum. Reprod. 2010, 25, 2239–2246. [Google Scholar] [CrossRef] [Green Version]
- Platts, S.; Trigg, B.; Bracewell-Milnes, T.; Jones, B.P.; Saso, S.; Parikh, J.; Nicopoullos, J.; Almeida, P.; Norman-Taylor, J.; Nikolaou, D. Exploring women’s attitudes, knowledge, and intentions to use oocyte freezing for non-medical reasons: A systematic review. Acta Obstet. Gynecol. Scand. 2021, 100, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Levi-Setti, P.E.; Patrizio, P.; Scaravelli, G. Evolution of human oocyte cryopreservation: Slow freezing versus vitrification. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Leibo, S.P. Water permeability and its activation energy of fertilized and unfertilized mouse ova. J. Membr. Biol. 1980, 53, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Ashwood-Smith, M.J.; Morris, G.W.; Fowler, R.; Appleton, T.C.; Ashorn, R. Physical factors are involved in the destruction of embryos and oocytes during freezing and thawing procedures. Hum. Reprod. 1988, 3, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Saunders, K.M.; Parks, J.E. Effects of cryopreservation procedures on the cytology and fertilization rate of In Vitro-matured bovine oocytes. Biol. Reprod. 1999, 61, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.M.; Oranratnachai, A.; Trounson, A.O. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 2000, 53, 59–72. [Google Scholar] [CrossRef]
- Leibo, S.P.; McGrath, J.J.; Cravalho, E.G. Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology 1978, 15, 257–271. [Google Scholar] [CrossRef]
- Glenister, P.H.; Wood, M.J.; Kirby, C.; Whittingham, D.G. Incidence of chromosome anomalies in first-cleavage mouse embryos obtained from frozen-thawed oocytes fertilized In Vitro. Gamete Res. 1987, 16, 205–216. [Google Scholar] [CrossRef]
- Arav, A.; Shehu, D.; Mattioli, M. Osmotic and cytotoxic study of vitrification of immature bovine oocytes. J. Reprod. Fertil. 1993, 99, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Agca, Y.; Liu, J.; Rutledge, J.J.; Critser, E.S.; Critser, J.K. Effect of osmotic stress on the developmental competence of germinal vesicle and metaphase II stage bovine cumulus oocyte complexes and its relevance to cryopreservation. Mol. Reprod. Dev. 2000, 55, 212–219. [Google Scholar] [CrossRef]
- Tharasanit, T.; Colenbrander, B.; Stout, T.A. Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes. Mol. Reprod. Dev. 2006, 73, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.; Depypere, H.; Matthews, C.D. Freeze-thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen-thawed mouse oocytes. J. Reprod. Fertil. 1990, 90, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Li, C.Y.; Zhu, H.B.; Hao, H.S.; Wang, H.Y.; Yan, C.L.; Zhao, S.J.; Du, W.H.; Wang, D.; Liu, Y.; et al. Effect of vitrification on the mRNA transcriptome of bovine oocytes. Reprod. Domest. Anim. 2017, 52, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Pan, B.; Yang, H.; Qazi, I.H.; Wu, Z.; Zeng, C.; Zhang, M.; Meng, Q.; Zhou, G. Expression of CD9 and CD81 in bovine germinal vesicle oocytes after vitrification followed by In Vitro maturation. Cryobiology 2018, 81, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, B.; Szurek, E.A.; Schall, P.; Latham, K.E.; Eroglu, A. Probing lasting cryoinjuries to oocyte-embryo transcriptome. PLoS ONE 2020, 15, e0231108. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Xiang, D.; Fu, X.; Shao, Q.; Hong, Q.; Quan, G.; Wu, G. Proteomic changes of porcine oocytes after vitrification and subsequent in vitro maturation: A Tandem Mass Tag-based quantitative analysis. Front. Cell Dev. Biol. 2020, 8, 614577. [Google Scholar] [CrossRef] [PubMed]
- Elliott, G.D.; Wang, S.; Fuller, B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017, 76, 74–91. [Google Scholar] [CrossRef]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transpl. 2021, 30, 963689721999617. [Google Scholar] [CrossRef]
- Mazur, P. Cryobiology: The freezing of biological systems. Science 1970, 168, 939–949. [Google Scholar] [CrossRef]
- Fuller, B.J. Cryoprotectants: The essential antifreezes to protect life in the frozen state. CryoLetters 2004, 25, 375–388. [Google Scholar] [PubMed]
- Eroglu, A. Cryopreservation of mammalian oocytes by using sugars: Intra- and extracellular raffinose with small amounts of dimethylsulfoxide yields high cryosurvival, fertilization, and development rates. Cryobiology 2010, 60, S54–S59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seet, V.Y.; Al-Samerria, S.; Wong, J.; Stanger, J.; Yovich, J.L.; Almahbobi, G. Optimising vitrification of human oocytes using multiple cryoprotectants and morphological and functional assessment. Reprod. Fertil. Dev. 2013, 25, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Kohaya, N.; Fujiwara, K.; Ito, J.; Kashiwazaki, N. High developmental rates of mouse oocytes cryopreserved by an optimized vitrification protocol: The effects of cryoprotectants, calcium and cumulus cells. J. Reprod. Dev. 2011, 57, 675–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tharasanit, T.; Manee-In, S.; Buarpung, S.; Chatdarong, K.; Lohachit, C.; Techakumphu, M. Successful pregnancy following transfer of feline embryos derived from vitrified immature cat oocytes using “stepwise” cryoprotectant exposure technique. Theriogenology 2011, 76, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Vajta, G.; Nagy, Z.P.; Cobo, A.; Conceicao, J.; Yovich, J. Vitrification in assisted reproduction: Myths, mistakes, disbeliefs and confusion. Reprod. Biomed. Online 2009, 19, 1–7. [Google Scholar] [CrossRef]
- Woods, E.J.; Benson, J.D.; Agca, Y.; Critser, J.K. Fundamental cryobiology of reproductive cells and tissues. Cryobiology 2004, 48, 146–156. [Google Scholar] [CrossRef]
- Vajta, G.; Holm, P.; Kuwayama, M.; Booth, P.J.; Jacobsen, H.; Greve, T.; Callesen, H. Open Pulled Straw (OPS) vitrification: A new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 1998, 51, 53–58. [Google Scholar] [CrossRef]
- Lane, M.; Bavister, B.D.; Lyons, E.A.; Forest, K.T. Containerless vitrification of mammalian oocytes and embryos. Nat. Biotechnol. 1999, 17, 1234–1236. [Google Scholar] [CrossRef]
- Martino, A.; Songsasen, N.; Leibo, S.P. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol. Reprod. 1996, 54, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Kuwayama, M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology 2007, 67, 73–80. [Google Scholar] [CrossRef]
- Nakagata, N.; Takeo, T.; Fukumoto, K.; Kondo, T.; Haruguchi, Y.; Takeshita, Y.; Nakamuta, Y.; Matsunaga, H.; Tsuchiyama, S.; Ishizuka, Y.; et al. Applications of cryopreserved unfertilized mouse oocytes for In Vitro fertilization. Cryobiology 2013, 67, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Mochida, K. Development of assisted reproductive technologies in small animal species for their efficient preservation and production. J. Reprod. Dev. 2020, 66, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.E.; Gómez, M.C.; Kagawa, N.; Kuwayama, M.; Leibo, S.P.; Dresser, B.L. In Vivo survival of domestic cat oocytes after vitrification, intracytoplasmic sperm injection and embryo transfer. Theriogenology 2012, 77, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Galiguis, J.; Gómez, M.C.; Leibo, S.P.; Pope, C.E. Birth of a domestic cat kitten produced by vitrification of lipid polarized In Vitro matured oocytes. Cryobiology 2014, 68, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Somfai, T.; Yoshioka, K.; Tanihara, F.; Kaneko, H.; Noguchi, J.; Kashiwazaki, N.; Nagai, T.; Kikuchi, K. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for In Vitro embryo production. PLoS ONE 2014, 9, e97731. [Google Scholar] [CrossRef]
- Fuku, E.; Kojima, T.; Shioya, Y.; Marcus, G.J.; Downey, B.R. In Vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology 1992, 29, 485–492. [Google Scholar] [CrossRef]
- Otoi, T.; Yamamoto, K.; Koyama, N.; Suzuki, T. In Vitro fertilization and development of immature and mature bovine oocytes cryopreserved by ethylene glycol with sucrose. Cryobiology 1995, 32, 455–460. [Google Scholar] [CrossRef]
- Suzuki, T.; Boediono, A.; Takagi, M.; Saha, S.; Sumantri, C. Fertilization and development of frozen-thawed germinal vesicle bovine oocytes by a one-step dilution method In Vitro. Cryobiology 1996, 33, 515–524. [Google Scholar] [CrossRef]
- Maclellan, L.J.; Carnevale, E.M.; Coutinho da Silva, M.A.; Scoggin, C.F.; Bruemmer, J.E.; Squires, E.L. Pregnancies from vitrified equine oocytes collected from super-stimulated and non-stimulated mares. Theriogenology 2002, 58, 911–919. [Google Scholar] [CrossRef]
- Ortiz-Escribano, N.; Bogado Pascottini, O.; Woelders, H.; Vandenberghe, L.; De Schauwer, C.; Govaere, J.; Van den Abbeel, E.; Vullers, T.; Ververs, C.; Roels, K.; et al. An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Vet. J. 2018, 50, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Hamano, S.; Koikeda, A.; Kuwayama, M.; Nagai, T. Full-term development of In Vitro-matured, vitrified and fertilized bovine oocytes. Theriogenology 1992, 38, 1085–1090. [Google Scholar] [CrossRef]
- Martino, A.; Pollard, J.W.; Leibo, S.P. Effect of chilling bovine oocytes on their developmental competence. Mol. Reprod. Dev. 1996, 45, 503–512. [Google Scholar] [CrossRef]
- Kubota, C.; Yang, X.; Dinnyes, A.; Todoroki, J.; Yamakuchi, H.; Mizoshita, K.; Inohae, S.; Tabara, N. In Vitro and in vivo survival of frozen-thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation. Mol. Reprod. Dev. 1998, 51, 281–286. [Google Scholar] [CrossRef]
- Vieira, A.D.; Forell, F.; Feltrin, C.; Rodrigues, J.L. Calves born after direct transfer of vitrified bovine In Vitro-produced blastocysts derived from vitrified immature oocytes. Reprod. Domest. Anim. 2008, 43, 314–318. [Google Scholar] [CrossRef]
- Mavrides, A.; Morroll, D. Cryopreservation of bovine oocytes: Is cryoloop vitrification the future to preserving the female gamete? Reprod. Nutr. Dev. 2002, 42, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chian, R.C.; Kuwayama, M.; Tan, L.; Tan, J.; Kato, O.; Nagai, T. High survival rate of bovine oocytes matured In Vitro following vitrification. J. Reprod. Dev. 2004, 50, 685–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinen, S.; Yamanaka, T.; Nakayama, K.; Watanabe, H.; Akiyama, Y.; Hirabayashi, M.; Hochi, S. Nylon mesh cryodevice for bovine mature oocytes, easily removable excess vitrification solution. Cryobiology 2019, 90, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Chinen, S.; Teshima, J.; Tamada, Y.; Hirabayashi, M.; Hochi, S. Silk fibroin sheet multilayer suitable for vitrification of In Vitro-matured bovine oocytes. Theriogenology 2020, 145, 109–114. [Google Scholar] [CrossRef]
- Papis, K.; Shimizu, M.; Izaike, Y. Factors affecting the survivability of bovine oocytes vitrified in droplets. Theriogenology 2000, 54, 651–658. [Google Scholar] [CrossRef]
- Kuwayama, M.; Vajta, G.; Ieda, S.; Kato, O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod. Biomed. Online 2005, 11, 608–614. [Google Scholar] [CrossRef]
- Bhat, M.H.; Sharma, V.; Khan, F.A.; Naykoo, N.A.; Yaqoob, S.H.; Ruby; Khan, H.M.; Fazili, M.R.; Ganai, N.A.; Shah, R.A. Comparison of slow freezing and vitrification on ovine immature oocytes. CryoLetters 2014, 35, 77–82. [Google Scholar] [PubMed]
- Le Gal, F. In vitro maturation and fertilization of goat oocytes frozen at the germinal vesicle stage. Theriogenology 1996, 45, 1177–1185. [Google Scholar] [CrossRef]
- Purohit, G.N.; Meena, H.; Solanki, K. Effects of Vitrification on Immature and In Vitro Matured, Denuded and Cumulus Compact Goat Oocytes and Their Subsequent Fertilization. J. Reprod. Infertil. 2012, 13, 53–59. [Google Scholar] [PubMed]
- Quan, G.B.; Wu, G.Q.; Wang, Y.J.; Ma, Y.; Lv, C.R.; Hong, Q.H. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevices. Cryobiology 2016, 72, 33–40. [Google Scholar] [CrossRef]
- Moawad, A.R.; Zhu, J.; Choi, I.; Amarnath, D.; Chen, W.; Campbell, K.H. Production of good-quality blastocyst embryos following IVF of ovine oocytes vitrified at the germinal vesicle stage using a cryoloop. Reprod. Fertil. Dev. 2013, 25, 1204–1215. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Asgari, V.; Ostadhosseini, S.; Hajian, M.; Ghanaei, H.R.; Nasr-Esfahani, M.H. Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei. Theriogenology 2015, 83, 366–376. [Google Scholar] [CrossRef]
- Succu, S.; Berlinguer, F.; Leoni, G.G.; Bebbere, D.; Satta, V.; Marco-Jimenez, F.; Pasciu, V.; Naitana, S. Calcium concentration in vitrification medium affects the developmental competence of In Vitro matured ovine oocytes. Theriogenology 2011, 75, 715–721. [Google Scholar] [CrossRef]
- Davoodian, N.; Kadivar, A.; Ahmadi, E.; Nazari, H.; Mehrban, H. Quercetin effect on the efficiency of ovine oocyte vitrification at GV stage. Theriogenology 2021, 174, 53–59. [Google Scholar] [CrossRef]
- Moawad, A.R.; Choi, I.; Zhu, J.; El-Wishy, A.B.A.; Amarnath, D.; Chen, W.; Campbell, K.H.S. Caffeine and oocyte vitrification: Sheep as an animal model. Int. J. Vet. Sci. Med. 2018, 6, S41–S48. [Google Scholar] [CrossRef]
- Succu, S.; Leoni, G.G.; Bebbere, D.; Berlinguer, F.; Mossa, F.; Bogliolo, L.; Madeddu, M.; Ledda, S.; Naitana, S. Vitrification devices affect structural and molecular status of In Vitro matured ovine oocytes. Mol. Reprod. Dev. 2007, 74, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Crotti, G.; Notari, C.; Turini, P.; Duchi, R.; Lazzari, G. Embryo production by ovum pick up from live donors. Theriogenology 2001, 55, 1341–1357. [Google Scholar] [CrossRef]
- Lazzari, G.; Colleoni, S.; Crotti, G.; Turini, P.; Fiorini, G.; Barandalla, M.; Landriscina, L.; Dolci, G.; Benedetti, M.; Duchi, R.; et al. Laboratory Production of Equine Embryos. J. Equine Vet. Sci. 2020, 89, 103097. [Google Scholar] [CrossRef] [PubMed]
- Fortune, J.E.; Kimmich, T.L. Purified pig FSH increases the rate of double ovulation in mares. Equine Vet. J. 1993, 15, 95–98. [Google Scholar] [CrossRef]
- Hawley, L.R.; Enders, A.C.; Hinrichs, K. Comparison of Equine and Bovine Oocyte-Cumulus Morphology within the Ovarian Follicle1. Biol. Reprod. 2018, 52, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Dell’Aquila, M.E.; Cho, Y.S.; Minoia, P.; Traina, V.; Lacalandra, G.M.; Maritato, F. Effects of follicular fluid supplementation of in-vitro maturation medium on the fertilization and development of equine oocytes after in-vitro fertilization or intracytoplasmic sperm injection. Hum. Reprod. 1997, 12, 2766–2772. [Google Scholar] [CrossRef] [Green Version]
- Hochi, S.; Kozawa, M.; Fujimoto, T.; Hondo, E.; Yamada, J.; Oguri, N. In vitro maturation and transmission electron microscopic observation of horse oocytes after vitrification. Cryobiology 1996, 33, 300–310. [Google Scholar] [CrossRef]
- Ducheyne, K.D.; Rizzo, M.; Daels, P.F.; Stout, T.A.E.; de Ruijter-Villani, M. Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MII spindle. Reprod. Fertil. Dev. 2019, 31, 1330–1338. [Google Scholar] [CrossRef]
- Hurtt, A.E.; Landim-Alvarenga, F.; Seidel, G.E., Jr.; Squires, E.L. Vitrification of immature and mature equine and bovine oocytes in an ethylene glycol, ficoll and sucrose solution using open-pulled straws. Theriogenology 2000, 54, 119–128. [Google Scholar] [CrossRef]
- Angel, D.; Canesin, H.S.; Brom-de-Luna, J.G.; Morado, S.; Dalvit, G.; Gomez, D.; Posada, N.; Pascottini, O.B.; Urrego, R.; Hinrichs, K.; et al. Embryo development after vitrification of immature and In Vitro-matured equine oocytes. Cryobiology 2020, 92, 251–254. [Google Scholar] [CrossRef]
- Canesin, H.S.; Brom-de-Luna, J.G.; Choi, Y.H.; Pereira, A.M.; Macedo, G.G.; Hinrichs, K. Vitrification of germinal-vesicle stage equine oocytes: Effect of cryoprotectant exposure time on in-vitro embryo production. Cryobiology 2018, 81, 185–191. [Google Scholar] [CrossRef]
- Agnieszka, N.; Joanna, K.; Wojciech, W.; Adam, O. In vitro maturation of equine oocytes followed by two vitrification protocols and subjected to either intracytoplasmic sperm injection (ICSI) or parthenogenic activation. Theriogenology 2021, 162, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Clérico, G.; Taminelli, G.; Veronesi, J.C.; Polola, J.; Pagura, N.; Pinto, C.; Sansinena, M. Mitochondrial function, blastocyst development and live foals born after ICSI of immature vitrified/warmed equine oocytes matured with or without melatonin. Theriogenology 2021, 160, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Tharasanit, T.; Colleoni, S.; Lazzari, G.; Colenbrander, B.; Galli, C.; Stout, T.A. Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes. Reproduction 2006, 132, 759–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appeltant, R.; Somfai, T.; Santos, E.C.S.; Dang-Nguyen, T.Q.; Nagai, T.; Kikuchi, K. Effects of vitrification of cumulus-enclosed porcine oocytes at the germinal vesicle stage on cumulus expansion, nuclear progression and cytoplasmic maturation. Reprod. Fertil. Dev. 2017, 29, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Genicot, G.; Leroy, J.L.; Soom, A.V.; Donnay, I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 2005, 63, 1181–1194. [Google Scholar] [CrossRef]
- Ren, L.; Fu, B.; Ma, H.; Liu, D. Effects of mechanical delipation in porcine oocytes on mitochondrial distribution, ROS activity and viability after vitrification. CryoLetters 2015, 36, 30–36. [Google Scholar]
- Hara, K.; Abe, Y.; Kumada, N.; Aono, N.; Kobayashi, J.; Matsumoto, H.; Sasada, H.; Sato, E. Extrusion and removal of lipid from the cytoplasm of porcine oocytes at the germinal vesicle stage: Centrifugation under hypertonic conditions influences vitrification. Cryobiology 2005, 50, 216–222. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, M.C.; Lee, P.T.; Lin, T.T. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment. CryoLetters 2012, 33, 349–362. [Google Scholar]
- López, A.; Ducolomb, Y.; Casas, E.; Retana-Márquez, S.; Betancourt, M.; Casillas, F. Effects of Porcine Immature Oocyte Vitrification on Actin Microfilament Distribution and Chromatin Integrity During Early Embryo Development In Vitro. Front. Cell Dev. Biol. 2021, 9, 636765. [Google Scholar] [CrossRef]
- Dai, J.; Wu, C.; Muneri, C.W.; Niu, Y.; Zhang, S.; Rui, R.; Zhang, D. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 2015, 71, 291–298. [Google Scholar] [CrossRef]
- Spinaci, M.; Vallorani, C.; Bucci, D.; Tamanini, C.; Porcu, E.; Galeati, G. Vitrification of pig oocytes induces changes in histone H4 acetylation and histone H3 lysine 9 methylation (H3K9). Vet. Res. Commun. 2012, 36, 165–171. [Google Scholar] [CrossRef]
- Hirose, M.; Kamoshita, M.; Fujiwara, K.; Kato, T.; Nakamura, A.; Wojcikiewicz, R.J.; Parys, J.B.; Ito, J.; Kashiwazaki, N. Vitrification procedure decreases inositol 1,4,5-trisphophate receptor expression, resulting in low fertility of pig oocytes. Anim. Sci. J. 2013, 84, 693–701. [Google Scholar] [CrossRef]
- Jia, B.Y.; Xiang, D.C.; Quan, G.B.; Zhang, B.; Shao, Q.Y.; Hong, Q.H.; Wu, G.Q. Transcriptome analysis of porcine immature oocytes and surrounding cumulus cells after vitrification and in vitro maturation. Theriogenology 2019, 134, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Somfai, T.; Kikuchi, K.; Nagai, T. Factors affecting cryopreservation of porcine oocytes. J. Reprod. Dev. 2012, 58, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egerszegi, I.; Somfai, T.; Nakai, M.; Tanihara, F.; Noguchi, J.; Kaneko, H.; Nagai, T.; Rátky, J.; Kikuchi, K. Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after In Vitro maturation in a porcine model. Cryobiology 2013, 67, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Jia, B.; Mo, X.; Liu, C.; Fu, X.; Zhu, S.; Hou, Y. Nuclear maturation and embryo development of porcine oocytes vitrified by cryotop: Effect of different stages of In Vitro maturation. Cryobiology 2013, 67, 95–101. [Google Scholar] [CrossRef]
- Somfai, T.; Ozawa, M.; Noguchi, J.; Kaneko, H.; Kuriani Karja, N.W.; Farhudin, M.; Dinnyés, A.; Nagai, T.; Kikuchi, K. Developmental competence of In Vitro-fertilized porcine oocytes after In Vitro maturation and solid surface vitrification: Effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 2007, 55, 115–126. [Google Scholar] [CrossRef]
- Mateo-Otero, Y.; Yeste, M.; Damato, A.; Giaretta, E. Cryopreservation and oxidative stress in porcine oocytes. Res. Vet. Sci. 2021, 135, 20–26. [Google Scholar] [CrossRef]
- Dai, J.J.; Niu, Y.F.; Wu, C.F.; Zhang, S.H.; Zhang, D.F. Both death receptor and mitochondria mediated apoptotic pathways participated the occurrence of apoptosis in porcine vitrified mii stage oocytes. CryoLetters 2016, 37, 129–136. [Google Scholar]
- Vallorani, C.; Spinaci, M.; Bucci, D.; Porcu, E.; Tamanini, C.; Galeati, G. Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim. Reprod. Sci. 2012, 135, 68–74. [Google Scholar] [CrossRef]
- Xiang, D.C.; Jia, B.Y.; Fu, X.W.; Guo, J.X.; Hong, Q.H.; Quan, G.B.; Wu, G.Q. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes. Theriogenology 2021, 167, 13–23. [Google Scholar] [CrossRef]
- Niu, Y.; Dai, J.; Chen, Y.; Wu, C.; Zhang, S.; Zhang, D. Positive effect of apoptotic inhibitor z-vad-fmk on vitrified-thawed porcine mii stage oocytes. CryoLetters 2016, 37, 188–195. [Google Scholar]
- Reynaud, K.; Fontbonne, A.; Marseloo, N.; Viaris de Lesegno, C.; Saint-Dizier, M.; Chastant-Maillard, S. In vivo canine oocyte maturation, fertilization and early embryogenesis: A review. Theriogenology 2006, 66, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Songsasen, N.; Wildt, D.E. Oocyte biology and challenges in developing In Vitro maturation systems in the domestic dog. Anim. Reprod. Sci. 2007, 98, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Park, K.B.; Choi, E.J.; Hyun, S.H.; Kim, N.H.; Jeong, Y.W.; Hwang, W.S. Relationship between time post-ovulation and progesterone on oocyte maturation and pregnancy in canine cloning. Anim. Reprod. Sci. 2017, 185, 75–82. [Google Scholar] [CrossRef]
- Reynaud, K.; Saint-Dizier, M.; Tahir, M.Z.; Havard, T.; Harichaux, G.; Labas, V.; Thoumire, S.; Fontbonne, A.; Grimard, B.; Chastant-Maillard, S. Progesterone plays a critical role in canine oocyte maturation and fertilization. Biol. Reprod. 2015, 93, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turathum, B.; Saikhun, K.; Sangsuwan, P.; Kitiyanant, Y. Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol. 2010, 8, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, Y.; Asano, T.; Ali, M.; Suzuki, H. Vitrification of canine cumulus-oocyte complexes in DAP213 with a cryotop holder. Reprod. Med. Biol. 2010, 9, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Boutelle, S.; Lenahan, K.; Krisher, R.; Bauman, K.L.; Asa, C.S.; Silber, S. Vitrification of oocytes from endangered Mexican gray wolves (Canis lupus baileyi). Theriogenology 2011, 75, 647–654. [Google Scholar] [CrossRef]
- Zhou, G.B.; Ma, C.B.; Liu, G.S.; Zhu, S.E.; Zhang, H.H.; Jia, L.L.; Suo, L.; Shi, J.M.; Wang, Y.B.; Tian, J.H.; et al. Vitrification of farmed blue fox oocytes in ethylene glycol and DMSO-based solutions using open-pulled straw (OPS). CryoLetters 2009, 30, 112–118. [Google Scholar]
- Gómez, M.C.; Pope, E.; Harris, R.; Mikota, S.; Dresser, B.L. Development of In Vitro matured, In Vitro fertilized domestic cat embryos following cryopreservation, culture and transfer. Theriogenology 2003, 60, 239–251. [Google Scholar] [CrossRef]
- Pope, C.E.; Gómez, M.C.; Dresser, B.L. In vitro production and transfer of cat embryos in the 21st century. Theriogenology 2006, 66, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Sananmuang, T.; Tharasanit, T.; Nguyen, C.; Phutikanit, N.; Techakumphu, M. Culture medium and embryo density influence on developmental competence and gene expression of cat embryos. Theriogenology 2011, 75, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Kanda, M.; Miyazaki, T.; Kanda, M.; Nakao, H.; Tsutsui, T. Development of In Vitro fertilized feline embryos in a modified Earle’s balanced salt solution: Influence of protein supplements and culture dishes on fertilization success and blastocyst formation. J. Vet. Med. Sci. 1998, 60, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freistedt, P.; Stojkovic, M.; Wolf, E. Efficient In Vitro production of cat embryos in modified synthetic oviduct fluid medium: Effects of season and ovarian status. Biol. Reprod. 2001, 65, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Herrick, J.R.; Bond, J.B.; Magarey, G.M.; Bateman, H.L.; Krisher, R.L.; Dunford, S.A.; Swanson, W.F. Toward a feline-optimized culture medium: Impact of ions, carbohydrates, essential amino acids, vitamins, and serum on development and metabolism of In Vitro fertilization-derived feline embryos relative to embryos grown in vivo. Biol. Reprod. 2007, 76, 858–870. [Google Scholar] [CrossRef] [Green Version]
- Comizzoli, P.; Wildt, D.E.; Pukazhenthi, B.S. Impact of anisosmotic conditions on structural and functional integrity of cumulus-oocyte complexes at the germinal vesicle stage in the domestic cat. Mol. Reprod. Dev. 2008, 75, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Luvoni, G.C.; Pellizzari, P. Embryo development In Vitro of cat oocytes cryopreserved at different maturation stages. Theriogenology 2000, 53, 1529–1540. [Google Scholar] [CrossRef]
- Sowińska, N.; Zahmel, J.; Niżański, W.; Hribal, R.; Fernandez-Gonzalez, L.; Jewgenow, K. Meiotic status does not affect the vitrificatione Effectiveness of domestic cat oocytes. Animals 2020, 10, 1371. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, L.; Huebinger, J.; Jewgenow, K. Comparison of different materials for self-pressurized vitrification of feline oocytes-first results. Animals 2021, 11, 1314. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalez, L.; Jewgenow, K. Cryopreservation of feline oocytes by vitrification using commercial kits and slush nitrogen technique. Reprod. Domest. Anim. 2017, 52 (Suppl. 2), 230–234. [Google Scholar] [CrossRef]
- Cocchia, N.; Ciani, F.; Russo, M.; El Rass, R.; Rosapane, I.; Avallone, L.; Tortora, G.; Lorizio, R. Immature cat oocyte vitrification in open pulled straws (OPSs) using a cryoprotectant mixture. Cryobiology 2010, 60, 229–234. [Google Scholar] [CrossRef]
- Nowak, A.; Kochan, J.; Świętek, E.; Kij, B.; Prochowska, S.; Witarski, W.; Bugno-Poniewierska, M.; Niżański, W. Survivability and developmental competences of domestic cat (Felis catus) oocytes after Cryotech method vitrification. Reprod. Domest. Anim. 2020, 55, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Arayatham, S.; Tiptanavattana, N.; Tharasanit, T. Effects of vitrification and a Rho-associated coiled-coil containing protein kinase 1 inhibitor on the meiotic and developmental competence of feline oocytes. J. Reprod. Dev. 2017, 63, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Younis, A.; Toner, M.; Albertini, D.; Biggers, J. Cryobiology of non-human primate oocytes. Hum. Reprod. 1996, 11, 156–165. [Google Scholar] [CrossRef] [Green Version]
- VandeVoort, C.A.; Leibo, S. Effect of cooling and exposure to ethylene glycol on In Vitro maturation and embryo development of rhesus oocytes. CryoLetters 2005, 26, 305–312. [Google Scholar] [PubMed]
- VandeVoort, C.A.; Shirley, C.R.; Hill, D.L.; Leibo, S. Effects of cryoprotectants and cryopreservation on germinal vesicle-stage cumulus–oocyte complexes of rhesus monkeys. Fertil. Steril. 2008, 90, 805–816. [Google Scholar] [CrossRef]
- Paynter, S.; Cooper, A.; Gregory, L.; Fuller, B.; Shaw, R. Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. Hum. Reprod. 1999, 14, 2338–2342. [Google Scholar] [CrossRef]
- Fuller, B. The permeability of unfertilised oocytes to 1, 2 propanediol-a comparison of mouse and human cells. CryoLetters 1992, 7, 287–292. [Google Scholar]
- Gook, D.A.; Osborn, S.M.; Johnston, W. Cryopreservation of mouse and human oocytes using 1, 2-propanediol and the configuration of the meiotic spindle. Hum. Reprod. 1993, 8, 1101–1109. [Google Scholar] [CrossRef]
- Gook, D.A.; Osborn, S.M.; Bourne, H.; Johnston, W. Fertilization of human oocytes following cryopreservation; normal karyotypes and absence of stray chromosomes. Hum. Reprod. 1994, 9, 684–691. [Google Scholar] [CrossRef]
- Yang, D. A successful human oocyte crypreservation regime: Survival, implantation and pregnancy rates are comparable to that of cryopreserved embryos generated from sibling oocytes. Fertil. Steril. 1999, 72, S86. [Google Scholar]
- Boldt, J.; Cline, D.; McLaughlin, D. Human oocyte cryopreservation as an adjunct to IVF–embryo transfer cycles. Hum. Reprod. 2003, 18, 1250–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monzo, C.; Haouzi, D.; Roman, K.; Assou, S.; Dechaud, H.; Hamamah, S. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Hum. Reprod. 2012, 27, 2160–2168. [Google Scholar] [CrossRef] [PubMed]
- Pensis, M.; Loumaye, E.; Psalti, I. Screening of conditions for rapid freezing of human oocytes: Preliminary study toward their cryopreservation. Fertil. Steril. 1989, 52, 787–794. [Google Scholar] [CrossRef]
- Kuleshova, L.; Gianaroli, L.; Magli, C.; Ferraretti, A.; Trounson, A. Birth following vitrification of a small number of human oocytes: Case report. Hum. Reprod. 1999, 14, 3077–3079. [Google Scholar] [CrossRef] [Green Version]
- De Munck, N.; Vajta, G. Safety and efficiency of oocyte vitrification. Cryobiology 2017, 78, 119–127. [Google Scholar] [CrossRef]
- Isachenko, V.; Montag, M.; Isachenko, E.; Zaeva, V.; Krivokharchenko, I.; Shafei, R.; Van der Ven, H. Aseptic technology of vitrification of human pronuclear oocytes using open-pulled straws. Hum. Reprod. 2005, 20, 492–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalili, M.A.; Maione, M.; Palmerini, M.G.; Bianchi, S.; Macchiarelli, G.; Nottola, S.A. Ultrastructure of human mature oocytes after vitrification. Eur. J. Histochem. EJH 2012, 56, e38. [Google Scholar] [CrossRef]
- Nottola, S.; Macchiarelli, G.; Coticchio, G.; Bianchi, S.; Cecconi, S.; De Santis, L.; Scaravelli, G.; Flamigni, C.; Borini, A. Ultrastructure of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum. Reprod. 2007, 22, 1123–1133. [Google Scholar] [CrossRef] [Green Version]
- Nottola, S.A.; Coticchio, G.; De Santis, L.; Macchiarelli, G.; Maione, M.; Bianchi, S.; Iaccarino, M.; Flamigni, C.; Borini, A. Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reprod. Biomed. Online 2008, 17, 368–377. [Google Scholar] [CrossRef]
- Mullen, S.F.; Li, M.; Li, Y.; Chen, Z.-J.; Critser, J.K. Human oocyte vitrification: The permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification. Fertil. Steril. 2008, 89, 1812–1825. [Google Scholar] [CrossRef] [Green Version]
- Di Pietro, C.; Vento, M.; Guglielmino, M.; Borzì, P.; Santonocito, M.; Ragusa, M.; Barbagallo, D.; Duro, L.; Majorana, A.; De Palma, A. Molecular profiling of human oocytes after vitrification strongly suggests that they are biologically comparable with freshly isolated gametes. Fertil. Steril. 2010, 94, 2804–2807. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Yuan, P.; Qin, Q.; Yan, Z.; Yan, L.; Liu, P.; Li, R.; Yan, J.; Qiao, J. Effects of vitrification and cryostorage duration on single-cell RNA-Seq profiling of vitrified-thawed human metaphase II oocytes. Front. Med. 2021, 15, 144–154. [Google Scholar] [CrossRef] [PubMed]
- De Munck, N.; Petrussa, L.; Verheyen, G.; Staessen, C.; Vandeskelde, Y.; Sterckx, J.; Bocken, G.; Jacobs, K.; Stoop, D.; De Rycke, M. Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy) methylation analysis consolidate the safety of human oocyte vitrification. Mhr Basic Sci. Reprod. Med. 2015, 21, 535–544. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Liu, F.; Song, Y.; Liu, Y. Evaluation of differentially expressed microRNAs in vitrified oocytes by next generation sequencing. Int. J. Biochem. Cell Biol. 2019, 112, 134–140. [Google Scholar] [CrossRef]
- Comizzoli, P.; Holt, W.V. Recent advances and prospects in germplasm preservation of rare and endangered species. Adv. Exp. Med. Biol. 2014, 753, 331–356. [Google Scholar] [CrossRef]
- Konc, J.; Kanyó, K.; Kriston, R.; Somoskői, B.; Cseh, S. Cryopreservation of embryos and oocytes in human assisted reproduction. Biomed. Res. Int. 2014, 2014, 307268. [Google Scholar] [CrossRef] [Green Version]
- Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in patients facing gonadotoxic therapies: A committee opinion. Fertil. Steril. 2013, 100, 1224–1231. [Google Scholar] [CrossRef]
- Martinez, F.; Andersen, C.Y.; Barri, P.; Brannigan, R.; Cobo, A.; Donnez, J.; Dolmans, M.M.; Evers, J.H.; Feki, A.; Goddijn, M. Update on fertility preservation from the Barcelona International Society for Fertility Preservation–ESHRE–ASRM 2015 expert meeting: Indications, results and future perspectives. Fertil. Steril. 2017, 108, 407–415.e411. [Google Scholar] [CrossRef] [Green Version]
- Cobo, A.; Garcia-Velasco, J.A.; Domingo, J.; Remohí, J.; Pellicer, A. Is vitrification of oocytes useful for fertility preservation for age-related fertility decline and in cancer patients? Fertil. Steril. 2013, 99, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.S.; Lee, H.-J.; Hassell, B.A.; Irimia, D.; Toth, T.L.; Elmoazzen, H.; Toner, M. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab. Chip 2011, 11, 3530–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gac, S.; Ferraz, M.; Venzac, B.; Comizzoli, P. Understanding and Assisting Reproduction in Wildlife Species Using Microfluidics. Trends Biotechnol. 2021, 39, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Anifandis, G.; Messini, C.I.; Simopoulou, M.; Sveronis, G.; Garas, A.; Daponte, A.; Messinis, I.E. SARS-CoV-2 vs. human gametes, embryos and cryopreservation. Syst. Biol. Reprod. Med. 2021, 64, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.M.; Bouissou, D.R.; Pereira, V.M.; Camargos, A.F.; dos Reis, A.M.; Santos, R.A. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil. Steril. 2011, 95, 176–181. [Google Scholar] [CrossRef]
- Barragan, M.; Guillén, J.; Martin-Palomino, N.; Rodriguez, A.; Vassena, R. Undetectable viral RNA in oocytes from SARS-CoV-2 positive women. Hum. Reprod. 2021, 36, 390–394. [Google Scholar] [CrossRef]
- Demirel, C.; Tulek, F.; Celik, H.G.; Donmez, E.; Tuysuz, G.; Gökcan, B. Failure to detect viral RNA in follicular fluid aspirates from a SARS-CoV-2-positive woman. Reprod. Sci. 2021, 8, 2144–2146. [Google Scholar] [CrossRef]
- Porcu, E.; Tranquillo, M.L.; Notarangelo, L.; Ciotti, P.M.; Calza, N.; Zuffa, S.; Mori, L.; Nardi, E.; Dirodi, M.; Cipriani, L. High-security closed devices are efficient and safe to protect human oocytes from potential risk of viral contamination during vitrification and storage especially in the COVID-19 pandemic. J. Assist. Reprod. Genet. 2021, 38, 681–688. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tharasanit, T.; Thuwanut, P. Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals 2021, 11, 2949. https://doi.org/10.3390/ani11102949
Tharasanit T, Thuwanut P. Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals. 2021; 11(10):2949. https://doi.org/10.3390/ani11102949
Chicago/Turabian StyleTharasanit, Theerawat, and Paweena Thuwanut. 2021. "Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes" Animals 11, no. 10: 2949. https://doi.org/10.3390/ani11102949
APA StyleTharasanit, T., & Thuwanut, P. (2021). Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals, 11(10), 2949. https://doi.org/10.3390/ani11102949