Cellulase Interacts with Lactic Acid Bacteria to Affect Fermentation Quality, Microbial Community, and Ruminal Degradability in Mixed Silage of Soybean Residue and Corn Stover
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.2. Sample Analysis
2.2.1. Fermentation Quality Analysis
2.2.2. Chemical Composition Analysis
2.2.3. Microbiological Analysis
2.2.4. Measurement of Rumen Degradation Characteristics
2.3. Microbial Diversity Analysis
2.4. Statistical Analyses
3. Results
3.1. Chemical Characteristics of Soybean Residue and Corn Stover upon Mixed Silage
3.2. Analysis of Cellulase and Lactic Acid Bacteria, Chemical Composition and In Situ Effective Degradability of Soybean Residue and Corn Stover upon Mixed Silage
3.3. The Analysis of Cellulase and Lactic Acid Bacteria, Fermentation Characteristics and Microbiological Analysis of Soybean Residue and Corn Stover upon Mixed Silage
3.4. Analysis of Cellulase and Lactic Acid Bacteria in the Microbial Communities of Soybean Residue and Corn Stover upon Mixed Silage
4. Discussion
4.1. The Chemical Characteristics and Microbial Population Prior to the Mixed Silage of Soybean Residue and Corn Stover
4.2. The Effects of Cellulase and Lactic Acid Bacteria on the Chemical Composition Analysis and In Situ Effective Degradability of Soybean Residue and Corn Stover in Mixed Silage
4.3. Effect of Cellulase and Lactic Acid Bacteria on the Fermentation Quality and Microbial Community of Soybean Residue and Corn Stover Mixed Silage
4.4. The Effects of Cellulase and Lactic Acid Bacteria on the Bacterial Community of Soybean Residue and Corn Stover upon Mixed Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Chen, S.; Zhang, J.; Sun, M.; Liu, Z.; Yu, Z. Co-producing lipopeptides and poly-gamma-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its bliocontrol and fertilizer synergistic effects. Bioresour. Technol. 2008, 99, 3318–3323. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Mak, K.; Chan, N.; Lam, A.; Fang, M.; Zhou, L.; Wu, Q.; Liao, X. Co-composting of soybean residues and leaves in Hong Kong. Bioresour. Technol. 2001, 76, 99–106. [Google Scholar] [CrossRef]
- Williams, T.I. China Statistical Yearbook; Endeavour: Beijing, China, 1995; Volume 19, p. 172. [Google Scholar]
- Li, L.; Sun, Y.; Yuan, Z.; Kong, X.; Wao, Y.; Yang, L.; Zhang, Y.; Li, D. Effect of microalgae supplementation on the silage quality and anaerobic digestion perfor-mance of Manyflower silvergrass. Bioresour. Technol. 2015, 189, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Ding, W.; Umar, M.; Hei, K.; Bi, J.; Shi, Z. Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge. Energy 2017, 118, 1256–1263. [Google Scholar] [CrossRef]
- Sakai, T.; Devkota, N.R.; Oishi, K.; Hirooka, H.; Kumagai, H. Evaluation of total mixed ration silage with brewers grains for dairy buffalo in Tarai, Nepal. Anim. Sci. J. 2015, 86, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Cai, Y.; Hirakubo, T.; Fukui, H.; Matsuyama, H. Fermentation characteristics and microorganism composition of total mixed ration si-lage with local food by-products in different seasons. Anim. Sci. J. 2011, 82, 259–266. [Google Scholar] [CrossRef]
- Kuikui, N.; Jingyun, Z.; Baoge, Z.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar]
- Sun, Q.; Gao, F.; Zhu, Y.U.; Tao, Y.; Zhao, S.; Cai, Y. Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulase additives. Anim. Sci. J. 2012, 83, 305–309. [Google Scholar] [CrossRef]
- Eikmeyer, F.G.; Köfinger, P.; Poschenel, A.; Jünemann, S.; Zakrzewski, M.; Heinl, S.; Mayrhuber, E.; Grabherr, R.; Pühler, A.; Schwab, H.; et al. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. J. Biotechnol. 2013, 167, 334–343. [Google Scholar] [CrossRef]
- Tian, J.; Xu, N.; Liu, B.; Huan, H.; Gu, H.; Dong, C.; Ding, C. Interaction effect of silo density and additives on the fermentation quality, microbial counts, chemical composition and in vitro degradability of rice straw silage. Bioresour. Technol. 2020, 297, 122412. [Google Scholar] [CrossRef]
- Guan, H.; Yan, Y.; Li, X.; Lia, X.; Shuai, Y.; Feng, G.; Ran, Q.; Cai, Y.; Li, Y.; Zhang, X. Microbial communities and natural fermentation of corn silages prepared with farm bun-ker-silo in Southwest China. Bioresour. Technol. 2018, 265, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.; Kang, J. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2008. [Google Scholar]
- Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysac-charides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [PubMed]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Olsen, R.A.; Bakken, L.R. Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb. Ecol. 1987, 13, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Hassanat, F.; Gervais, R.; Julien, C.; Massé, D.I.; Lettat, A.; Chouinard, P.Y.; Petit, H.V.; Benchaar, C. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric me-thane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 4553–4567. [Google Scholar] [CrossRef]
- Dhanoa, M.S. On the analysis of dacron bag data for low degradability feeds. Grass Forage Sci. 1988, 43, 441–444. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- White, J.R.; Nagarajan, N.; Pop, M. Statistical Methods for Detecting Differentially Abundant Features in Clinical Met-agenomic Samples. PLoS Comput. Biol. 2009, 5, e1000352. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Schmidt, R.; McDonell, E.; Klingerman, C.; Kung, L. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nishino, N. Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content. Asian-Australas. J. Anim. Sci. 2013, 26, 1304–1312. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fer-mentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Fujita, Y.; Murai, M.; Ogawa, M.; Yoshida, N.; Kitamura, A.; Miura, T. Application of Lactic Acid Bacteria (Lactobacillus plantarum Chikuso-1) for Silage Preparation o Forage Paddy Rice. Jpn. J. Grassl. Sci. 2003. [Google Scholar] [CrossRef]
- Li, F.; Ke, W.; Ding, Z.; Bai, J.; Zhang, Y.; Xu, D.; Li, Z.; Guo, X. Pretreatment of Pennisetum sinese silages with ferulic acid esterase-producing lactic acid bac-teria and cellulase at two dry matter contents: Fermentation characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2020, 295, 122261. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Taylor, C.C.; Lynch, M.P.; Neylon, J.M. The effect of treating alfalfa with Lactobacillus buchneri 40788 on silage fermenta-tion, aerobic stability, and nutritive value for lactating dairy cows. J. Dairy Sci. 2003, 86, 336–343. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Zhou, W.; Wang, C.; Yang, F.; Chen, X.; Zhang, Q. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage. J. Dairy Sci. 2019, 102, 9919–9931. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Hu, L.; Chen, G.; Zhang, Z. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour. Technol. 2020, 315, 123772. [Google Scholar] [CrossRef]
- Nuez-Ortín, W.G.; Yu, P. Estimation of ruminal and intestinal digestion profiles, hourly effective degradation ratio and potential N to energy synchronization of co-products from bioethanol processing. J. Sci. Food Agric. 2010, 90, 2058–2067. [Google Scholar] [CrossRef]
- Yu, P.; Christensen, D.A.; McKinnon, J.J. In situ rumen degradation kinetics of timothy and alfalfa as affected by culti-var and stage of maturity. Can. J. Anim. Sci. 2004, 84, 255–263. [Google Scholar] [CrossRef]
- Han, L.Y.; Li, J.; Na, R.S.; Yu, Z.; Zhou, H. Effect of two additives on the fermentation, in vitro digestibility and aerobic security of Sorghum-sudangrass hybrid silages. Grass Forage Sci. 2015, 70, 185–194. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.; McAllister, T.; Contreras-Govea, F.; Santos, M.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Muck, R. Recent advances in silage microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Nishino, N.; Hattori, H. Resistance to aerobic deterioration of total mixed ration silage inoculated with and without homofermentative or heterofermentative lactic acid bacteria. J. Sci. Food Agric. 2007, 87, 2420–2426. [Google Scholar] [CrossRef]
- Heinritz, S.N.; Martens, S.D.; Avila, P.; Hoedtke, S. The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Anim. Feed. Sci. Technol. 2012, 174, 201–210. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Yang, H.; Na, R.S. The effects of stage of growth and additives with or without cellulase on fermentation and invitro degradation characteristics of Leymus chinensis silage. Grass Forage Sci. 2016, 71, 595–606. [Google Scholar] [CrossRef]
- Liu, Q.-H.; Li, X.-Y.; Desta, S.T.; Zhang, J.-G.; Shao, T. Effects of Lactobacillus plantarum and fibrolytic enzyme on the fermentation quality and in vitro digestibility of total mixed rations silage including rape straw. J. Integr. Agric. 2016, 15, 2087–2096. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Benno, Y.; Ogawa, M.; Kumai, S. Effect of applying lactic acid bacteria isolated from forage crops on fermentation char-acteristics and aerobic deterioration of silage. J. Dairy Sci. 1999, 82, 520–526. [Google Scholar] [CrossRef]
- Yang, J.; Tan, H.; Cai, Y. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues. J. Dairy Sci. 2016, 99, 5325–5334. [Google Scholar] [CrossRef] [Green Version]
- Lili, Y.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of microbial community and fermentation quality during ensiling of sterile and non-sterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresour. Technol. 2018, 275, 280–287. [Google Scholar]
- Li, P.; Zhang, Y.; Gou, W.; Cheng, Q.; Bai, S.; Cai, Y. Silage fermentation and bacterial community of bur clover, annual ryegrass and their mix-tures prepared with microbial inoculant and chemical additive. Anim. Feed Sci. Technol. 2019, 247, 285–293. [Google Scholar] [CrossRef]
- Ni, K.; Wang, Y.; Cai, Y.; Pang, H. Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat. Asian-Australas. J. Anim. Sci. 2015, 28, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Ranjit, N.K. The Effect of Lactobacillus buchneri and Other Additives on the Fermentation and Aerobic Sta-bility of Barley Silage. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Kinetics and microbial community analysis for hydrogen production using raw grass inoculated with different pretreated mixed culture. Bioresour. Technol. 2018, 247, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.O.; Avila, C.L.S.; Schwan, R.F. Selection of tropical lactic acid bacteria for enhancing the quality of maize si-lage. J. Dairy Sci. 2013, 96, 7777–7789. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Nishino, N. Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lac-tobacillus rhamnosus or Lactobacillus buchneri. Lett. Appl. Microbiol. 2011, 52, 314–321. [Google Scholar] [CrossRef]
- Stling, C.E.; Lindgren, S.E. Bacteria in manure and on manured and NPK-fertilised silage crops. J. Sci. Food Agric. 1991, 55, 579–588. [Google Scholar] [CrossRef]
Items | Content |
---|---|
Ingredients | |
Corn, % of DM | 13.20 |
Wheat bran, % of DM | 3.78 |
Molasses, % of DM | 0.99 |
Soybean meal, % of DM | 3.16 |
Distillers dried grains with solubles, % of DM | 5.72 |
Cottonseed meal, % of DM | 2.05 |
Corn gluten feed, % of DM | 7.42 |
Corn germ meal, % of DM | 4.51 |
Premix 1, % of DM | 0.49 |
Corn silage, % of DM | 15.70 |
Leymus chinensis, % of DM | 42.98 |
Total | 100.00 |
Nutrient levels 2 | |
Net Energy for Lactating/(MJ/kg) | 5.44 |
CP | 14.30 |
NDF | 39.20 |
ADF | 20.05 |
Ca | 0.60 |
P | 0.40 |
Items | Soybean Residue (SR) | Corn Stover (CS) | SR + CS |
---|---|---|---|
Chemical composition | |||
DM, % FW | 16.61 | 92.74 | 34.89 |
CP, % DM | 12.95 | 3.25 | 10.83 |
pH | 6.68 | 6.15 | 6.52 |
EE, % DM | 6.32 | 2.21 | 5.34 |
NDF, % DM | 56.62 | 65.23 | 57.82 |
ADF, % DM | 30.04 | 39.21 | 23.03 |
WSC, % DM | 2.3 | 14.55 | 5.15 |
Microorganism | |||
LAB, log10 cfu/g FW | 2.41 | <2.00 | <2.00 |
CB, log10 cfu/g FW | <2.00 | 3.04 | <2.00 |
Yeast, log10 cfu/g FW | 2.57 | 5.59 | 3.56 |
Mold, log10 cfu/g FW | ND | 6.43 | <2.00 |
Items | Treatment 1 | SEM | p-Value 3 | |||||
---|---|---|---|---|---|---|---|---|
CON | LAB | CE | LAB + CE | L | E | L × E | ||
Chemical Composition | ||||||||
DM, % of FW | 34.40 a | 33.64 a | 35.99 b | 35.22 b | 0.49 | 0.28 | 0.048 | 0.97 |
CP, % of DM | 12.98 a | 15.24 b | 14.54 b | 15.64 b | 0.26 | <0.01 | 0.03 | 0.15 |
NDFom, of DM | 52.97 a | 54.73 a | 46.50 b | 44.61 b | 1.21 | 0.97 | <0.01 | 0.32 |
ADFom, % of DM | 31.92 a | 33.40 a | 27.30 b | 26.43 b | 0.71 | 0.77 | <0.01 | 0.28 |
ADL, % of DM | 7.59 a | 7.68 a | 6.14 b,c | 6.18 c | 0.04 | 0.09 | <0.01 | 0.51 |
Cellulose, % of DM | 24.33 b | 25.72 a | 21.16 c | 20.25 c | 0.15 | 0.02 | <0.01 | 0.09 |
Hemicellulose, % of DM | 21.05 b | 21.33 b | 19.2 a,b | 18.18 a | 0.32 | 0.21 | 0.17 | 0.35 |
WSC, % of DM | 0.74 | 0.68 | 0.67 | 0.65 | 0.13 | 0.57 | 0.49 | 0.78 |
In situ effective degradability | ||||||||
ISDMD, 2 % of DM | 38.08 a | 40.11 a | 41.53 b | 42.19 b | 0.48 | 0.09 | <0.01 | 0.35 |
ISNDFD, 2 % of NDF | 16.53 a | 17.11 a | 18.97 b | 18.56 b | 0.44 | 0.90 | 0.01 | 0.45 |
ISCPD, 2 % of CP | 24.72 a | 25.82 b | 24.79 a | 26.13 b | 0.27 | 0.01 | 0.63 | 0.76 |
Items | Treatment 1 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | LAB | CE | LAB + CE | L | E | L × E | ||
DMR, % of FW | 96.51 a | 97.05 a | 97.65 ab | 97.98 b | 0.33 | 0.39 | 0.06 | 0.83 |
pH | 3.98 a | 3.81 c | 3.92 b | 3.68 c | 0.01 | <0.01 | 0.02 | 0.53 |
Ammonia-N, % of DM | 6.92 a | 4.92 c | 5.73 b | 4.43 d | 0.01 | <0.01 | <0.01 | <0.01 |
Lactic acid, % of DM | 3.81 a | 4.98 c | 4.17 b | 5.45 d | 0.18 | <0.01 | 0.02 | 0.83 |
Acetic acid, % of DM | 0.75 a | 0.86 a | 0.81 a | 0.94 b | 0.03 | 0.19 | 0.30 | 0.77 |
Propionic acid, % of DM | 0.17 | 0.11 | 0.16 | ND | - | - | - | - |
Butyric acid, % of DM | 0.11 | ND | ND | ND | - | - | - | - |
Microorganism | - | - | - | - | - | - | - | - |
LAB, log10 cfu/g FW | 7.34 a | 8.03 b | 7.99 b | 8.76 c | 0.23 | 0.02 | 0.03 | 0.88 |
CB, log10 cfu/g FW | 3.22 | <2.00 | <2.00 | <2.00 | - | - | ||
Yeast, log10 cfu/g FW | <2.00 | ND | ND | ND | - | - | ||
Mold, log10 cfu/g FW | 3.05 | <2.00 | <2.00 | ND | - | - |
Sample ID | Treatment1 1 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | LAB | CE | LAB + CE | L | E | L × E | ||
Shannon Index 2 | 3.88 a | 3.37 b | 4.34 b | 3.94 a | 0.1 | 0.01 | <0.01 | 0.71 |
Chao1 Index 2 | 213.79 | 215.75 | 239.35 | 232.25 | 14.18 | 0.33 | 0.90 | 0.83 |
Simpson Index 2 | 0.83 a | 0.81 a | 0.89 b | 0.86 ab | 0.02 | 0.21 | <0.01 | 0.58 |
Good’s Coverage 2 | 0.99 | 0.99 | 0.99 | 0.99 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Wang, L.; Ma, G.; Jiang, X.; Yang, J.; Lv, J.; Zhang, Y. Cellulase Interacts with Lactic Acid Bacteria to Affect Fermentation Quality, Microbial Community, and Ruminal Degradability in Mixed Silage of Soybean Residue and Corn Stover. Animals 2021, 11, 334. https://doi.org/10.3390/ani11020334
Zhao C, Wang L, Ma G, Jiang X, Yang J, Lv J, Zhang Y. Cellulase Interacts with Lactic Acid Bacteria to Affect Fermentation Quality, Microbial Community, and Ruminal Degradability in Mixed Silage of Soybean Residue and Corn Stover. Animals. 2021; 11(2):334. https://doi.org/10.3390/ani11020334
Chicago/Turabian StyleZhao, Chao, Lihua Wang, Guangming Ma, Xin Jiang, Jinshan Yang, Jingyi Lv, and Yonggen Zhang. 2021. "Cellulase Interacts with Lactic Acid Bacteria to Affect Fermentation Quality, Microbial Community, and Ruminal Degradability in Mixed Silage of Soybean Residue and Corn Stover" Animals 11, no. 2: 334. https://doi.org/10.3390/ani11020334
APA StyleZhao, C., Wang, L., Ma, G., Jiang, X., Yang, J., Lv, J., & Zhang, Y. (2021). Cellulase Interacts with Lactic Acid Bacteria to Affect Fermentation Quality, Microbial Community, and Ruminal Degradability in Mixed Silage of Soybean Residue and Corn Stover. Animals, 11(2), 334. https://doi.org/10.3390/ani11020334