Effects of Chronic Exposure to Low Levels of Dietary Aflatoxin B1 on Growth Performance, Apparent Total Tract Digestibility and Intestinal Health in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aflatoxin B1 Production and Diet Preparation
2.2. Experimental Design and Animal Management
2.3. Sample Collection
2.4. Chemical Analysis
2.5. Diamine Oxidase Activity in Serum
2.6. Antioxidant Parameters in Jejunal Mucosa
2.7. 8-OHdG and PCO Concentrations in Jejunal Mucosa
2.8. Total RNA Isolation and Gene Expression Analysis
2.9. Bacterial DNA Isolation and Microbial Real-Time Quantitative PCR
2.10. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Apparent Total Tract Digestibility
3.3. Relative mRNA Expressions of Nutrient Transporters in Jejunal Mucosa
3.4. Serum DAO Activity and Relative mRNA Expressions of Barrier Junction Related Genes in Jejunal Mucosa
3.5. Antioxidant Capacity
3.6. Relative mRNA Expressions of Inflammatory Related Genes in Jejunal Mucosa
3.7. Bacteria Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Méndez-Albores, A.; Del Río-García, J.C.; Moreno-Martínez, E. Decontamination of aflatoxin duckling feed with aqueous citric acid treatment. Anim. Feed Sci. Technol. 2007, 135, 249–262. [Google Scholar] [CrossRef]
- Hernandez-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Garcia, H.S. Effect of oral supplementation of Lactobacillus reuteri in reduction of intestinal absorption of aflatoxin B1 in rats. J. Basic Microb. 2011, 51, 263–268. [Google Scholar] [CrossRef] [PubMed]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations: Iarc Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100, pp. 9–562. [Google Scholar]
- Eaton, D.L.; Gallagher, E.P. Mechanisms of Aflatoxin Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 135–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ma, Q.; Zhao, L.; Jia, R.; Zhang, J.; Ji, C.; Wang, X. Protective Effects of Sporoderm-Broken Spores of Ganderma lucidum on Growth Performance, Antioxidant Capacity and Immune Function of Broiler Chickens Exposed to Low Level of Aflatoxin B₁. Toxins 2016, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Magnoli, A.P.; Monge, M.P.; Miazzo, R.D.; Cavaglieri, L.R.; Magnoli, C.E.; Merkis, C.I.; Cristofolini, A.L.; Dalcero, A.M.; Chiacchiera, S.M. Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poult. Sci. 2011, 90, 48–58. [Google Scholar] [CrossRef]
- Yunus, A.W.; Razzazi-Fazeli, E.; Bohm, J. Aflatoxin B1 in Affecting Broiler’s Performance, Immunity, and Gastrointestinal Tract: A Review of History and Contemporary Issues. Toxins 2011, 3, 566–590. [Google Scholar] [CrossRef] [Green Version]
- Marin, D.E.; Taranu, I.; Bunaciu, R.P.; Pascale, F.; Oswald, I.P. Changes in performance, blood parameters, humoral and cellular immune responses in weanling piglets exposed to low doses of aflatoxin. J. Anim. Sci. 2002, 80, 1250–1257. [Google Scholar] [CrossRef]
- Bintvihok, A.; Thiengnin, S.; Doi, K.; Kumagai, S. Residues of Aflatoxins in the Liver, Muscle and Eggs of Domestic Fowls. J. Vet. Med. Sci. 2002, 64, 1037–1039. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, H.; Li, X.; Yuan, Q.; Su, J.; Yang, L.; Ning, L.; Lei, H. Fumonisin B1 damages the barrier functions of porcine intestinal epithelial cells in vitro. J. Biochem. Mol. Toxicol. 2019, 33, e22397. [Google Scholar] [CrossRef]
- Rawal, S., Jr.; Coulombe, R.A. Metabolism of aflatoxin B1 in Turkey liver microsomes: The relative roles of cytochromes P450 1A5 and 3A37. Toxicol. Appl. Pharm. 2011, 254, 349–354. [Google Scholar] [CrossRef]
- Meissonnier, G.M.; Pinton, P.; Laffitte, J.L.; Cossalter, A.-M.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Galtier, P.; Oswald, I.P. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharm. 2008, 231, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, M.D.; Blodgett, D.J.; Kornegay, E.T.; Schurig, G.G. Potential ameliorators of aflatoxicosis in weanling/growing swine. J. Anim. Sci. 1993, 71, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.B.; Huff, W.E.; Kubena, L.F.; Corrier, D.E.; Phillips, T.D. Progression of aflatoxicosis in growing barrows. Am. J. Vet. Res. 1988, 49, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Schell, T.C.; Lindemann, M.D.; Kornegay, E.T.; Blodgett, D.J. Effects of feeding aflatoxin-contaminated diets with and without clay to weanling and growing pigs on performance, liver function, and mineral metabolism. J. Anim. Sci. 1993, 71, 1209–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Worldwide Regulations for Mycotoxins 1995; A Compendium Fao Food & Nutrition Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997. [Google Scholar]
- Rodrigues, I.; Naehrer, K. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 2012, 4, 663–675. [Google Scholar] [CrossRef]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed. Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Grenier, B.; Applegate, T.J. Modulation of Intestinal Functions Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Zhao, L.; Ma, Q.; Li, X.; Shi, H.; Zhou, T.; Zhang, J.; Ji, C. Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food Chem. Toxicol. 2013, 59, 748–753. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 7th Revised ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Furuya, S.; Yamamoto, A.; Itoh, M.; Aoki, Y. Use of acid-insoluble ash added with celite as a marker for determining digestibility in pigs. Nihon Yoton Gakkaishi 2001, 38, 171–176. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 −ΔΔ C T Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Qi, H.; Xiang, Z.; Han, G.; Yu, B.; Huang, Z.; Chen, D. Effects of different dietary protein sources on cecal microflora in rats. Afr. J. Biotechnol. 2011, 10, 3704–3708. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Mao, X.; He, J.; Yu, B.; Chen, D. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Commun. Agric. Appl. Biol. Sci. 2013, 110, 1837–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaytor, A.C.; Hansen, J.A.; Van Heugten, E.; See, M.T.; Kim, S.W. Occurrence and Decontamination of Mycotoxins in Swine Feed. Asian-Australas. J. Anim. Sci. 2011, 24, 723–738. [Google Scholar] [CrossRef]
- Chaytor, A.C.; See, M.T.; Hansen, J.A.; de Souza, A.L.P.; Middleton, T.F.; Kim, S.W. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J. Anim. Sci. 2011, 89, 124–135. [Google Scholar] [CrossRef]
- Weaver, A.; See, M.; Hansen, J.; Kim, Y.; De Souza, A.; Middleton, T.; Kim, S. The Use of Feed Additives to Reduce the Effects of Aflatoxin and Deoxynivalenol on Pig Growth, Organ Health and Immune Status during Chronic Exposure. Toxins 2013, 5, 1261–1281. [Google Scholar] [CrossRef] [Green Version]
- Meissonnier, G.M.; Laffitte, J.; Loiseau, N.; Benoit, E.; Raymond, I.; Pinton, P.; Cossalter, A.-M.; Bertin, G.; Oswald, I.P.; Galtier, P. Selective impairment of drug-metabolizing enzymes in pig liver during subchronic dietary exposure to aflatoxin B1. Food Chem. Toxicol. 2007, 45, 2145–2154. [Google Scholar] [CrossRef]
- Thieu, N.Q.; Ogle, B.; Pettersson, H. Efficacy of bentonite clay in ameliorating aflatoxicosis in piglets fed aflatoxin contaminated diets. Trop. Anim. Health Prod. 2008, 40, 649–656. [Google Scholar] [CrossRef]
- Oguz, H.; Kurtoglu, V.; Coskun, B. Preventive efficacy of clinoptilolite in broilers during chronic aflatoxin (50 and 100 ppb) exposure. Res. Vet. Sci. 2000, 69, 197–201. [Google Scholar] [CrossRef]
- Han, X.Y.; Huang, Q.C.; Li, W.F.; Jiang, J.F. Changes in Growth Performance, Digestive Enzyme Activities and Nutrient Digestibility of Cherry Valley Ducks in Response to Aflatoxin B1 Levels. Livest. Sci. 2013, 119, 216–220. [Google Scholar] [CrossRef]
- Fu, J.C.; Chen, Q.; Du, J.; Shi, B.-M.; Shan, A.-S. Effectiveness of maifanite in reducing the detrimental effects of aflatoxin B1 on hematology, aflatoxin B1 residues, and antioxidant enzymes activities of weanling piglets. Livest. Sci. 2013, 157, 218–224. [Google Scholar] [CrossRef]
- Duthie, I.F.; Lancaster, M.C.; Taylor, J.; Lomax, E.B.; Clarkson, H.M. Toxic ground-nut meal in feeds for pigs. 2. The effect of consuming toxic groundnut meal during part of the growing period or during the finishing period. Vet. Rec. 1968, 82, 427–430. [Google Scholar] [CrossRef]
- Hintz, H.F.; Booth, A.N.; Cucullu, A.F.; Gardner, H.K.; Heitman, H. Aflatoxin Toxicity in Swine. Exp. Biol. Med. 1967, 124, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Breves, G.; Kock, J.; Schroder, B. Transport of nutrients and electrolytes across the intestinal wall in pigs. Livest. Sci. 2007, 109, 4–13. [Google Scholar] [CrossRef]
- Yin, J.; Ren, W.; Duan, J.; Wu, L.; Chen, S.; Li, T.; Yin, Y.; Wu, G. Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids 2014, 46, 883–892. [Google Scholar] [CrossRef]
- Feng, G.D.; He, J.; Ao, X.; Chen, D. Effects of maize naturally contaminated with aflatoxin B1 on growth performance, intestinal morphology, and digestive physiology in ducks. Poult. Sci. 2016, 96, 1948–1955. [Google Scholar] [CrossRef]
- Chen, X.; Murdoch, R.; Zhang, Q.; Shafer, D.J.; Applegate, T.J. Effects of dietary protein concentration on performance and nutrient digestibility in Pekin ducks during aflatoxicosis. Poult. Sci. 2016, 95, 834–841. [Google Scholar] [CrossRef]
- Sergent, T.; Ribonnet, L.; Kolosova, A.; Garsou, S.; Schaut, A.; Saeger, S.D.; Peteghem, C.V.; Larondelle, Y.; Pussemier, L.; Schneider, Y.-J. Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem. Toxicol. 2008, 46, 813–841. [Google Scholar] [CrossRef]
- Thompson, J.; Vaughan, W.; Forst, C.; Jacobs, D.; Weekly, J.; Rikkers, L. The effect of the route of nutrient delivery on gut structure and diamine oxidase levels. J. Parenter. Enter. Nutr. 1987, 11, 28–32. [Google Scholar] [CrossRef]
- Chen, J.; Bing, Y.; Daiwen, C.; Zhiqing, H.; Xiangbing, M.; Ping, Z.; Jie, Y.; Junqiu, L.; Jun, H. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 2018, 84–92. [Google Scholar] [CrossRef]
- Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Zhu, L.; Luo, J. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BioMed Res. Int. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Circu, M.L.; Aw, T.Y. Intestinal redox biology and oxidative stress. Semin. Cell Dev. Biol. 2012, 23, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Kodama, M.; Inoue, F.; Akao, M. Enzymatic and Non-Enzymatic Formation of Free Radicals From Aflatoxin B 1. Free Radic. Res. Commun. 1990, 10, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, J.; Chen, D.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; He, J. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv. 2018, 8, 13482–13492. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Wang, W. Effects of astaxanthin and esterified glucomannan on hematological and serum parameters, and liver pathological changes in broilers fed aflatoxin-B1-contaminated feed. Anim. Sci. J. 2014, 85, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Tian, G.; Li, B.; Chen, D.; Yu, B. Trace Mineral Overload Induced Hepatic Oxidative Damage and Apoptosis in Pigs with Long-Term High-Level Dietary Mineral Exposure. J. Agric. Food Chem. 2016, 64, 1841–1849. [Google Scholar] [CrossRef]
- Pedersen, J.; Lacasse, E.C.; Seidelin, J.B.; Coskun, M.; Nielsen, O.H. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol. Med. 2014, 20, 652–665. [Google Scholar] [CrossRef]
- Alsadi, R.; Boivin, M.; Ma, T.Y. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 2009, 14, 2765–2778. [Google Scholar] [CrossRef] [Green Version]
- De Vrese, M.; Marteau, P. Probiotics and Prebiotics: Effects on Diarrhea. J. Nutr. 2007, 137, 205–227. [Google Scholar] [CrossRef] [Green Version]
- Croswell, A.; Amir, E.; Teggatz, P.; Barman, M.; Salzman, N.H. Prolonged Impact of Antibiotics on Intestinal Microbial Ecology and Susceptibility to Enteric Salmonella Infection. Infect. Immun. 2009, 77, 2741–2753. [Google Scholar] [CrossRef] [Green Version]
- Liew, W.; Mohdredzwan, S. Mycotoxin: Its Impact on Gut Health and Microbiota. Front. Cell. Infect. Microbiol. 2018, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Oswald, I.P.; Desautels, C.; Laffitte, J.; Fournout, S.; Peres, S.Y.; Odin, M.; Bars, P.L.; Bars, J.L.; Fairbrother, J.M. Mycotoxin fumonisin B1 increases intestinal colonization by pathogenic Escherichia coli in pigs. Appl. Environ. Microbiol. 2003, 69, 5870–5874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mclamb, B.L.; Gibson, A.J.; Overman, E.L.; Chad, S.; Moeser, A.J.; Colette, K.L. Early Weaning Stress in Pigs Impairs Innate Mucosal Immune Responses to Enterotoxigenic E. coli Challenge and Exacerbates Intestinal Injury and Clinical Disease. PLoS ONE 2013, 8, e59838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mycotoxins | CON 1 | AFB1 1 | Limit 2 |
---|---|---|---|
AFB1 (ug/kg) | 0.40 | 286.60 | 20.0 |
ZEA (ug/kg) | ND 3 | 49.9 | 500 |
DON (ug/kg) | 101.10 | 406.40 | 1000 |
T2 (ug/kg) | ND 3 | ND 3 | 1000 |
OTA (ug/kg) | ND 3 | ND 3 | 100 |
Items | 38 to 50 kg | 50 to 75 kg | 75 to 100 kg | 100 to 135 kg |
---|---|---|---|---|
Ingredients | ||||
Maize | 72.11 | 78.68 | 78.64 | 84.41 |
Soybean meal, dehulled | 18.14 | 16.76 | 17.42 | 12.04 |
Fish meal | 3.00 | |||
Sucrose | 2.00 | |||
Choline chloride | 0.10 | 0.15 | 0.15 | 0.15 |
NaCl | 0.30 | 0.40 | 0.40 | 0.40 |
Soybean oil | 1.40 | 0.91 | 0.80 | 0.60 |
Limestone | 0.58 | 0.74 | 0.56 | 0.58 |
CaHPO4 | 0.93 | 0.94 | 0.93 | 0.71 |
L-Lysine-HCl | 0.38 | 0.39 | 0.22 | 0.21 |
DL-Methionine | 0.08 | 0.06 | ||
L-Threonine | 0.11 | 0.11 | 0.04 | 0.05 |
L-Tryptophan | 0.03 | 0.03 | 0.01 | |
Rice | 0.30 | 0.30 | 0.30 | 0.30 |
Rice bran | 0.31 | 0.30 | 0.31 | 0.31 |
Vitamin premix 1 | 0.03 | 0.03 | 0.03 | 0.03 |
Mineral premix 2 | 0.20 | 0.20 | 0.20 | 0.20 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient compositions | ||||
Metabolizable energy, MJ/kg | 13.92 | 13.75 | 13.75 | 13.82 |
Crude protein | 16.47 | 14.50 | 13.60 | 12.60 |
Calcium | 0.66 | 0.59 | 0.52 | 0.46 |
Total phosphorus | 0.58 | 0.50 | 0.50 | 0.44 |
Available phosphorus | 0.32 | 0.25 | 0.25 | 0.21 |
SID 3 Lysine | 1.10 | 0.96 | 0.84 | 0.70 |
SID 3 Methionine | 0.37 | 0.30 | 0.25 | 0.22 |
Gene | Sequence (5′–3′) | Product Size (bp) | Accession No. |
---|---|---|---|
SGLT1 | F: GCAACAGCAAAGAGGAGCGTAT | 95 | NM_001164021.1 |
R: GCCACAAAACAGGTCATAGGTC | |||
SLC7A1 | F: CTTTCTACCCGCGGTCTCC | 150 | NM_001012613.1 |
R: TGCTGAGCGAATCTGCTGTA | |||
ZO-1 | F: CAGCCCCCGTACATGGAGA | 114 | XM_005659811 |
R: GCGCAGACGGTGTTCATAGTT | |||
Occludin | F: CTACTCGTCCAACGGGAAAG | 158 | NM_001163647.2 |
R: ACGCCTCCAAGTTACCACTG | |||
TNF-α | F: ACCACGCTCTTCTGCCT | 121 | NM_214022.1 |
R: GGCTTATCTGAGGTTTG | |||
IL-8 | F: AGTGGACCCCACTGTGAAAA | 102 | X61151.1 |
R: TACAACCTTCTTCTGCACCCA | |||
TGF-β | F: AGGACCTGGGCTGGAAGTG | 119 | NM_214015.1 |
R: GGGCCCCAGGCAGAAAT | |||
IL-1β | F: TCTGCCCTGTACCCCAACTG | 112 | NM_214055.1 |
R: CCAGGAAGACGGGCTTTTG | |||
β-actin | F: CCACGCCCTTTCTCACTTGT | 114 | DQ178122 |
R: CACCCACAGCACCTTATGCT |
Items | Sequence (5′–3′) | Anneal Temperature (°C) | Product Size (bp) |
---|---|---|---|
Total bacteria | F: ACTCCTACGGGAGGCAGCAG R: ATTACCGCGGCTGCTGG | 60.0 | 200 |
Lactobacillus | F: GAGGCAGCAGTAGGGAATCTTC R: CAACAGTTACTCTGACACCCGTTCTTC P: AAGAAGGGTTTCGGCTCGTAAAACTCTGTT | 57.5 | 126 |
Bifidobacterium | F: CGCGTCCGGTGTGAAAG R: CTTCCCGATATCTACACATTCCA P: ATTCCACCGTTACACCGGAA | 59.5 | 121 |
Bacillus | F: GCAACGAGCGCAACCCTTGA R: TCATCCCCACCTTCCTCCGGT P: CGGTTTGTCACCGGCAGTCACCT | 60.0 | 92 |
Escherichia coli | F: CATGCCGCGTGTATGAAGAA R: CGGGTAACGTCAATGAGCAAA P: AGGTATTAACTTTACTCCCTTCCTC | 58.8 | 96 |
Items | CON | AFB1 | p-Value |
---|---|---|---|
Initial BW (kg) | 38.22 ± 0.70 | 38.19 ± 0.65 | 0.98 |
Final BW (kg) | 132.80 ± 2.10 | 124.60 ± 3.43 | 0.07 |
ADFI (g/d) | 2544.08 ± 41.64 | 2332.18 ± 96.26 | 0.07 |
ADG (g/d) | 927.25 ± 15.69 | 847.16 ± 33.52 | 0.06 |
F/G | 2.75 ± 0.04 | 2.75 ± 0.05 | 0.91 |
Items | CON | AFB1 | p-Value |
---|---|---|---|
50 to 75 kg | |||
Dry mater | 87.74 ± 0.77 | 86.17 ± 0.44 | 0.04 |
Gross energy | 87.34 ± 0.76 | 85.66 ± 0.45 | 0.03 |
Crude protein | 85.22 ± 1.18 | 84.62 ± 0.77 | 0.61 |
Ether extract | 75.99 ± 2.19 | 73.63 ± 1.22 | 0.25 |
75 to 105 kg | |||
Dry mater | 89.59 ± 0.19 | 89.82 ± 0.58 | 0.76 |
Gross energy | 89.08 ± 0.22 | 89.1 ± 0.57 | 0.98 |
Crude protein | 87.24 ± 0.44 | 87.63 ± 1.1 | 0.80 |
Ether extract | 81.88 ± 0.43 | 78.06 ± 0.74 | 0.04 |
105 to 135 kg | |||
Dry mater | 88.25 ± 0.36 | 86.39 ± 0.60 | 0.03 |
Gross energy | 87.76 ± 0.34 | 85.54 ± 0.58 | 0.01 |
Crude protein | 84.80 ± 1.18 | 83.12 ± 0.79 | 0.27 |
Ether extract | 73.88 ± 1.78 | 71.99 ± 1.47 | 0.43 |
Items | CON | AFB1 | p-Value |
---|---|---|---|
SGLT1 | 1.00 ± 0.19 | 0.36 ± 0.12 | 0.02 |
SLC7A1 | 1.00 ± 0.03 | 0.86 ± 0.04 | 0.04 |
Items | CON | AFB1 | p-Value |
---|---|---|---|
Serum | |||
DAO (U/L) | 13.79 ± 1.97 | 23.75 ± 1.65 | p < 0.01 |
Jejunal mucosa | |||
ZO-1 | 1.00 ± 0.05 | 0.67 ± 0.03 | p < 0.01 |
Occludin | 1.00 ± 0.12 | 1.06 ± 0.08 | 0.68 |
Items | CON | AFB1 | p-Value |
---|---|---|---|
T-AOC (U/mgprot) | 1.44 ± 0.10 | 1.20 ± 0.16 | 0.24 |
SOD (U/mgprot) | 275.34 ± 21.06 | 189.34 ± 18.62 | 0.02 |
MDA (nmol/mgprot) | 0.18 ± 0.02 | 0.18 ± 0.03 | 0.95 |
8-OHdG (pg/mL) | 11.22 ± 0.96 | 15.03 ± 1.63 | 0.08 |
PCO (pg/mL) | 26.80 ± 2.28 | 31.47 ± 3.67 | 0.31 |
Items | CON | AFB1 | p-Value |
---|---|---|---|
TNF-α | 1.00 ± 0.08 | 1.44 ± 0.14 | 0.03 |
IL-1β | 1.00 ± 0.06 | 1.34 ± 0.10 | 0.02 |
IL-8 | 1.00 ± 0.11 | 1.42 ± 0.28 | 0.21 |
TGF-β | 1.00 ± 0.08 | 1.56 ± 0.21 | 0.05 |
Items | CON | AFB1 | p-Value |
---|---|---|---|
Total bacteria | 13.46 ± 0.09 | 13.54 ± 0.02 | 0.45 |
Lactobacillus | 7.74 ± 0.24 | 7.82 ± 0.23 | 0.82 |
Bacillus | 9.84 ± 0.17 | 9.93 ± 0.05 | 0.63 |
Escherichia coli | 6.72 ± 0.37 | 7.72 ± 0.13 | 0.03 |
Bifidobacterium | 5.43 ± 0.13 | 5.62 ± 0.35 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, J.; Yuan, Q.; Yan, H.; Tian, G.; Chen, D.; He, J.; Zheng, P.; Yu, J.; Mao, X.; Huang, Z.; et al. Effects of Chronic Exposure to Low Levels of Dietary Aflatoxin B1 on Growth Performance, Apparent Total Tract Digestibility and Intestinal Health in Pigs. Animals 2021, 11, 336. https://doi.org/10.3390/ani11020336
Pu J, Yuan Q, Yan H, Tian G, Chen D, He J, Zheng P, Yu J, Mao X, Huang Z, et al. Effects of Chronic Exposure to Low Levels of Dietary Aflatoxin B1 on Growth Performance, Apparent Total Tract Digestibility and Intestinal Health in Pigs. Animals. 2021; 11(2):336. https://doi.org/10.3390/ani11020336
Chicago/Turabian StylePu, Junning, Qinghui Yuan, Hui Yan, Gang Tian, Daiwen Chen, Jun He, Ping Zheng, Jie Yu, Xiangbing Mao, Zhiqing Huang, and et al. 2021. "Effects of Chronic Exposure to Low Levels of Dietary Aflatoxin B1 on Growth Performance, Apparent Total Tract Digestibility and Intestinal Health in Pigs" Animals 11, no. 2: 336. https://doi.org/10.3390/ani11020336
APA StylePu, J., Yuan, Q., Yan, H., Tian, G., Chen, D., He, J., Zheng, P., Yu, J., Mao, X., Huang, Z., Luo, J., Luo, Y., & Yu, B. (2021). Effects of Chronic Exposure to Low Levels of Dietary Aflatoxin B1 on Growth Performance, Apparent Total Tract Digestibility and Intestinal Health in Pigs. Animals, 11(2), 336. https://doi.org/10.3390/ani11020336