From the Atlantic Coast to Lake Tanganyika: Gill-Infecting Flatworms of Freshwater Pellonuline Clupeid Fishes in West and Central Africa, with Description of Eleven New Species and Key to Kapentagyrus (Monogenea, Dactylogyridae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Availability of Specimens
2.2. Microscopy and Morphometrics
3. Results
3.1. Negative Results
3.2. Multivariate Statistics
3.3. Taxonomic Account
3.3.1. Description of Kapentagyrus voreli n. sp.
3.3.2. Description of Kapentagyrus marispastoris n. sp.
3.3.3. Description of Kapentagyrus sefcae n. sp.
3.3.4. Description of Kapentagyrus parisellei n. sp.
3.3.5. Description of Kapentagyrus hugei n. sp.
3.3.6. Description of Kapentagyrus hahni n. sp.
3.3.7. Description of Kapentagyrus verbisti n. sp.
3.3.8. Description of Kapentagyrus chochamandai n. sp.
3.3.9. Description of Kapentagyrus bisthoveni n. sp.
3.3.10. Description of Kapentagyrus boegeri n. sp.
3.3.11. Description of Kapentagyrus rochetteae n. sp.
3.4. Identification Key to the Species of Kapentagyrus
- Length to notch of ventral anchors > 24 µm, and broad inner anchor roots, and total length of dorsal anchors > 31 µm: species infecting members of Odaxothrissa → (2)Anchors different → (4)
- Total length of ventral anchors > 40 µm, inner root length of ventral anchors > 22 µm …… Kapentagyrus sefcae n. sp. (parasite of Odaxothrissa losera)Total length of ventral anchors < 40 µm, inner root length of ventral anchors < 22 µm → (3)
- Dorsal anchor with inner root length > 18 µm and outer root length > 7 µm …… Kapentagyrus marispastoris n. sp. (parasite of Odaxothrissa mento)Dorsal anchor with inner root length < 18 µm and outer root length < 7 µm…… Kapentagyrus voreli n. sp. (parasite of Odaxothrissa ansorgii)
- Species infecting Limnothrissa miodon or Stolothrissa tanganicae, endemic to Lake Tanganyika → (5)Species infecting Nannothrissa parva, Pellonula leonensis, Potamothrissa acutirostris, or members of Microthrissa, outside of Lake Tanganyika → (6)
- Ratio of inner and outer root length of ventral anchors > 2.6, of length to notch of dorsal anchors and the first hook pair < 1.2 and of branch length of dorsal bar and the first pair of hooks < 1.5 …… Kapentagyrus limnotrissae (parasite of Limnothrissa miodon)Ratio of inner and outer root length of ventral anchors < 2.6, of length to notch of dorsal anchors and the first hook pair > 1.2 and of branch length of dorsal bar and the first pair of hooks > 1.5 …… Kapentagyrus tanganicanus (parasite of Limnothrissa miodon or Stolothrissa tanganicae)
- Species infecting Pellonula leonensis → (7)Species infecting Nannothrissa parva, Potamothrissa acutirostris, or Microthrissa sp. → (10)
- Total length of dorsal and ventral anchors ≥ 40 µm….… Kapentagyrus pellonulae (parasite of Pellonula leonensis)Total length of dorsal and ventral anchors < 40 µm → (8)
- Total length of dorsal anchors ≥ 35 and < 40 µm …… Kapentagyrus verbisti n. sp. (parasite of Pellonula leonensis)Total length of dorsal anchors < 35 µm → (9)
- Length to notch of ventral anchors < 19 µm …… Kapentagyrus hahni n. sp. (parasite of Pellonula leonensis)Length to notch of ventral anchors ≥ 19 µm …… Kapentagyrus hugei n. sp. (parasite of Pellonula leonensis)
- Ratio of inner root length of dorsal anchors and first pair of hooks > 1 → (11)Ratio of inner root length of dorsal anchors and first pairs of hooks < 1 → (13)
- Accessory piece looping copulatory tube from the right side, length of hook pairs HVI and HVII < 15 µm …… K. rochetteae n. sp. (parasite of Microthrissa royauxi)Accessory piece looping copulatory tube from the left side, length of hook pairs HVI and HVII > 15 µm → (12)
- Inner root of dorsal anchors < 12 µm …… Kapentagyrus boegeri n. sp. (parasite of Microthrissa congica)Inner root of dorsal anchors ≥ 12 µm …… Kapentagyrus bisthoveni n. sp. (parasite of Microthrissa congica)
- Length to notch of ventral anchor < 19 µm …… Kapentagyrus parisellei n. sp. (parasite of Nannothrissa parva)Length to notch of ventral anchor > 19 µm …… Kapentagyrus chochamandai n. sp. (parasite of Microthrissa moeruensis or Potamothrisssa acutirostris)
4. Discussion
4.1. Diagnostic Value of Haptoral and Genital Morphology in Kapentagyrus
4.2. Distribution and Species Richness of Members of Kapentagyrus on Pellonuline Hosts
4.3. Research Perspectives Regarding Taxonomy and Speciation within Kapentagyrus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganias, K. (Ed.) Biology and Ecology of Sardines and Anchovies; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Lavoué, S. Origins of Afrotropical freshwater fishes. Zool. J. Linn. Soc. 2020, 188, 345–411. [Google Scholar] [CrossRef]
- Paugy, D.; Lévêque, C.; Otero, O. The Inland Water Fishes of Africa: Diversity, Ecology and human Use; Institut de Recherche pour le Développement Éditions: Marseille, France; Royal Museum for Central Africa: Tervuren, Belgium, 2017. [Google Scholar]
- Kolding, J.; van Zwieten, P.; Marttin, F.; Funge-Smith, S.; Poulain, F. Freshwater Small Pelagic Fish and Fisheries in Major African Lakes and Reservoirs in Relation to Food Security and Nutrition; FAO Fisheries and Aquaculture Technical Paper 642; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Ogutu-Ohwayo, R.; Balirwa, J.S. Management challenges of freshwater fisheries in Africa. Lakes Reserv. Res. Manag. 2006, 11, 215–226. [Google Scholar] [CrossRef]
- Wilson, A.B.; Teugels, G.G.; Meyer, A. Marine incursion: The freshwater herring of Lake Tanganyika are the product of a marine invasion into West Africa. PLoS ONE 2008, 3, e1979. [Google Scholar] [CrossRef] [PubMed]
- Hoberg, E.P.; Brooks, D.R.; Molina-Urena, H.; Erbe, E. Echinocephalus janzeni n. sp. (Nematoda: Gnathostomatidae) in Himantura pacifica (Chondrichthyes: Myliobatiformes) from the Pacific Coast of Costa Rica and Mexico, with historical biogeographic analysis of the genus. J. Parasitol. 1998, 84, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Boeger, W.A.; Kritsky, D.C. Parasites, fossils and geologic history: Historical biogeography of the South American freshwater croakers, Plagioscion spp. (Teleostei, Sciaenidae). Zool. Scr. 2003, 32, 3–11. [Google Scholar] [CrossRef]
- Kmentová, N.; Van Steenberge, M.; Raeymaekers, J.A.M.; Koblmüller, S.; Hablützel, P.I.; Muterezi Bukinga, F.; Mulimbwa N’sibula, T.; Masilya Mulungula, P.; Nzigidahera, B.; Ntakimazi, G.; et al. Monogenean parasites of sardines in Lake Tanganyika: Diversity, origin and intra-specific variability. Cont. Zool. 2018, 87, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Carvalho Schaeffner, V.C. Host-parasite list. AbcTaxa 2018, 18, 361–402. [Google Scholar]
- Marshall, J.; Cowx, I.G. Will the explosion of Ligula intestinalis in Rastrineobola argentea lead to another shift in the fisheries of Lake Victoria? In Interactions between Fish and Birds: Implications for Management; Cowx, I.G., Ed.; Blackwell Science Ltd.: Oxford, UK, 2003; pp. 244–258. [Google Scholar]
- Mombaerts, M.; Verreycken, H.; Volckaert, F.A.M.; Huyse, T. The invasive round goby Neogobius melanostomus and tubenose goby Proterorhinus semilunaris: Two introduction routes into Belgium. Aquat. Invasions 2014, 9, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Bueno-Silva, M.; Boeger, W.A. Rapid divergence, molecular evolution, and morphological diversification of coastal host-parasite systems from southern Brazil. Parasitology 2019, 146, 1313–1332. [Google Scholar] [CrossRef]
- Catalano, S.R.; Whittington, I.D.; Donnellan, S.C.; Gillanders, B.M. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 2014, 3, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Kmentová, N.; Van Steenberge, M.; Thys van den Audenaerde, D.F.E.; Nhiwatiwa, T.; Muterezi Bukinga, F.; Mulimbwa N’sibula, T.; Masilya Mulungula, P.; Gelnar, M.; Vanhove, M.P.M. Co-introduction success of monogeneans infecting the fisheries target Limnothrissa miodon differs between two non-native areas: The potential of parasites as a tag for introduction pathway. Biol. Invasions 2019, 21, 757–773. [Google Scholar] [CrossRef]
- Kmentová, N.; Cruz-Laufer, A.J.; Pariselle, A.; Smeets, K.; Artois, T.; Vanhove, M.P.M. Dactylogyridae 2021: Seeing the forest through the (phylogenetic) trees. EcoEvoRxiv 2021. [Google Scholar] [CrossRef]
- Pariselle, A.; Boeger, W.A.; Snoeks, J.; Bilong Bilong, C.F.; Morand, S.; Vanhove, M.P.M. The monogenean parasite fauna of cichlids: A potential tool for host biogeography. Int. J. Evol. Biol. 2011, 2011, 471480. [Google Scholar] [CrossRef] [Green Version]
- Kmentová, N.; Koblmüller, S.; Van Steenberge, M.; Artois, T.; Muterezi Bukinga, F.; Mulimbwa N’sibula, T.; Muzumani Risasi, D.; Masilya Mulungula, P.; Gelnar, M.; Vanhove, M.P.M. Failure to diverge in African Great Lakes: The case of Dolicirroplectanum lacustre gen. nov. comb. nov. (Monogenea, Diplectanidae) infecting latid hosts. J. Great Lakes Res. 2020, 46, 1113–1130. [Google Scholar] [CrossRef]
- Harmon, A.; Littlewood, D.T.J.; Wood, C.L. Parasites lost: Using natural history collections to track disease change across deep time. Front. Ecol. Environ. 2019, 17, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Jorissen, M.W.P.; Huyse, T.; Pariselle, A.; Wamuini Lunkayilakio, S.; Muterezi Bukinga, F.; Chocha Manda, A.; Kapepula Kasembele, G.; Vreven, E.J.; Snoeks, J.; Decru, E.; et al. Historical museum collections help detect parasite species jumps after tilapia introductions in the Congo Basin. Biol. Invasions 2020, 22, 2825–2844. [Google Scholar] [CrossRef]
- Frey, J.K.; Yates, T.L.; Duszynski, D.W.; Gannon, W.L.; Gardner, S.L. Designation and curatorial management of type host specimens (symbiotypes) for new parasite species. J. Parasitol. 1992, 78, 930–932. [Google Scholar] [CrossRef]
- Bradley, R.D.; Bradley, L.C.; Honeycutt, R.L.; MacDonald, K.A.; Amarilla-Stevens, H.N.; Stevens, R.D. Nomenclatural, curatorial, and archival best practices for symbiotypes and other type materials in natural history collections. Occas. Pap. Mus. Tex. Tech Univ. 2020, 366, 1–20. [Google Scholar]
- International Commission on Zoological Nomenclature. Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zootaxa 2012, 3450, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thioulouse, J.; Dray, S.; Dufour, A.B.; Siberchicot, A.; Jombart, T.; Pavoine, S. Multivariate Analysis of Ecological Data with Ade4; Springer: New York, NY, USA, 2018. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R.B.; Simpson, G.; Solymos, P.; et al. Vegan: Community Ecology Package. 2.5-7. Available online: https://CRAN.R-project.org/package=vegan (accessed on 5 December 2021).
- Kmentová, N.; Koblmüller, S.; Van Steenberge, M.; Raeymaekers, J.A.M.; Artois, T.; De Keyzer, E.L.R.; Milec, L.; Muterezi Bukinga, F.; Mulimbwa N’sibula, T.; Masilya Mulungula, P.; et al. Weak population structure and expansive demographic history of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int. J. Parasitol. 2020, 50, 471–486. [Google Scholar] [CrossRef]
- Fankoua, S.-O.; Bitja Nyom, A.R.; Bahanak, D.n.D.; Bilong Bilong, C.F.; Pariselle, A. Influence of preservative and mounting media on the size and shape of monogenean sclerites. Parasitol. Res. 2017, 116, 2277–2281. [Google Scholar] [CrossRef]
- Wägele, J. Foundations of Phylogenetic Systematics, 2nd ed.; Verlag Dr. Friedrich Pfeil: München, Germany, 2005. [Google Scholar]
- Davis, J.I.; Nixon, K.C. Populations, genetic variation, and the delimitation of phylogenetic species. Syst. Biol. 1992, 41, 421–435. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 5 December 2021).
- Paperna, I. Monogenetic trematodes of the fish of the Volta basin and south Ghana. Bull. Inst. Fr. Afr. Noire Série A Sci. Nat. 1969, 31, 840–880. [Google Scholar]
- Pariselle, A.; Van Steenberge, M.; Snoeks, J.; Volckaert, F.A.M.; Huyse, T.; Vanhove, M.P.M. Ancyrocephalidae (Monogenea) of Lake Tanganyika: Does the Cichlidogyrus parasite fauna of Interochromis loocki (Teleostei, Cichlidae) reflect its host’s phylogenetic affinities? Cont. Zool. 2015, 84, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Pouyaud, L.; Desmarais, E.; Deveney, M.; Pariselle, A. Phylogenetic relationships among monogenean gill parasites (Dactylogyridea, Ancyrocephalidae) infesting tilapiine hosts (Cichlidae): Systematic and evolutionary implications. Mol. Phylogenet. Evol. 2006, 38, 241–249. [Google Scholar] [CrossRef]
- Řehulková, E.; Kičinjaová, M.L.; Mahmoud, Z.N.; Gelnar, M.; Seifertová, M. Species of Characidotrema Paperna & Thurston, 1968 (Monogenea: Dactylogyridae) from fishes of the Alestidae (Characiformes) in Africa: New species, host-parasite associations and first insights into the phylogeny of the genus. Parasite Vector. 2019, 12, 366. [Google Scholar] [CrossRef] [Green Version]
- Messu Mandeng, F.D.; Bilong Bilong, C.F.; Pariselle, A.; Vanhove, M.P.M.; Bitja Nyom, A.R.; Agnèse, J.-F. A phylogeny of Cichlidogyrus species (Monogenea, Dactylogyridea) clarifies a host switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus. Parasite Vector. 2015, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Jorissen, M.W.P.; Vanhove, M.P.M.; Pariselle, A.; Snoeks, J.; Vreven, E.; Šimková, A.; Wamuini Lunkayilakio, S.; Chocha Manda, A.; Kapepula Kasembele, G.; Muterezi Bukinga, F.; et al. Molecular footprint of parasite co-introduction with Nile tilapia in the Congo Basin. ResearchSquare 2021. [Google Scholar] [CrossRef]
- Kmentová, N. The Parasite Fauna of Economically Important Pelagic Fishes in Lake Tanganyika. Ph.D. Thesis, Masaryk University, Brno, Czech Republic, 2019. [Google Scholar]
- Cowx, I.G.; Kapasa, C.K. Species changes in reservoir fisheries following impoundment: The case of Lake Itezhi-tezhi, Zambia. In The Impact of Species Changes in African Lakes; Pitcher, T.J., Hart, P.J.B., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 321–332. [Google Scholar]
- Pariselle, A.; Morand, S.; Deveney, M.; Pouyaud, L. Parasite species richness of closely related hosts: Historical scenario and “genetic” hypothesis. In Hommage à Louis Euzet—Taxonomie, Écologie et Évolution des Métazoaires Parasites. Taxonomy, Ecology and Evolution of Metazoan Parasites; Combes, C., Jourdane, J., Eds.; Presses Universitaires de Perpignan: Perpignan, France, 2003; pp. 147–166. [Google Scholar]
- Froese, R.; Pauly, D. (Eds.) FishBase, Version (08/2021). Available online: www.fishbase.org (accessed on 18 October 2021).
- Cruz-Laufer, A.J.; Artois, T.; Koblmüller, S.; Pariselle, A.; Smeets, K.; Van Steenberge, M.; Vanhove, M.P.M. The role of phylogeny and ecological opportunity in host-parasite interactions: Network metrics, host repertoire, and network link prediction. Authorea 2021. [Google Scholar] [CrossRef]
- Bloom, D.D.; Lovejoy, N.R. The evolutionary origins of diadromy inferred from a time-calibrated phylogeny for Clupeiformes (herring and allies). Proc. R. Soc. B 2014, 281, 20132081. [Google Scholar] [CrossRef]
- Cruz-Laufer, A.J.; Artois, T.; Pariselle, A.; Smeets, K.; Vanhove, M.P.M. The cichlid-Cichlidogyrus network: A blueprint for a model system of parasite evolution. Hydrobiologia 2021, 848, 3847–3863. [Google Scholar] [CrossRef]
- Vanhove, M.P.M.; Economou, A.N.; Zogaris, S.; Giakoumi, S.; Volckaert, F.A.M.; Huyse, T. Back to the roots: The centre of endemism of sand gobies challenges the phylogeny of their Gyrodactylus parasites. In Species Flocks and Parasite Evolution—Towards a co-Phylogenetic Analysis of Monogenean Flatworms of Cichlids and Gobies. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2012; pp. 159–186. [Google Scholar]
- Moons, T. Intraspecific Variability in Two New Species of Cichlidogyrus Paperna, 1960 (Platyhelminthes: Monogenea) Infecting the Gills of Species of Chromidotilapia Boulenger, 1898 (Teleostei: Cichlidae) from Gabon and the Republic of Congo. MSc Dissertation, Ghent University, Ghent, Belgium, 2021. [Google Scholar]
- Zimmermann, J.; Hajibabaei, M.; Blackburn, D.C.; Hanken, J.; Cantin, E.; Posfai, J.; Evans, T.C. DNA damage in preserved specimens and tissue samples: A molecular assessment. Front. Zool. 2008, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hykin, S.M.; Bi, K.; McGuire, J.A. Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE 2015, 10, e0141579. [Google Scholar] [CrossRef] [Green Version]
Host Species | Museum Accession Number | Number of Specimens Examined | Locality | Country | Latitude | Longitude | Date |
---|---|---|---|---|---|---|---|
Limnothrissa miodon | 24 | Lake Itezhi-Tezhi | Zambia | −15.753514 | 25.969534 | 17 May 2018 | |
Microthrissa congica | MRAC P.98042-98135 | 9 | Manyanga | DRC | −4.9 | 14.38333 | 24 September 1954 |
Microthrissa congica | MRAC P.7806-7828 | 2 | Poko | DRC | 3.15 | 26.88333 | 1912 |
Microthrissa congica | MRAC P.70510-70520 | 2 | Mobi River | DRC | 0.4 | 25.43333 | 31 July 1947 |
Microthrissa congica | MRAC P.51337-51345 | 1 | Inkongo, Sankuru River | DRC | −4.88333 | 23.26667 | 1937 |
Microthrissa congica | MRAC P.120555-120576 | 3 | Kinshasa | DRC | −4.31667 | 15.31667 | 12 October 1948 |
Microthrissa congica | NHMUK 1976.12.20.42-77 | 12 | Lualaba River | DRC | −4.781850 | 26.884137 | unknown |
Microthrissa moeruensis | MRAC 1993.145.P.0033-0064 | 11 | Lake Mweru | Zambia | −9.43333 | 28.71667 | 1993 |
Microthrissa moeruensis | MRAC 1994.019.P.2022-2080 | 5 | Kashilu | Zambia | −9.43 | 28.72 | 4 August 1993 |
Microthrissa royauxi | MRAC 73022.P.0037-0131 | 11 | Pool Malebo | DRC | −4.1 | 15.25 | 23 September 1957 |
Microthrissa royauxi | MRAC 88001.P.0407-0417 | 2 | Pool Malebo | DRC | −4.33 | 15.38333 | 13 September 1957 |
Nannothrissa parva | MRAC P.93560-93620 | 9 | Lake Tumba | DRC | −0.61667 | 17.81667 | December 1953 |
Nannothrissa parva | MRAC P.100646-100655 | 10 | Lake Tumba | DRC | −0.61667 | 17.81667 | 29–30 September 1955 |
Nannothrissa parva | MRAC P.430-440 | 2 | Mbandaka | DRC | 0.06667 | 18.26667 | 15 May 1905 |
Odaxothrissa mento | MRAC 1973.007.P.0019-0026 | 2 | Lake Volta | Ghana | 8.21667 | −0.65 | 22 May 1968 |
Odaxothrissa mento | MRAC 93-127-P-0003-0009 | 1 | Lake Volta | Ghana | 8.21667 | −0.65 | 19 May 1993 |
Odaxothrissa ansorgi | MRAC A0-048-P-1217-1261 | 10 | Lake Nguene | Gabon | −0.18983 | 10.47233 | 30 August–1 September 1999 |
Odaxothrissa ansorgi | MRAC A1-070-P-0266 | 2 | Aboun, Noya River | Gabon | 0.86667 | 9.85 | 9 February 2001 |
Odaxothrissa losera | MRAC 1977.042.P.0001-0011 | 2 | Pool Malebo | DRC | −4.1 | 15.25 | April 1977 |
Potamothrissa acutirostris | MRAC P.124782-124799 | 2 | Ankoro | DRC | −6.75 | 26.95 | 18 March 1947 |
Potamothrissa acutirostris | NHMUK 1920.5.26.3-12 | 10 | Kilwa, Lake Mweru | DRC | −9.28357 | 28.32238 | unknown |
Potamothrissa acutirostris | MRAC 1989.043.P.0283-0290 | 2 | Tshopo River | DRC | 0.55 | 25.11667 | 31 March 1989 |
Potamothrissa acutirostris | MRAC P.8115-8120 | 1 | Bosabangi | DRC | 1.45 | 27.61667 | 1912 |
Potamothrissa obtusirostris | MRAC P.70319-70326 | 1 | Kindu, Lualaba River | DRC | −2.95 | 25.93333 | 21 July 1947 |
Potamothrissa obtusirostris | MRAC 1989.043.P.0271-0276 | 1 | Oso River | DRC | −1.05 | 25.11667 | 18 December 1988 |
Pellonula leonensis | NHMUK 1964.10.12.23-29 | 7 | Agorkpo Creek | Ghana | 6.715130 | 0.309700 | unknown |
Pellonula leonensis | MRAC 1973.005.P.0285-0373 | 19 | Lake Volta | Ghana | 6.66667 | −0.41667 | 30 September 1966 |
Pellonula leonensis | MRAC 2000.048.P.1084-1123 | 6 | Lambaréné | Ghana | −0.7 | 10.21667 | 17 January 2000 |
Pellonula vorax | MRAC P.71028-71040 | 2 | Lake Nguene | Gabon | −0.18983 | 10.4723 | 30 August–1 September 1999 |
Pellonula vorax | MRAC 2000.048.P.1155-1162 | 1 | Lake Nguene | Gabon | −0.18983 | 10.4723 | August 1947 |
Parameter | K. voreli n. sp. ex O. ansorgii | K. marispastoris n. sp. ex O. mento | K. sefcae n. sp. ex O. losera | K. parisellei n. sp. ex N. parva |
---|---|---|---|---|
Dorsal anchor | ||||
Total length | 35.6–38.9 (37.5, n = 6) | 38.1 (n = 1) | 36.7–42 (39.0, n = 10) | 18.0–22.2 (20.0, n = 10) |
Length to notch | 25.3–28.9 (27.8, n = 6) | 28.1 (n = 1) | 28–31.4 (29.3, n = 10) | 13.5–18.3 (16.4, n = 10) |
Inner root length | 14.9–17.9 (16.0, n = 5) | 22.1 (n = 1) | 19.8–23.3 (21.6, n = 10) | 10.4–13.5 (11.8, n = 9) |
Outer root length | 4.1–6.4 (4.9, n = 6) | 8.8 (n = 1) | 5–7.7 (6.2, n = 10) | 4.2–7.5 (6.0, n = 9) |
Proportion inner/outer root length | 2.6–3.8 (3.2, n = 5) | 2.5 (n = 1) | 2.6–4.2 (3.5, n = 10) | 1.4–2.7 (2.0, n = 9) |
Proportion inner root length/length of hook pair I | 0.9–1.2 (1.1, n = 4) | 1.3 (n = 1) | 1.2–1.7 (1.4, n = 9) | 0.7–0.9 (0.8, n = 6) |
Point length | 7.8–10.3 (9.4, n = 5) | 8.8 (n = 1) | 9.6–15.3 (12.3, n = 10) | 3.6–7.8 (6.0, n = 8) |
Ventral anchor | ||||
Total length | 35.2–37.3 (36.1, n = 6) | 38.2 (n = 1) | 41.9–50 (45.1, n = 10) | 22.2–26.2 (24.3, n = 10) |
Length to notch | 26.9–27.8 (27.3, n = 6) | 25.5 (n = 1) | 18.2–33.3 (30.0, n = 10) | 14.2–18.4 (16.9, n = 9) |
Inner root length | 17–19.2 (18.2, n = 6) | 19.0 (n = 1) | 22.7–28.7 (26.0, n = 10) | 16.4–18.4 (17.0, n = 8) |
Outer root length | 4.2–6.8 (5.6, n = 5) | 10.1 (n = 1) | 6.2–10.5 (8.1, n = 9) | 3.7–7.5 (5.4, n = 9) |
Proportion inner/outer root length | 2.8–4.5 (3.4, n = 5) | 1.9 (n = 1) | 2.6–3.9 (3.3, n = 9) | 2.4–4.5 (3.3, n = 8) |
Proportion inner root length/length of hook pair I | 1.1–1.3 (1.2, n = 5) | 1.1 (n = 1) | 1.4–1.9 (1.7, n = 9) | 1.1–1.4 (1.2, n = 6) |
Point length | 9.3–11.1 (9.8, n = 6) | 10.2 (n = 1) | 10.7–15.6 (12.8, n = 10) | 5.4–9.4 (7.6, n = 8) |
Dorsal bar | ||||
Branch length | 19.8–23.9 (21.5, n = 6) | 27.2 (n = 1) | 27.7–31.5 (29.3, n = 10) | 19.0–23.0 (21.0, n = 10) |
Branch maximum width | 5.9–7.3 (6.6, n = 6) | 4.9 (n = 1) | 7.0–10.4 (8.5, n = 10) | 3.5–6 (4.7, n = 10) |
Ventral bar | ||||
Branch length | 23.1–29.7 (25.4, n = 6) | 27.4 (n = 1) | 25.7–30.9 (27.4, n = 10) | 16.2–23.2 (19.0, n = 9) |
Branch maximum width | 4.7–10.1 (7.7, n = 6) | 7.2 (n = 1) | 6.1–9.8 (8.5, n = 10) | 3.6–5.8 (4.9, n = 9) |
Hooks | ||||
Average length | 16.3–17.8 (17.2, n = 33) | 17.5 (n = 5) | 13.6–18.5 (17.1, n = 42) | 12.4–14.9 (14.1, n = 42) |
Pair I | 14.2–16.8 (15.6, n = 5) | 17.4 (n = 1) | 11.9–18.6 (15.7, n = 9) | 12.0–15.3 (13.7, n = 8) |
Pair II | 15.0–20.3 (17.6, n = 5) | 17.2 (n = 1) | 13.8–18.8 (17, n = 8) | 12.4–15.3 (13.8, n = 7) |
Pair III | 18.1–20.0 (18.8, n = 5) | 18.9 (n = 1) | 14.5–19.2 (17.0, n = 5) | 12.8–15.0 (14.0, n = 6) |
Pair IV | 15.7–20.8 (18.7, n = 5) | 20.3 (n = 1) | 14.1–18.2 (16.4, n = 6) | 13.1–15.9 (14.4, n = 7) |
Pair V | 13.6–18.9 (16.7, n = 5) | 16.4 (n = 1) | 15.8–18.5 (17.8, n = 5) | 12.6–13.8 (13.4, n = 3) |
Pair VI | 13.6–18.8 (16.9, n = 4) | 17.1 (n = 1) | 17.0–20.0 (18.0, n = 5) | 10.8–16.3 (14.2, n = 7) |
Pair VII | 13.9–16.9 (15.7, n = 4) | 15 (n = 1) | 17.2–19.7 (18.4, n = 4) | 13.2–16.7 (15.3, n = 4) |
Male copulatory organ | ||||
Copulatory tube axial length | 29.0–40.8 (34.4, n = 6) | 42.2 (n = 1) | 35.5–44.5 (40.6, n = 10) | 28.2–36.9 (31.7, n = 11) |
Accessory piece axial length | 35.1–42.6 (38.1, n = 7) | 45.4 (n = 1) | 37.8–48.5 (44.8, n = 10) | 31.8–45.4 (36.8, n = 11) |
Parameter | K. pellonulae ex P. leonensis (Lake Volta) | K. hugei n. sp. ex P. leonensis (Lake Volta) | K. hahni n. sp. ex P. leonensis (Lower Volta) | K. verbisti n. sp. ex P. leonensis (Gabon) |
---|---|---|---|---|
Dorsal anchor | ||||
Total length | 40–50 | 26.0–30.9 (28.2, n = 23) | 36.7–38.4 (37.6, n = 2) | |
Length to notch | 21.3–25.1 (22.9, n = 23) | 26.4–27.9 (27.2, n = 2) | ||
Inner root length | 12 | 6.7–13.9 (11.2, n = 23) | 12.8–17.5 (15.2, n = 2) | |
Outer root length | 1–2 | 3.3–6.6 (4.5, n = 22) | 4–7 (5.5, n = 2) | |
Proportion inner/outer root length | 1.6–3.6 (2.5, n = 21) | 2.5–3.2 (2.9, n = 2) | ||
Proportion inner root length/length of hook pair I | 0.4–0.9 (0.7, n = 17) | 0.8 (n = 1) | ||
Point length | 7.0–10.8 (9.0, n = 23) | 9.7–11.7 (10.7, n = 2) | ||
Ventral anchor | ||||
Total length | 50 | 24.3–31.6 (27.7, n = 30) | 24.1–29.3 (26.2, n = 3) | 37.8 (n = 1) |
Length to notch | 19.4–25.0 (21.7, n = 30) | 13.1–18.8 (15.4, n = 3) | 28.5 (n = 1) | |
Inner root length | 15–18 | 11.4–18.9 (15.1, n = 30) | 14.3–17.5 (15.0, n = 3) | 21.9 (n = 1) |
Outer root length | 4–5 | 3.4–6.0 (4.7, n = 23) | 4.2–4.7 (4.5, n = 2) | 5.2 (n = 1) |
Proportion inner/outer root length | 2.6–4.3 (3.4, n = 23) | 3.4–3.7 (3.6, n = 2) | 4.2 (n = 1) | |
Proportion inner root length/length of hook pair I | 0.8–1.2 (1.0, n = 22) | |||
Point length | 7.1–9.4 (8.4, n = 29) | 6.8–9.9 (7.9, n = 3) | 10.4 (n = 1) | |
Dorsal bar | ||||
Branch length | 30–40 | 17.4–22.4 (20.3, n = 22) | 18.5 (18.5, n = 2) | 25.9–27.3 (26.6, n = 2) |
Branch maximum width | 3.3–6 (4.6, n = 20) | 6.6–6.9 (6.8, n = 2) | ||
Ventral bar | ||||
Branch length | 25–35 | 12.2–22.9 (19.5, n = 30) | 18.0–20.4 (18.9, n = 3) | |
Branch maximum width | 4.1–7.8 (5.5, n = 30) | 5–5.9 (5.5, n = 3) | 8.9–9.4 (9.2, n = 2) | |
Hooks | ||||
Average length | 8–15 | 13.5–17.5 (16.2, n = 127) | 13.6–15.7 (14.6, n = 8) | 18.1–20.4 (19.5, n = 16) |
Pair I | 12.1–16.5 (15.1, n = 23) | 17.0–19,1 (18.1, n = 2) | ||
Pair II | 13.4–17.4 (15.8, n = 18) | 13.4–17.0 (14.8, n = 3) | 16.7–22.4 (20.0, n = 3) | |
Pair III | 14–19.3 (16.9, n = 22) | 13.2–16.0 (14.6, n = 2) | 17.7–18.9 (18.3, n = 2) | |
Pair IV | 14.9–19.7 (17.2, n = 20) | 16.8 (n = 1) | 20.2–23.4 (21.8, n = 2) | |
Pair V | 11.1–17.5 (15.6, n = 14) | 16.6–20.2 (18.4, n = 3) | ||
Pair VI | 14.7–18.8 (16.8, n = 17) | 11.8–14.4 (13.1, n = 2) | 18.7–19.1 (18.9, n = 2) | |
Pair VII | 15–18.9 (16.9, n = 13) | 19.3–19.6 (19.5, n = 2) | ||
Male copulatory organ | ||||
Copulatory tube axial length | 25 | 23.5–31.4 (27.9, n = 22) | 35.2–37.2 (36.2, n = 2) | |
Accessory piece axial length | 30 | 22.4–34.0 (28.8, n = 22) | 36.6–47.8 (42.2, n = 2) |
Parameter | K. chochamandai n. sp. ex M. moeruensis | K. bisthoveni n. sp. ex M. congica | K. boegeri n. sp. ex M. congica | K. rochetteae n. sp. ex M. royauxi | K. chochamandai n. sp. ex P. acutirostris |
---|---|---|---|---|---|
Dorsal anchor | |||||
Total length | 22.0–25.5 (23.7, n = 7) | 20.4–26.7 (24.8, n = 4) | 22.5–29.6 (26.1, n = 2) | 20.3–27.8 (24.2, n = 9) | 22.7 (n = 1) |
Length to notch | 16.8–19.4 (18.0, n = 7) | 14.7–18.5 (17.2, n = 4) | 16.0–24.1 (20.0, n = 2) | 15.2–20.3 (17.3, n = 9) | 18.0 (n = 1) |
Inner root length | 11.1–14.9 (12.7, n = 7) | 13.4–18.5 (16.3, n = 4) | 11.0–11.5 (11.2, n = 2) | 13.6–18.1 (15.4, n = 9) | 11.0 (n = 1) |
Outer root length | 5.2–7.0 (6.2, n = 7) | 3.5–7.0 (5.4, n = 4) | 3.6–6.1 (4.8, n = 2) | 5.1–7.8 (6.3, n = 9) | 5.5 (n = 1) |
Proportion inner/outer root length | 1.8–2.5 (2.1, n = 7) | 2.3–3.8 (3.1, n = 4) | 1.8–3.2 (2.5, n = 2) | 2.1–2.9 (2.5, n = 9) | 2 (n = 1) |
Proportion inner root length/length of hook pair I | 0.7–0.9 (0.8, n = 6) | 0.9–1.5 (1.2, n = 4) | 1.1–1.6 (1.3, n = 8) | ||
Point length | 5.0–6.4 (5.7, n = 7) | 4.0–5.9 (5.2, n = 3) | 7.3–8.0 (7.7, n = 2) | 5.3–7.5 (6.8, n = 9) | |
Ventral anchor | |||||
Total length | 27.9–33.6 (29.6, n = 6) | 25.6–27.6 (26.6, n = 3) | 23.3–25.5 (24.3, n = 3) | 25.1–29.9 (27.7, n = 9) | 23.6 (n = 1) |
Length to notch | 19.6–22.6 (21.2, n = 7) | 14.0–20.6 (17.9, n = 3) | 15.1–21.6 (18.6, n = 3) | 16.8–19.4 (18.2, n = 9) | 18.5 (n = 1) |
Inner root length | 13.8–17.5 (16.3, n = 7) | 17.1–19.6 (18.2, n = 3) | 16.2–16.8 (16.4, n = 3) | 17.0–21.2 (19.3, n = 9) | 14.5 (n = 1) |
Outer root length | 5.7–8.4 (7.1, n = 7) | 7.3–7.4 (7.4, n = 2) | 4.6–7.1 (6.2, n = 3) | 4.7–8.4 (6.9, n = 9) | 6.1 (n = 1) |
Proportion inner/outer root length | 1.9–3.0 (2.3, n = 7) | 2.3–2.7 (2.5, n = 2) | 2.3–3.5 (2.8, n = 3) | 2.2–4.5 (3.0, n = 9) | 2.4 (n = 1) |
Proportion inner root length/length of hook pair I | 0.9–1.2 (1.1, n = 6) | 1.1–1.6 (1.4, n = 3) | 1.3–1.8 (1.6, n = 8) | ||
Point length | 5.4–9.2 (7.3, n = 7) | 5.5–9.0 (7.6, n = 3) | 6.0–7.3 (6.6, n = 2) | 6.4–8.9 (7.4, n = 9) | 7.2 (n = 1) |
Dorsal bar | |||||
Branch length | 17.7–23.9 (20.1, n = 7) | 16.8–20.9 (19.4, n = 4) | 23.0–25.0 (23.8, n = 3) | 16.3–23.5 (20.6, n = 9) | 16.1 (n = 1) |
Branch maximum width | 3.8–6.6 (5.1, n = 7) | 5.2–6.7 (5.8, n = 4) | 3.9–5.8 (4.8, n = 2) | 3.7–6.0 (5.1, n = 9) | 5.0 (n = 1) |
Ventral bar | |||||
Branch length | 17.2–21.8 (20.3, n = 6) | 20.2–22.1 (21.3, n = 3) | 21.0–22.2 (21.6, n = 2) | 15.2–21.3 (18.3, n = 9) | |
Branch maximum width | 4.5–8.9 (5.8, n = 7) | 5.2–6.7 (5.8, n = 4) | 3.4–5.5 (4.7, n = 3) | 4.3–6.5 (5.4, n = 9) | |
Hooks | |||||
Average length | 14.1–16.9 (15.8, n = 35) | 14.3–16.9 (15.2, n = 16) | 13.6–16.8 (15.3, n = 12) | 9.7–13.3 (12.1, n = 47) | 17.7 (n = 4) (excluding pair V) 17.1 (n = 5) (including pair V) |
Pair I | 13.5–18.0 (15.6, n = 6) | 12.0–15.8 (13.7; n = 4) | 16.2 (n = 1) | 11.1–13.9 (12.2, n = 8) | |
Pair II | 14.8–17.3 (16.1, n = 5) | 13.1–16.8 (14.9, n = 2) | 14.4–17.9 (16.1, n = 2) | 9.3–15.4 (12.2, n = 9) | |
Pair III | 13.5–17.8 (15.9, n = 5) | 15.3–18.1 (16.7, n = 2) | 13.3–16.5 (15.0, n = 3) | 6.9–14.1 (11.6, n = 8) | |
Pair IV | 13.4–17.6 (15.9, n = 5) | 15.3–18.0 (16.6, n = 2) | 13.8–15.9 (14.8, n = 2) | 9.4–14.3 (11.7, n = 8) | |
Pair V | 13.1–16.1 (14.5, n = 5) | 16.0–16.1 (16.0, n = 2) | 13.7–16.5 (15.1, n = 2) | 10.0–12.1 (11.2, n = 5) | 14.6 (n = 1) |
Pair VI | 14.0–20.2 (16.5, n = 5) | 15.5–16.6 (16.0, n = 2) | 16.9 (n = 1) | 12.6–14.4 (13.3, n = 5) | |
Pair VII | 15.3–22.5 (17.6, n = 4) | 15.1–16.6 (15.8, n = 2) | 16.1 (n = 1) | 13.0–15.1 (13.7, n = 4) | |
Male copulatory organ | |||||
Copulatory tube axial length | 25.0–33.0 (28.5, n = 7) | 23.0–36.2 (31.8, n = 4) | 20.6–41.3 (28.8, n = 3) | 27.4–38.3 (32.7, n = 11) | 32.7 (n = 1) |
Accessory piece axial length | 28.5–34.9 (32.2, n = 6) | 26.6–43.2 (34.9, n = 4) | 22.8–41.9 (32.4, n = 2) | 32.8–38.7 (36.1, n = 11) | 35.4 (n = 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanhove, M.P.M.; Hermans, R.; Artois, T.; Kmentová, N. From the Atlantic Coast to Lake Tanganyika: Gill-Infecting Flatworms of Freshwater Pellonuline Clupeid Fishes in West and Central Africa, with Description of Eleven New Species and Key to Kapentagyrus (Monogenea, Dactylogyridae). Animals 2021, 11, 3578. https://doi.org/10.3390/ani11123578
Vanhove MPM, Hermans R, Artois T, Kmentová N. From the Atlantic Coast to Lake Tanganyika: Gill-Infecting Flatworms of Freshwater Pellonuline Clupeid Fishes in West and Central Africa, with Description of Eleven New Species and Key to Kapentagyrus (Monogenea, Dactylogyridae). Animals. 2021; 11(12):3578. https://doi.org/10.3390/ani11123578
Chicago/Turabian StyleVanhove, Maarten P. M., Raquel Hermans, Tom Artois, and Nikol Kmentová. 2021. "From the Atlantic Coast to Lake Tanganyika: Gill-Infecting Flatworms of Freshwater Pellonuline Clupeid Fishes in West and Central Africa, with Description of Eleven New Species and Key to Kapentagyrus (Monogenea, Dactylogyridae)" Animals 11, no. 12: 3578. https://doi.org/10.3390/ani11123578
APA StyleVanhove, M. P. M., Hermans, R., Artois, T., & Kmentová, N. (2021). From the Atlantic Coast to Lake Tanganyika: Gill-Infecting Flatworms of Freshwater Pellonuline Clupeid Fishes in West and Central Africa, with Description of Eleven New Species and Key to Kapentagyrus (Monogenea, Dactylogyridae). Animals, 11(12), 3578. https://doi.org/10.3390/ani11123578