Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sample Collection
2.3. Antioxidant Parameters
2.4. Statistical Analysis
3. Results and Discussion
3.1. Performance Traits
3.2. Egg Quality Parameters
3.3. Egg-Yolk Cholesterol
3.4. Blood Biochemical Parameters
3.5. Antioxidant Status
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puvača, N.; Kostadinović, L.J.; Popović, S.; Lević, J.; Ljubojević, D.; Tufarelli, V.; Jovanović, R.; Tasić, T.; Ikonić, P.; Lukač, D. Proximate composition, cholesterol concentration and lipid oxidation of meat from chickens fed dietary spice addition (Allium sativum, Piper nigrum, Capsicum annuum). Anim. Prod. Sci. 2016, 56, 1920–1927. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmacology of Equisetum arvense—A review. IOSR J. Pharm. 2017, 7, 31–42. [Google Scholar] [CrossRef]
- Zargari, A. Medicinal Plants; Tehran University Publication: Tehran, Iran, 1997; p. 103. [Google Scholar]
- Albadri, H.M.B. Phytochemical investigation of horsetail (Equisetum arvense L.) grown in Iraq. Ph.D. Thesis, Ministry of Higher Education and Scientific Research, Al-Mustansiriyah University, College of Pharmacy, Baghdad, Iraq, 2016. [Google Scholar]
- Jugdaohsingh, R.; Tucker, K.L.; Qiao, N.; Cupples, L.A.; Kiel, D.P.; Powell, J.J. Dietary Silicon Intake Is Positively Associated With Bone Mineral Density in Men and Premenopausal Women of the Framingham Offspring Cohort. J. Bone Miner. Res. 2004, 19, 297–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radulović, N.; Stojanović, G.; Palić, R. Composition and antimicrobial activity of Equisetum arvense L. essential oil. Phytother. Res. 2006, 20, 85–88. [Google Scholar] [CrossRef]
- Khan, Z.; Bhadouria, P.; Bisen, P.S. Nutritional and Therapeutic Potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Koye, H.J. Effect of Using Spirulina spp. Instead of Fishmeal on Growth, Blood Picture and Microbial Load of Common Carp Cyprinus carpio. Master’s Thesis, College of Agriculture, University of Salahaddin-Erbil, Zanko, Erbil, 2013. [Google Scholar]
- Selim, S.; Hussein, E.; Abou-Elkhair, R. Effect of Spirulina platensis as a feed additive on laying performance, egg quality and hepatoprotective activity of laying hens. Eur. Poult. Sci. 2018, 82. [Google Scholar]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Suliburska, J.; Szulińska, M.; Tinkov, A.A.; Bogdański, P. Effect of Spirulina maxima Supplementation on Calcium, Magnesium, Iron, and Zinc Status in Obese Patients with Treated Hypertension. Biol. Trace Elem. Res. 2016, 173, 1–6. [Google Scholar]
- James, R.; Sampath, K.; Thangarathinam, R.; Vasudevan, I. Effect of dietary Spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Isr. J. Aquac. 2006, 58, 97–104. [Google Scholar]
- Pesti, G.M.; Miller, B.R. Animal Feed Formulation: Economic and Computer Applications; Springer Science and Business Media: Berlin, Germany, 1993; p. 166. [Google Scholar]
- Baghban-Kanani, P.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Seidavi, A.; Ayaşan, T.; Laudadio, V.; Tufarelli, V. Effect of different levels of sunflower meal and multi-enzyme complex on performance, biochemical parameters and antioxidant status of laying hens. S. Afr. J. Anim. Sci. 2018, 48, 390–399. [Google Scholar]
- Winterbourn, C.C.; Hawkins, R.E.; Brian, M.; Carrell, R.W. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med. 1975, 85, 337–341. [Google Scholar] [PubMed]
- Kei, S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta 1978, 90, 37–43. [Google Scholar] [CrossRef]
- Yagi, K. Assay for blood plasma or serum. In Methods in Enzymology; Academic Press, Elsevier: Cambridge, MA, USA, 1984; Volume 105, pp. 328–331. [Google Scholar]
- SAS/STAT User’s Guide; Release 9.03 Ed; SAS Institute Inc.: Cary, NC, USA, 2001.
- Garcia, M.; Cruz, E.R.; Pedro, F.K.; Souza, R.P.; Feliciano, W.B.; de Ávila, L.R.; Rohod, R.V. Desempenho e qualidade dos ovos de poedeiras alimentadas com semente de urucum. Arquiv. Ciênc. Vet. Zool. UNIPAR 2015, 18, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Zahroojian, N.; Moravej, H.; Shivazad, M. Effects of Dietary Marine Algae (Spirulina platensis) on Egg Quality and Production Performance of Laying Hens. J. Agric. Sci. Technol. 2013, 15, 1353–1360. [Google Scholar]
- Roberts, J.R. Factors Affecting Egg Internal Quality and Egg Shell Quality in Laying Hens. Poult. Sci. J. 2004, 41, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Williamson, J.; Burkitt, J. About Enhanced Nutrition. 2014. Available online: http://www.tigertouch.org/library/nutrition.pdf (accessed on 13 November 2020).
- Dogan, S.C.; Baylan, M.; Erdogan, Z.; Akpınar, G.Ç.; Küçükgül, A.; Düzgüner, V. Performance, egg quality and serum parameters of Japanese quails fed diet supplemented with Spirulina platensis. Fresenius Environ. Bull. 2016, 25, 5857–5862. [Google Scholar]
- Hasin, B.M.; Ferdaus, A.J.M.; Islam, M.A.; Uddin, M.J.; Islam, M.S. Marigold and Orange Skin as Egg Yolk Color Promoting Agents. Int. J. Poult. Sci. 2006, 5, 979–987. [Google Scholar]
- Laudadio, V.; Ceci, E.; Lastella, N.M.B.; Introna, M.; Tufarelli, V. Low-fiber alfalfa (Medicago sativa L.) meal in the laying hen diet: Effects on productive traits and egg quality. Poult. Sci. 2014, 93, 1868–1874. [Google Scholar] [CrossRef]
- Ross, E.; Dominy, W. The Nutritional Value of Dehydrated, Blue-Green Algae (Spirulina plantensis) for Poultry. Poult. Sci. 1990, 69, 794–800. [Google Scholar] [CrossRef]
- Mariey, Y.A.; Samak, H.R.; Ibrahem, M.A. Effect of using Spirulina platensis algae as a feed additive for poultry diets: 1-productive and reproductive performances of local laying hens. Poult. Sci. 2012, 32, 201–215. [Google Scholar]
- Sujatha, T.; Narahari, D. Effect of designer diets on egg yolk composition of ‘White Leghorn’ hens. J. Food Sci. Technol. 2011, 48, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Jamil, A.R.; Akanda, M.R.; Rahman, M.M.; Hossain, M.A.; Islam, M.S. Prebiotic competence of spirulina on the production performance of broiler chickens. J. Adv. Vet. Anim. Res. 2015, 2, 304–309. [Google Scholar] [CrossRef]
- Ashour, E.A.; El-Kholy, M.S.; Alagawany, M.; El-Hack, A.M.; Mohamed, L.A.; Taha, A.E.; El Sheikh, A.I.; Laudadio, V.; Tufarelli, V. Effect of Dietary Supplementation with Moringa oleifera Leaves and/or Seeds Powder on Production, Egg Characteristics, Hatchability and Blood Chemistry of Laying Japanese Quails. Sustainability 2020, 12, 2463. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Lika, E.; Tufarelli, V.; Bursić, V.; Ljubojević Pelić, D.; Nikolova, N.; Petrović, A.; Prodanović, R.; Vuković, G.; Lević, J.; et al. Influence of Different Tetracycline Antimicrobial Therapy of Mycoplasma (Mycoplasma synoviae) in Laying Hens Compared to Tea Tree Essential Oil on Table Egg Quality and Antibiotic Residues. Foods 2020, 9, 612. [Google Scholar]
- Movahhedkhah, S.; Rasouli, B.; Seidavi, A.; Mazzei, D.; Laudadio, V.; Tufarelli, V. Summer Savory (Satureja hortensis L.) Extract as Natural Feed Additive in Broilers: Effects on Growth, Plasma Constituents, Immune Response, and Ileal Microflora. Animals 2019, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaie, S.; Zirak-Khattab, F.; Hosseini, S.A.; Donyaei-Darian, H. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australas. J. Anim. Sci. 2018, 31, 556–563. [Google Scholar] [CrossRef]
Ingredients, % | Control | Horsetail | Spirulina |
---|---|---|---|
Yellow corn | 48.90 | 35.21 | 52.51 |
Wheat | 20.00 | 20.00 | 20.00 |
Soybean meal (48% crude protein) | 18.73 | 16.50 | - |
Horsetail | - | 15.00 | - |
Spirulina | - | - | 15.00 |
Calcium carbonate | 10.00 | 9.40 | 9.40 |
Dicalcium phosphate | 1.52 | 1.52 | 1.52 |
Salt | 0.32 | 0.32 | 0.32 |
Soybean oil | 1.06 | 1.30 | 0.50 |
Vitamin–mineral mix | 0.50 | 0.50 | 0.50 |
DL-Met | 0.12 | 0.05 | 0.05 |
L-Lys HCl | 0.05 | 0.20 | 0.20 |
Chemical composition (%) | |||
AMEn (kcal/kg) | 2763 | 2698 | 2875 |
Crude protein | 15.49 | 15.60 | 15.62 |
Crude fiber | 2.60 | 3.95 | 2.23 |
Ca | 4.36 | 4.33 | 4.41 |
Available P | 0.35 | 0.35 | 0.36 |
Na | 0.16 | 0.15 | 0.16 |
Available Met | 0.34 | 0.25 | 0.35 |
Available Met+Cys | 0.63 | 0.52 | 0.94 |
Available Lys | 0.75 | 0.79 | 0.73 |
Specification | |
---|---|
Dry matter (%) | 92.14 |
Crude protein (%) | 13.53 |
Crude fat (%) | 1.56 |
Crude fiber (%) | 11.90 |
Ash (%) | 18.34 |
Calcium (%) | 1.32 |
Phosphorus (%) | 0.20 |
Magnesium | 0.97 |
Sodium (%) | 0.72 |
Starch (%) | 11.71 |
Sugar (%) | 3.54 |
Carbohydrates (%) | 46.81 |
Selenium (mg/100 g) | 1.00 |
Iron (mg/100 g) | 29.40 |
Copper (mg/100 g) | 4.30 |
Manganese (mg/100 g) | 1.50 |
Zinc (mg/100 g) | 7.50 |
Total Polyphenols (%) | 1.46 |
Tannins (%) | 0.26 |
Vitamin E (μg/100 g) | 70.00 |
Linalool (%) | 0.33 |
Benzyl acetate (%) | 3.65 |
Cyclamen aldehyde (%) | 2.51 |
Dimethylbenzylcarbinyl butyrate (%) | 11.51 |
2-Nonenal, 2-pentyl (%) | 0.19 |
Undecalactone (%) | 81.80 |
Chemical Composition (% on Dry Matter) | |
---|---|
Moisture | 7.22 |
Protein | 57.61 |
Fat | 5.31 |
Fiber | 3.80 |
Ash | 13.8 |
Mineral concentrations (%) | |
Calcium | 2.20 |
Phosphorus | 0.40 |
Magnesium | 0.85 |
Iron | 1.23 |
Manganese | 0.80 |
Zinc | 1.87 |
Vitamins and carotenoids (μg/100 g) | |
Total carotenoids | 680 |
Vitamin A | 134 |
Vitamin E | 105 |
Ascorbic acid | 824 |
Item | Feed Intake (g/d) | Egg Production (%) | Egg Weight (g) | Egg Mass (g/d) | FCR |
---|---|---|---|---|---|
Horsetail % | |||||
0 | 108.65 | 69.42 | 60.22 | 41.81 | 2.59 |
0.25 | 108.84 | 69.29 | 60.30 | 41.78 | 2.60 |
0.50 | 109.33 | 70.14 | 60.55 | 42.47 | 2.57 |
SEM | 0.46 | 0.26 | 0.16 | 0.18 | 0.01 |
Spirulina % | |||||
0 | 108.36 | 69.36 | 60.07 | 41.66 | 2.60 |
1 | 109.17 | 69.61 | 60.34 | 42.00 | 2.59 |
2 | 109.30 | 69.89 | 60.66 | 42.39 | 2.57 |
SEM | 0.46 | 0.26 | 0.16 | 0.18 | 0.01 |
Horsetail × Spirulina | |||||
0 × 0 | 107.90 | 68.96 | 59.99 | 41.37 | 2.60 |
0 × 1 | 108.80 | 69.37 | 60.17 | 41.74 | 2.60 |
0 × 2 | 109.24 | 69.94 | 60.49 | 42.31 | 2.58 |
0.25 × 0 | 108.36 | 69.36 | 60.11 | 41.69 | 2.59 |
0.25 × 1 | 109.27 | 69.24 | 60.28 | 41.74 | 2.61 |
0.25 × 2 | 108.90 | 69.27 | 60.51 | 41.92 | 2.59 |
0.50 × 0 | 108.80 | 69.75 | 60.11 | 41.92 | 2.59 |
0.50 × 1 | 109.44 | 70.22 | 60.56 | 42.53 | 2.57 |
0.50 × 2 | 109.75 | 70.45 | 60.98 | 42.96 | 2.55 |
SEM | 0.79 | 0.46 | 0.28 | 0.31 | 0.02 |
p-value | |||||
Horsetail | 0.55 | 0.09 | 0.32 | 0.09 | 0.43 |
Spirulina | 0.30 | 0.38 | 0.17 | 0.12 | 0.58 |
H × S | 0.85 | 0.33 | 0.30 | 0.19 | 0.90 |
Item | Shell Thickness (mm) | Eggshell Strength (kg/cm2) | Shape Index (%) | Haugh Unit | Yolk Color Score |
---|---|---|---|---|---|
Horsetail % | |||||
0 | 0.29 b | 2.54 b | 61.06 | 78.47 | 8.38 b |
0.25 | 0.29 b | 2.59 b | 61.24 | 78.61 | 8.58 a,b |
0.50 | 0.30 a | 2.78 a | 62.27 | 78.92 | 9.33 a |
SEM | 0.002 | 0.02 | 0.22 | 0.44 | 0.35 |
Spirulina % | |||||
0 | 0.29 b | 2.59 b | 61.01 | 78.20 | 7.37 b |
1 | 0.29 b | 2.63 a,b | 61.24 | 78.83 | 8.75 a |
2 | 0.30 a | 2.69 a | 61.32 | 78.97 | 9.87 a |
SEM | 0.002 | 0.02 | 0.22 | 0.44 | 0.35 |
Horsetail × Spirulina | |||||
0 × 0 | 0.28 b | 2.50 c | 61.00 | 78.10 | 6.62 b |
0 × 1 | 0.29 ab | 2.54 c | 61.08 | 78.89 | 8.87 a,b |
0 × 2 | 0.30 a, b | 2.59 b,c | 61.10 | 78.41 | 10.25 a |
0.25 × 0 | 0.29 a, b | 2.57 b,c | 61.04 | 78.37 | 7.00 a,b |
0.25 × 1 | 0.29 a, b | 2.60 b,c | 61.37 | 78.55 | 8.25 a,b |
0.25 × 2 | 0.29 a, b | 2.61 b,c | 61.41 | 78.90 | 9.00 a,b |
0.50 × 0 | 0.30 a, b | 2.71 a,b | 61.01 | 78.12 | 8.50 a,b |
0.50 × 1 | 0.30 a, b | 2.76 a,b | 61.26 | 79.04 | 9.12 a,b |
0.50 × 2 | 0.31 a | 2.86 a | 61.45 | 79.61 | 10.37 a |
SEM | 0.003 | 0.04 | 0.39 | 0.76 | 0.61 |
p-value | |||||
Horsetail | 0.004 | 0.001 | 0.770 | 0.760 | 0.050 |
Spirulina | 0.030 | 0.050 | 0.610 | 0.420 | 0.001 |
H × S | 0.001 | 0.001 | 0.980 | 0.910 | 0.004 |
Item | Yolk Weight (g) | Yolk Cholesterol (mg/yolk) | Yolk Cholesterol (mg/g yolk) |
---|---|---|---|
Horsetail % | |||
0 | 17.82 | 220.50 | 12.37 |
0.25 | 17.54 | 220.00 | 12.46 |
0.50 | 17.82 | 218.58 | 12.33 |
SEM | 0.14 | 5.28 | 0.27 |
Spirulina % | |||
0 | 17.70 | 228.10 a | 12.87 a |
1 | 17.73 | 222.60 a,b | 12.54 a,b |
2 | 17.75 | 208.38 b | 11.75 b |
SEM | 0.14 | 5.28 | 0.27 |
Horsetail × Spirulina | |||
0 × 0 | 17.74 | 230.57 | 13.00 |
0 × 1 | 17.86 | 218.98 | 12.25 |
0 × 2 | 17.86 | 211.97 | 11.87 |
0.25 × 0 | 17.62 | 224.64 | 12.74 |
0.25 × 1 | 17.50 | 221.04 | 12.62 |
0.25 × 2 | 17.50 | 210.07 | 12.00 |
0.50 × 0 | 17.75 | 229.11 | 12.87 |
0.50 × 1 | 17.84 | 227.79 | 12.75 |
0.50 × 2 | 17.88 | 203.11 | 11.37 |
SEM | 0.24 | 9.14 | 0.47 |
p-value | |||
Horsetail | 0.26 | 0.95 | 0.95 |
Spirulina | 0.97 | 0.02 | 0.01 |
H × S | 0.91 | 0.38 | 0.26 |
Item | AST (U/l) | ALT (U/l) | Triglycerides (mg/dL) | Cholesterol (mg/dL) |
---|---|---|---|---|
Horsetail % | ||||
0 | 214.52 | 4.58 | 97.12 | 99.43 |
0.25 | 213.48 | 4.56 | 95.42 | 98.15 |
0.50 | 213.50 | 4.77 | 97.03 | 100.48 |
SEM | 0.41 | 0.13 | 1.37 | 1.71 |
Spirulina % | ||||
0 | 215.10 a | 4.90 a | 98.19 | 102.27 |
1 | 213.73 a,b | 4.61 a,b | 96.14 | 98.40 |
2 | 212.68 b | 4.40 b | 95.24 | 97.39 |
SEM | 0.41 | 0.13 | 1.37 | 1.71 |
Horsetail × Spirulina | ||||
0 × 0 | 215.97 | 5.08 | 99.06 | 103.96 |
0 × 1 | 213.61 | 4.51 | 96.89 | 97.55 |
0 × 2 | 213.97 | 4.15 | 95.41 | 96.79 |
0.25 × 0 | 213.36 | 4.55 | 96.46 | 98.88 |
0.25 × 1 | 213.97 | 4.69 | 95.26 | 98.47 |
0.25 × 2 | 213.09 | 4.45 | 94.54 | 97.09 |
0.50 × 0 | 215.97 | 5.08 | 99.06 | 103.95 |
0.50 × 1 | 213.65 | 4.63 | 96.26 | 99.17 |
0.50 × 2 | 213.97 | 4.61 | 95.78 | 98.29 |
SEM | 0.71 | 0.23 | 2.38 | 2.97 |
p-value | ||||
Horsetail | 0.13 | 0.48 | 0.62 | 0.63 |
Spirulina | 0.03 | 0.04 | 0.30 | 0.11 |
H × S | 0.08 | 0.17 | 0.88 | 0.57 |
Items | GSH-Px (U/mL) | MDA (nmol/mL) | TSOD (U/mL) | TAC (U/mL) |
---|---|---|---|---|
Horsetail % | ||||
0 | 822.14 | 6.23 | 163.07 | 7.88 |
0.25 | 822.46 | 6.42 | 163.57 | 7.80 |
0.50 | 823.45 | 6.31 | 163.38 | 7.76 |
SEM | 1.67 | 0.12 | 1.29 | 0.04 |
Spirulina % | ||||
0 | 821.25 | 6.53 | 160.98 b | 7.73 b |
1 | 822.81 | 6.30 | 163.57 a,b | 7.79 a,b |
2 | 824.00 | 6.12 | 165.47 a | 7.92 a |
SEM | 1.67 | 0.12 | 1.29 | 0.04 |
Horsetail × Spirulina | ||||
0 × 0 | 819.09 | 6.54 | 161.09 | 7.75 |
0 × 1 | 822.09 | 6.22 | 162.71 | 7.88 |
0 × 2 | 825.25 | 5.92 | 165.42 | 8.02 |
0.25 × 0 | 822.26 | 6.53 | 160.60 | 7.72 |
0.25 × 1 | 823.14 | 6.39 | 164.42 | 7.76 |
0.25 × 2 | 822.02 | 6.33 | 165.69 | 7.80 |
0.50 × 0 | 822.43 | 6.53 | 161.25 | 7.73 |
0.50 × 1 | 823.19 | 6.29 | 163.59 | 7.74 |
0.50 × 2 | 824.74 | 6.12 | 165.31 | 7.94 |
SEM | 2.89 | 0.22 | 2.25 | 0.08 |
p-value | ||||
Horsetail | 0.84 | 0.57 | 0.96 | 0.19 |
Spirulina | 0.50 | 0.08 | 0.05 | 0.02 |
H × S | 0.92 | 0.52 | 0.60 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Seidavi, A.; Ayaşan, T.; Laudadio, V. Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status. Animals 2021, 11, 335. https://doi.org/10.3390/ani11020335
Tufarelli V, Baghban-Kanani P, Azimi-Youvalari S, Hosseintabar-Ghasemabad B, Slozhenkina M, Gorlov I, Seidavi A, Ayaşan T, Laudadio V. Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status. Animals. 2021; 11(2):335. https://doi.org/10.3390/ani11020335
Chicago/Turabian StyleTufarelli, Vincenzo, Payam Baghban-Kanani, Saba Azimi-Youvalari, Babak Hosseintabar-Ghasemabad, Marina Slozhenkina, Ivan Gorlov, Alireza Seidavi, Tugay Ayaşan, and Vito Laudadio. 2021. "Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status" Animals 11, no. 2: 335. https://doi.org/10.3390/ani11020335
APA StyleTufarelli, V., Baghban-Kanani, P., Azimi-Youvalari, S., Hosseintabar-Ghasemabad, B., Slozhenkina, M., Gorlov, I., Seidavi, A., Ayaşan, T., & Laudadio, V. (2021). Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status. Animals, 11(2), 335. https://doi.org/10.3390/ani11020335